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2006 values from NIST. For more physical constants, see http://physics.nist.gov/cuu/Constants/ .

Speed of light in vacuum
Boltzmann constant

Stefan-Boltzmann constant
Relative standard uncertainty

Avogadro constant
Relative standard uncertainty

Molar gas constant
Electron mass

Proton mass
Proton/electron mass ratio
Elementary charge
Electron g-factor

Proton g-factor

Neutron g-factor

Muon mass

Inverse fine structure constant
Planck constant

Planck constant over 21
Bohr radius

Bohr magneton

Reviews

€=299792458 ms* (exact)
k =1.380 6504(24) x 1022 J K

o =5.670 400(40) x 108 W m2K™
+7.0x10°°

Na, L = 6.022 141 79(30) x 102 mol
+5.0x 108

R = 8.314 472(15) J mol* K1

me = 9.109 382 15(45) x 103 kg
m, = 1.672 621 637(83) x 102" kg
m/m, = 1836.152 672 47(80)

e =1.602 176 487(40) x 10° C
ge = —2.002 319 304 3622(15)

gp = 5.585 694 713(46)

g = —3.826 085 45(90)

m, = 1.883 531 30(11) x 1028 kg
ot =137.035 999 679(94)

h = 6.626 068 96(33) x 103 J s

5 =1.054571628(53) x 10 s
a0 = 0.529 177 208 59(36) x 101°m
pts = 927.400 915(23) x 1026 J T

“... most excellent tensor paper.... | feel | have come to a deep and abiding understanding of relativistic
tensors.... The best explanation of tensors seen anywhere!” -- physics graduate student
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1 Introduction

Mathematical Physics, or Physical Mathematics?

Is There Another Kind of Physics? Mathematical Physics is devoted to the natural emergence of
mathematics from our curiosity about the universe around us. All physics is mathematical, but Mathematical
Physics illustrates that math is not abstract, or capricious, but an inescapable part of the natural world.
Despite its humble beginnings rooted in conceptual understanding and the practice of science, many find that
Mathematical Physics holds a beauty and fascination all its own.

As with all “Funky” notes, we emphasize the physical meaning of the underlying concepts. For example,
we stress a coordinate-free, geometric approach to vector operations.

Why Physicists and Mathematicians Argue

Physics goals and mathematics goals are antithetical. Physics seeks to ascribe meaning to mathematics
that describe the world, to “understand” it, physically. Mathematics seeks to strip the equations of all physical
meaning, and view them in purely abstract terms. These divergent goals set up a natural conflict between the
two camps. Each goal has its merits: the value of physics is to make a better world; the value of mathematical
abstraction, separate from any single application, is generality: the results can be used on a wide range of
applications.

Why Funky?

The purpose of the “Funky” series of documents is to help develop an accurate physical, conceptual,
geometric, and pictorial understanding of important physics topics. We focus on areas that don’t seem to be
covered well in most texts. The Funky series attempts to clarify those neglected concepts, and others that
seem likely to be challenging and unexpected (funky?). The Funky documents are intended for serious
students of physics; they are not “popularizations” or oversimplifications.

Physics includes math, and we’re not shy about it, but we also don’t hide behind it.

| Without a conceptual understanding, math is gibberish.

This work is one of several aimed at graduate and advanced-undergraduate physics students. Go to our
web page (in the page header) for the latest versions of the Funky Series, and for contact information. We’re
looking for feedback, so please let us know what you think.

How to Use This Document

| This work is not a text book.

There are plenty of those, and they cover most of the topics quite well. This work is meant to be used
with a standard text, to help emphasize those things that are most confusing for new students. When standard
presentations don’t make sense, come here.

You should read all of this introduction to familiarize yourself with the notation and contents. After that,
this work is meant to be read in the order that most suits you. Each section stands largely alone, though the
sections are ordered logically. Simpler material generally appears before more advanced topics. You may
read it from beginning to end, or skip around to whatever topic is most interesting. The “Shorts” chapter is
a diverse set of very short topics, meant for quick reading.

If you don’t understand something, read it again once, then keep reading.
Don’t get stuck on one thing. Often, the following discussion will clarify things.

The index is not yet developed, so go to the web page on the front cover, and text-search in this document.
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Thank You

I owe a big thank you to many professors at both SDSU and UCSD, for their generosity even when |
wasn’t a real student: Dr. Herbert Shore, Dr. Peter Salamon, Dr. Arlette Baljon , Dr. Andrew Cooksy, Dr.
George Fuller, Dr. Tom O’Neil, Dr. Terry Hwa, and others.

Scope

What This Text Covers

This text covers some of the unusual or challenging concepts in graduate mathematical physics. It is
also very suitable for upper-division undergraduate level, as well. We expect that you are taking or have
taken such a course, and have a good text book. Funky Mathematical Physics Concepts supplements those
other sources.

What This Text Doesn’t Cover

This text is not a mathematical physics course in itself, nor a review of such a course. We do not cover
all basic mathematical concepts; only those that are very important, unusual, or especially challenging
(funky?).

What You Already Know

This text assumes you understand basic integral and differential calculus, and partial differential
equations. Further, it assumes you have a mathematical physics text for the bulk of your studies, and are
using Funky Mathematical Physics Concepts to supplement it.

Notation
Sometimes the variables are inadvertently not written in italics, but | hope the meanings are clear.
7 refers to places that need more work.

TBS To be supplied (one hopes) in the future.

Interesting points that you may skip are “asides,” shown in smaller font and narrowed margins. Notes to myself
may also be included as asides.

Common misconceptions are sometimes written in dark red dashed-line boxes.

Formulas: We write the integral over the entire domain as a subscript “0”, for any number of
dimensions:

1-D: I dx 3-D: J. d3x
Evaluation between limits: we use the notation [function]." to denote the evaluation of the function
between aand b, i.e.,
[f(x)]° = f(b) — f(a). Forexample, [ o!3x%dx =[]t =13-03=1.
We write the probability of an event as “Pr(event).”

Column vectors: Since it takes a lot of room to write column vectors, but it is often important to
distinguish between column and row vectors, | sometimes save vertical space by using the fact that a column
vector is the transpose of a row vector:

:(a,b,c,d)T

o o T 9
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Random variables: We use a capital letter, e.g. X, to represent the population from which instances of
a random variable, x (lower case), are observed. In a sense, X is a representation of the PDF of the random

variable, pdfx(x).

We denote that a random variable X comes from a population PDF as: X ¢ pdfy, e.g.: X € ¥%(n). To

denote that X is a constant times a random variable from pdfy, we write: X € k pdfy, e.g. X € k x2(n).

For Greek letters, pronunciations, and use, see Quirky Quantum Concepts. Other math symbols:

Symbol Definition
v for all
3 there exists
3 such that
iff if and only if
oc proportional to. E.g., a o« b means “a is proportional to b”
1 perpendicular to
therefore
~ of the order of (sometimes used imprecisely as “approximately equals™)
= is defined as; identically equal to (i.e., equal in all cases)
= implies
- leads to
® tensor product, aka outer product
&) direct sum

In mostly older texts, German type (font: Fraktur) is used to provide still more variable names:

German German
Latin Capital Lowercase Notes

A A a Distinguish capital from U, V
B B b
C ¢ C Distinguish capital from E, G
D D 0 Distinguish capital from O, Q
E ¢ ¢ Distinguish capital from C, G
F 5 f
G ® g Distinguish capital from C, E
H 9 b
I 3 i Capital almost identical to J
J 3 Capital almost identical to |
K R ¢
L [y [
M m m Distinguish capital from W

12/16/2024 2:18 PM
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N N n

o IS) 0 Distinguish capital from D, Q
i B P

Q [9) q Distinguish capital from D, O
R R T Distinguish lowercase from x
S S 5 Distinguish capital from C, G, E
T T t Distinguish capital from |

u $[ u Distinguish capital from A, V
\ Dy v Distinguish capital from A, U
4 20 o Distinguish capital from M

X X r Distinguish lowercase from r
Y 2 y

z 3 3
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2 Random Short Topics

| Always Lie

Logic, and logical deduction, are essential elements of all science. Too many of us acquire our logical
reasoning abilities only through osmosis, without any concrete foundation. Unfortunately, two of the most
commonly given examples of logical reasoning are both wrong. | found one in a book about Kurt Gédel (1),
the famous logician.

Fallacy #1: Consider the statement, “I always lie.” Wrong claim: this is a contradiction, and cannot be
either true or false. Right answer: this is simply false. The negation of “I always lie” is not “I always tell the
truth;” it is “I don’t always lie,” equivalent to “I at least sometimes tell the truth.” Since “I always lie” cannot
be true, it must be false, and it must be one of my (exceedingly rare) lies.

Fallacy #2: Consider the statement, “The barber shaves everyone who doesn’t shave himself. Who
shaves the barber?” Wrong answer: it’s a contradiction, and has no solution. Right answer: the barber shaves
himself. The original statement is about people who don 't shave themselves; it says nothing about people
who do shave themselves. If A then B; but if not A, then we know nothing about B. The barber does shave
everyone who does not shave himself, and he also shaves one person who does shave himself: himself. To
be a contradiction, the claim would need to be something like, “The barber shaves all and only those who
don’t shave themselves.”

Logic matters.

What’s Hyperbolic About Hyperbolic Sine?

y
et Y= ! o
T area = af2 P
X2 — y2 =1
& area=af2 _
N sina \ /  [sinha
a .
cos a f Tunit ;cosh a

From where do the hyperbolic trigonometric functions get their names? By analogy with the circular
functions. We usually think of the argument of circular functions as an angle, a. But in a unit circle, the area
covered by the angle aisa / 2 (above left):

area= 2 72 =2 (r=1).
2 2
Instead of the unit circle, x2 + y? = 1, we can consider the area bounded by the x-axis, the ray from the origin,
and the unit hyperbola, x?— y? =1 (above right). Then the x and y coordinates on the curve are called the
hyperbolic cosine and hyperbolic sine, respectively. Notice that the hyperbola equation implies the well-
known hyperbolic identity:

X =cosha, y =sinha, x2—y2=1 = cosh?—sinh? =1.

Proving that the area bounded by the x-axis, ray, and hyperbola satisfies the standard definition of the
hyperbolic functions requires evaluating an elementary, but tedious, integral: (?? is the following right?)
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X
areazizlxy—j y dx Use: y=+/x°-1
2 2 1
X
a:X\/xz—l—ZI1 x? —1 dx
For the integral, let x=secH, dx=tandsecddb =

y=+sec?0-1=tano

X X X X ain2
J.l X2—1dX=J‘1\/se<:2ﬁtan¢9seced6?=J‘1 tan?osecodo= [ SN0

3 do
1 cos” @

We try integrating by parts (but fail):

U =tand dV =secftan9 do =
X

X
tan® @secd dU =sec@tan ¢9|1X —L sec’0do

This is too hard, so we try reverting to fundamental functions sin() and cos( ):

U =sing dV =cos @sing do = dU =cos@do, V =%cos’29

X X

X ain? .
2J' il edQ:ZUV—ZJVdU: sin@

) )
- 5 —I cos 2@ cosd do Use: SN0
1 cos @ cos“ @

1 cos®
jx

1

=sec dtand = xy
1

1

- xy_flxsecﬁ do= xy—(ln|sec0+tan6'|)|f = xy—(m‘xJr 2 _1
- xy—In‘x+\/x2 —1‘—)n{
x+\/x2 —1‘= In‘x+\/x2 —1‘

a=xy—xy+In

e? = x+Vx? -1

Solve for x in terms of a, by squaring both sides:

82 = x? +2xx% —1+x% 1= 2x(x+\/x2 —1)—1= 2xe? -1

e —|

ea

g2 41=2xe?

(ea+e‘a)
a e @ _92x = x=cosha=-——+~

2
The definition for sinh follows immediately from:

e

cosh?—sinh? =x? - y? =1=

2
2 a -a
. e +e? e 124 e _24e 2R (e —¢ ) ed—e?
sinha=y= 5 -1= -1= =
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Basic Calculus You May Not Know

Amazingly, many calculus courses never provide a precise definition of a “limit,” despite the fact that
both of the fundamental concepts of calculus, derivatives and integrals, are defined as limits! So here we go:

Basic calculus relies on 4 major concepts:
Functions
Limits

Derivatives

A 0w b

Integrals

1. Functions: Briefly, (in real analysis) a function takes one or more real values as inputs, and produces
one or more real values as outputs. The inputs to a function are called the arguments. The simplest case is
a real-valued function of a real-valued argument e.g., f(x) = sin x. Mathematicians would write (f : R* —
RY), read “f is a map (or function) from the real numbers to the real numbers.” A function which produces
more than one output may be considered a vector-valued function.

2. Limits: Definition of “limit” (for a real-valued function of a single argument, f: R — RY):

L is the limit of f(x) as x approaches a, iff for every ¢ > 0, there exists a d (> 0) such that |f(x) — L| < ¢ whenever
0<|x—a|<d. Insymbols:

L=lim f(x) iff Ve>0,35suchthat |f(x)-L|<e whenever O<|x—a|<s.

X—a

This says that the value of the function at a doesn’t matter; in fact, most often the function is not defined at
a. However, the behavior of the function near a is important. If you can make the function arbitrarily close
to some number, L, by restricting the function’s argument to a small neighborhood around a, then L is the
limit of f as x approaches a.

Surprisingly, this definition also applies to complex functions of complex variables, where the absolute
value is the usual complex magnitude.

2_
Example: Show that lim 2x° -2
x—1 X-—

=4.

Solution: We prove the existence of J given any ¢ by computing the necessary ¢ from ¢. Note that for
2x* -2

X#1, =2(x+1). The definition of a limit requires that

2x2 -2
x-1

—4

<& whenever 0<|x-1<5.

We solve for x in terms of ¢, which will then define J in terms of ¢. Since we don’t care what the function is
at x = 1, we can use the simplified form, 2(x + 1). When x = 1, this is 4, so we suspect the limit = 4. Proof:

2(x+)-4<s =  2/(x+D)-2<s = |x—1|<§ or 1—§<x<1+§.
So by setting J = &/2, we construct the required 6 for any given e. Hence, for every ¢, there exists a ¢ satisfying

the definition of a limit.

3. Derivatives: Only now that we have defined a limit, can we define a derivative:

4. Integrals: A simplified definition of an integral is an infinite sum of areas under a function divided
into equal subintervals (Figure 2.1, left):
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b . b-a< i N N
f(x)dx= lim —— » f|(b-a)— simplified definition) .
-L ) Now N ; (( ) N (simp )
AX
For practical physics, this definition is fine. For mathematical preciseness, the actual definition of an integral
is the limit over any possible set of subintervals [ref??], so long as the maximum of the subinterval size goes
to zero. This maximum size is called “the norm of the subdivision,” written as ||AXi|:

b N
J‘ f(x)dx=lim Z f (%) A% (precise definition) .
a |Ax; [0 =

Figure 2.1 (Left) Simplified definition of an integral as the limit of a sum of equally spaced
samples. (Right) Precise definition requires convergence for arbitrary, but small, subdivisions.

Why do mathematicians require this more precise definition? It’s to avoid bizarre functions, such as:
f(x) is 1 if x is rational, and zero if irrational. This means f(x) toggles wildly between 1 and 0 an infinite
number of times over any interval. However, with the simplified definition of an integral, the following are
both well defined:

3.14
J.o f (x) dx = 3.14, and J.Oﬂ f(x)dx=0 (with simplified definition of integral) .

In contrast, with the mathematically precise definition of an integral, both integrals are undefined. (There
are other types of integrals defined, but they are beyond our scope.)

The Product Rule
Given functions U(x) and V(x), the product rule (aka the Leibniz rule) says that for differentials,
d(UV)=UdV +VduU. (2.1)
When U and V are functions of x, we have:
d[U(x)V (x)]=U )V '(x)dx +V (x)U (x)dx .

This leads to integration by parts, which is mostly known as an integration tool, but it is also an important
theoretical (analytic) tool, and the essence of Legendre transformations.

Integration By Pictures

We assume you are familiar with integration by parts (IBP) as a tool for performing indefinite integrals.
We start with a brief overview, and then discuss a specific example in detail. 1BP takes a non-trivial integral
into an expression with a different integral, which may be easier to perform analytically:

If(x) dx:ju dv =UV —Iv dU where U =U(x),V =V (x) 2.2)
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are parametric functions of x. The above comes directly from the product rule (2.1): U dV =d (UV ) -V du

, and integrate both sides. Inserting limits of integration makes for a simple illustration of the formula’s
meaning (Figure 2.2a), but a slightly tedious equation:

“toodx=["PUav oV YO\ 4U = UV () U @)V YO\ qu
[ 1o x_jv(a) o ]x:a‘L(a) = U (b)V (b)-U (a) (az—ju(a)

big rectangle — small rectangle

where U =U(x),V =V (x).

The figure plots U vs. V, where we’ve chosen U and V to be increasing parametric functions of x. In practice,
the RHS of (2.2) is usually written in terms of x as:

I UV (x) dx = UV, - I "V () U (x) d. (2.3)
a T} - a ITI

Note that x is the original integration variable (not U or V), so all the limits of integration are the original x =
atox=h.

In practice, our job is to integrate f(x) dx by finding functions U(x) and V(x)
such that the resulting integral on the RHS of (2.3) is simpler than the original f(x) dx.

As a specific example, consider:

I xsinx dx.
| I
f(x)

27
Figure 2.2b illustrates the definite integral L f (x) dx to scale, with uniform representative intervals dx.

U u
Ubve) >
U(b) 25 2.5
2.0 2.0
[Vdu :
15 15
U(a)~ 1.0 f(X) 1.0
Udv ' /
U(a)V(a) I 05 ) \ os| /
‘ \Y; " 7 x \
v ‘a V(b 00 05 1.0 15|20 25 30 =10 -05 00 05 10 15 20
@) (b) Ik av= -
(@) (b) ©

Figure 2.2 (a) Schematic identification of significant features of IBP. (b) To scale: the original
integral can be reconsidered as (c) an integral of U dV; the areas are equal. U and V are parametric
functions of x; dV is a function of x and dx. As shown, when the dx are uniform, the dV are not.

This integral is not immediate, so we can try integration by parts, though there is no guarantee that it will
work. In this example, there are three ways of choosing U(x) and V(x):

U(x)=xsinx, dV =dx = dU =(xcosx+sinx)dx, V(x)=x
U(x)=x, dV =sinxdx = dU =dx, V(x)=-cosx
U)=sinx, dV =xdx = dU = cos x dx, V(x)=x2/2

More complicated integrals will have more choices for U(x) and V(x). Itis hard to know ahead of time which
choice (or choices) will succeed. However, looking at the RHS of (2.3), we see that it multiplies V and the
derivative of U. Looking at our 3 choices above, on the RHS of the arrows, we find the two factors V dU
that we would be faced with integrating:

o the first choice has an ugly dU, and V dU cannot be easily integrated;
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¢ the second choice has dU = dx, which literally could not be simpler, and V dU integrates easily;

o the last choice has dU = cos x dx, which isn’t bad, but V dU cannot be easily integrated.
Thus our best guess is the second choice (often, the simplest dU is a good choice). Figure 2.2c illustrates
IU dV toscale; U and V are parametric functions of x; dV is a function of x and dx. Then:

J.xsinxdx=rxcos>g—jrcos>g% =—XCOSX+SinX.
uv Vv du

We check by differentiating the RHS above, which yields the original integrand.

Note that when the dx in Figure 2.2b are uniform, the dV in Figure 2.2c are not. However, all the dV go
to zero when the dx do, so the integral of U dV is still valid.

The term [U (x)V (X)]:l is called the “boundary term,” or sometimes the “surface term.”

U U
b) U(b)-
o) ®) = [uav<o
2
[uav=-vdu
[udav<o U@);
U@ 30— et v
= Integration = =
" V(b) =0 ntegrafio V(a) o V(@) =V(b) =0 max

Figure 2.3 Two more cases of integration by parts: (a) V(x) decreasing to 0. (b) V(x) progressing
from zero, to finite, and back to zero.

More advanced cases of Integration By Parts: Figure 2.3a illustrates another common case: one in
which the boundary term UV is zero. In this example, UV =0 at x = a because U(a) = 0, and at x = b because

V(b) = 0. This means V(x) decreases as x increases. Viewed as IU dV , all the dV < 0. The shaded “area”

is therefore negative. Viewed (sideways) as J.V dU , all the dU > 0 and the shaded area is positive. Thus:

f(x)dx=[Udv=-[vdu when [uv] =0,
[feoax=| | [uvl;

in agreement with (2.3).

Figure 2.3b shows the case where UV = 0 at x = a and b, because one of U(x) or V(x) starts and ends at
0. For illustration, we chose V(a) = V(b) = 0. Then the boundary term is zero, and we again have:

UV, =0 = " Uav=-[" vdu.
X=a X=a
For V(x) to start and end at zero, V(x) must grow with x to some maximum, Vmax, and then decrease back to
0. For simplicity, we assume U(x) is always increasing. The V dU integral is the blue striped area to the left
of the curve, and is > 0. The U dV integral is the area under the curves. We break the U dV integral into two
parts: path 1, leading up to Vmax, and path 2, going back down from Vpax to zero. The integral from 0 t0 Vinax
(path 1) is the red striped area; the integral from Vmax back down to 0 (path 2) is the negative of the entire
(blue + red) striped area. Then the blue shaded region is the difference (< 0):

(1) the (red) area below path 1 (where dV is positive, because V(x) is increasing), minus

12/16/2024 2:18 PM Copyright 2002-2024 Eric L. Michelsen. All rights reserved. 19 of 354


https://elmichelsen.physics.ucsd.edu/

elmichelsen.physics.ucsd.edu/  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu

(2) the (blue + red) area below path 2, where dV is negative because V(x) is decreasing. Thus

j Udv<0:

Vmax 0 Vmax Vmax
J-UdV:J. UdV+J. Udvzj UdV—I U dv
: , IV:0 | V =Vnax IV:0 | lV:O |
pathl+ path2 path1 'W' path1 path 2

b
- vadu.
Xx=a
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Theoretical Importance of IBP

Besides being an integration tool, an important theoretical consequence of IBP is that the variable of
integration is changed, from dV to dU. Many times, one differential is unknown, but the other is known:

Given an integral, integration by parts allows you to exchange a differential
that cannot be directly evaluated, even in principle, in favor of one that can.

The classic example of this is deriving the Euler-Lagrange equations of motion from the principle of
stationary action. The action of a dynamic system is defined by:

s=[L@o.ao)a,

where the lagrangian is a given function of the trajectory q(t). Stationary action means that the action does
not change (to first order) for small changes in the trajectory. l.e., given a small variation in the trajectory,

Sq(t):
5S=0-= jL(q+5qq+5q)dt—s H §q+—5q}dt
aq

The quantity in brackets involves both dg(t) and its time derivative, 5q(t). We are free to vary dqg(t)
arbitrarily, but that fully determines §q(t) . We cannot vary both dq and 64 separately. We also know that
dq(t) = 0 at its endpoints, but 5q(t) is unconstrained at its endpoints. Therefore, it would be simpler if the
quantity in brackets were written entirely in terms of dg(t), and not in terms of 64 . This is easy:

Usedq:%m: 5S=0= j{— q+2—:%5q}dt

Now in the second term, IBP allows us to eliminate the time derivative of dg(t) (which is unconstrained)
in favor of the time derivative of oL /o (which we can easily find, since L(q,q) is given). Therefore, this

is a good trade. Integrating the 2™ term in brackets by parts gives:

LtU—aL du = ia—lf dt. dV:icSth, V =4q
a9 dt og dt
jﬁLd —UV - _[VdU— Iéq da
aq dt dt aq
U V
The boundary term is zero because dq(t) is zero at both endpoints. The variation in action S is now:
oL doalL
oS = ——-——|0qdt= voq(t).
I { it o } q q(t)

The only way JS = 0 can be satisfied for any dq(t) is if the quantity in brackets is identically 0. Thus IBP has
led us to an important theoretical conclusion: the Euler-Lagrange equation of motion.

This fundamental result has nothing to do with evaluating a specific difficult integral. IBP: it’s not just
for hard integrals any more.
Delta Function Surprise: Coordinates Matter

Rarely, one needs to consider the 3D &-function in coordinates other than rectangular. The coordinate-
free 3D &-function is written 6°(r — r’). For example, in 3D Green functions, whose definition depends on a
&°-function, it may be convenient to use cylindrical or spherical coordinates. In these cases, there are some
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unexpected consequences [Wyl p280]. This section assumes you understand the basic principle of a 1D and
3D &-function. (See the introduction to the delta function in Quirky Quantum Concepts.)

Recall the defining property of 6%(r - r’):
[¢ré*e-m=1  vr ="foraln) = [ drSr-nin=fr).

The above definition is “coordinate free,” i.e. it makes no reference to any choice of coordinates, and is true
in every coordinate system. As with Green functions, it is often helpful to think of the d-function as a function
of r, which is zero everywhere except for an impulse located at r>. As we will see, this means that it is
properly a function of r and r’ separately, and should be written as 5%(r, r’) (like Green functions are).

Rectangular coordinates: In rectangular coordinates, however, we now show that we can simply break
up &3(x, y, z) into 3 components. By writing (r — r’) in rectangular coordinates, and using the defining integral
above, we get:

r-r's(x-x,y-y,z-2" = jw dewO dy wdz53(x—x‘,y—y',z—z‘)=1
= 53(x—x',y—y',z—z'):5(x—x')5(y—y')5(z—z‘).
In rectangular coordinates, the above shows that we do have translation invariance, so we can simply write:
5%(%,¥,2) = 8(0)S(y)3(2) .

In other coordinates, we do not have translation invariance. Recall the 3D infinitesimal volume element
in 4 different systems: coordinate-free, rectangular, cylindrical, and spherical coordinates:

dr=dxdydz=rdrdgdz=r?sin0drdodg.

The presence of r and 6 imply that when writing the 3D &-function in non-rectangular coordinates, we must
include a pre-factor to maintain the defining integral = 1. We now show this explicitly.

Cylindrical coordinates: In cylindrical coordinates, for r > 0, we have (using the imprecise notation of
[Wyl p280]):
r-r'=(r-r¢g—¢',z2-2" =

ood 27[d cx)d 3 ' I '
J-O r.[o ¢,OO zros(r-rig-¢z-2)=1
S S-rg=¢2-2) =5 -r)o( =)o -2). >0

Note the 1/r' pre-factor on the RHS. This may seem unexpected, because the pre-factor depends on the
location of 6%() in space (hence, no radial translation invariance). The rectangular coordinate version of 6%()
has no such pre-factor. Properly speaking, 5°( ) isn’t a function of r — r'; it is a function of r and r' separately.

In non-rectangular coordinates, 5°( ) does not have translation invariance,
and includes a pre-factor which depends on the position of §°() in space, i.e. depends on r’.

At r' =0, the pre-factor blows up, so we need a different pre-factor. We’d like the defining integral to
be 1, regardless of ¢, since all values of ¢ are equivalent at the origin. This means we must drop the
d(¢— ¢), and replace the pre-factor to cancel the constant we get when we integrate out ¢:
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0 2z )
J.o er.0 d¢j_wdzr53(r—r',¢—¢',z_z'):1, r'=0
= Sr-rg-¢.z-2)=——6(N5(z-2), r'=0,
2rr

assuming that jowdr o(r)=1.

This last assumption is somewhat unusual, because the §-function is usually thought of as symmetric about
0, where the above radial integral would only be %. The assumption implies a “right-sided” J-function,
whose entire non-zero part is located at 0*. Furthermore, notice the factor of 1/r in
d(r—0,z-2"). This factor blows up at r = 0, and has no effect when r # 0. Nonetheless, it is needed because
the volume element r dr d¢ dz goes to zero as r — 0, and the 1/r in 6(r — 0, z — 2”) compensates for that.

Spherical coordinates: In spherical coordinates, we have similar considerations. First, away from the
origin, r’ > 0:
o) Vg 2z
2 i Bl AP h AN
jo drjodejo dgr2sing 63 (r—r'0-0"¢—¢)=1 =

1

53(r—r',0—6',¢—¢‘): 5 95(r—r')5(9—0')5(¢—¢‘), r'>0. [Wyl8.9.2p280]
r'“sing'

Again, the pre-factor depends on the position in space, and properly speaking, 6%() is a function of r, r’, 6,
and @’ separately, not simply a function of r — r’ and 6 — 6. At the origin, we’d like the defining integral to
be 1, regardless of gor 6. So we drop the 6(¢— ¢’) (6 — 9’), and replace the pre-factor to cancel the constant
we get when we integrate out ¢ and 6:

© 2
J'O drj':daj'oﬂdqﬁ r25in0 53(r—0,0-60',¢—4) =1, =0

1

53(r-0,0-6"¢—¢" =
= (r =9)="

Il
o

o(r), r

assuming that I:dr o(r)=1

Again, this definition uses the modified 4(r), whose entire non-zero part is located at 0*. And similar to the
cylindrical case, this includes the 1/r? factor to preserve the integral at r = 0.

2D angular coordinates: For 2D angular coordinates ¢ and ¢, we have:
V4 2r i 2
J'O dejo dgsing 62(0-60'¢—¢)=1  0'>0
N 52(49—6?',¢—¢')=$5(9—6")5(¢—¢'), 0'>0.

Once again, we have a special case when 6’ = 0: we must have the defining integral be 1 for any value of ¢.
Hence, we again compensate for the 2z from the ¢ integral:
V4 2z i 2
J'O dejo dgsin@ 52(0—-0'¢—¢)=1,  6'=0

1

2 — — ':
= 0°(6-0.9=4) 27sing

5(0), 6'=0.

Similar to the cylindrical and spherical cases, this includes a 1/(sin ) factor to preserve the integral at 6 = 0.
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Spherical Harmonics Are Not Harmonics

See Funky Electromagnetic Concepts for a full discussion of harmonics, Laplace’s equation, and its
solutions in 1, 2, and 3 dimensions. Here is a brief overview.

Spherical harmonics are the angular parts of solid harmonics, but we will show that they are not truly
“harmonics.” A harmonic is a function which satisfies Laplace’s equation:

V2d(r) =0, with r typically in 2 or 3 dimensions.

Solid harmonics are 3D harmonics: they solve Laplace’s equation in 3 dimensions. For example, one
form of solid harmonics separates into a product of 3 functions in spherical coordinates:

D(r,0,4) = R(r)P(8)Q(¢) = (AJI +B, r’(”l))P,m(cos 6)(C, sinmg + D, cosmg)

where  R(r)=A r'+ B,r_(”l) is the radial part,
P(6) = B, (cos ) is the polar angle part, the associated Legendre functions,
Q(¢) =(C, sinmg + D, cosmg) is the azimuthal part .

The spherical harmonics are just the angular (6, ¢) parts of these solid harmonics. But notice that the
angular part alone does not satisfy the 2D Laplace equation (i.e., on a sphere of fixed radius):

2
VZZ%Q(HEJJF 21_ i[singi}r%a_z, but for fixed r :
re or or) rcsing o0 resin“ @ og¢

11 1 o(. 0 1 8
==| ——|sinf0— |[+———|.
r2| sing 60 80 ) sin?0 o4°
However, direct substitution of spherical harmonics into the above Laplace operator shows that the result is
not 0 (we let r =1). We proceed in small steps:

62

=Csi D
Q(9) sinmg + D cos m¢g 8¢2

Q(g) = -m’Q(g).

For integer m, the associated Legendre functions, Pin(cos 6), satisfy, for given | and m:

o(. o I(1+1)
—| sin@— |R,(cos@)=| ————=+m~ |B(coséh).
I'ZSin@ag[ 69) Im( ) [ I’2 Im( )

Combining these 2 results (r = 1):

2 L 9 (gng ), L 2
v (P(Q)Q(m)_l:sinﬁ ae(s'neaej+sin29a¢2}(P(9)Q(¢))
=(-1(1+1)+m? ) Ry, (cos )Q(6) ~m? Ry, (cos A)Q(9)

=—1(1+1) R, (cos0)Q(¢)

Hence, the spherical harmonics are not solutions of Laplace’s equation,
i.e. they are not “harmonics.”
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The Binomial Theorem for Negative and Fractional Exponents

You may be familiar with the binomial theorem for positive integer exponents, but it is very useful to
know that the binomial theorem also works for negative and fractional exponents. We can use this fact to

easily find series expansions for things like ﬁ and ~1+x=(1+ x)ll2 .

First, let’s review the simple case of positive integer exponents:

(o) e+ D 20D g (0 -(0-2)
1 1-2 1.2.3

[For completeness, we note that we can write the general form of the m" term:

_ n!
a" 3b3+...—'a°b”.
n!

n! _ . .
m" term=————a""™™,  ninteger >0; minteger,0<m<n ]
(n—m)!m!

But we’re much more interested in the iterative procedure (recursion relation) for finding the (m + 1) term
from the m™ term, because we use that to generate a power series expansion. The process is this:

1. The first term (m = 0) is always a"b® = a", with an implicit coefficient Co = 1.

2. To find Cm+1, multiply Cry by the power of a in the mt" term, (n — m),

3. divide it by (m + 1), [the number of the new term we’re finding]: Cug = (n—m) n::) m
+

4. lower the power of a by 1 (to n—m), and
5. raise the power of b by 1 to (m + 1).

This procedure is valid for all n, even negative and fractional n. A simple way to remember this is:

For any real n, we generate the (m + 1) term from the m" term
by differentiating with respect to a, and integrating with respect to b.

The general expansion, for any n, is then:

n(n-1)(n-2)..(n-m+1) .
m! &b

mt" term =

nreal; minteger >0
Notice that for integer n > 0, there are n+1 terms. For fractional or negative n, we get an infinite series.

Example 1: Find the Taylor series expansion of T Since the Taylor series is unique, any method
- X

we use to find a power series expansion will give us the Taylor series. So we can use the binomial theorem,
and apply the rules above, with a =1, b = (-x):

=(1+ (—x))fl =114 %1‘2 (—x)1 + —(_1)(_2)1‘3 (—x)2 + —(_1)(_2)(_3)1‘4 (—x)3 +..

1
1-x 1.2 1.2.

2

=14+ X+ X o+ X"+

Notice that all the fractions, all the powers of 1, and all the minus signs cancel.

Example 2: Find the Taylor series expansion of v1+x =(1+ x)ll2 . The first term is a2 = 12
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(1+ x)ll2 =12 +£il’1/2xl +£(—lel3lzx2 +1(—ij(—§j;15/2x3 +..
2(1) 2 2)(1-2) 20 2\ 2)(1-2:3)

:1+£x—£x2+ix3—...+(—l)
2 8 48

where pll=p(p-2)(p—-4)..(20r1)

mea (2m-3)1
2" m!

When Does a Divergent Series Converge?

Sometimes, a divergent series “converges.” Consider the infinite series:

2

T+ X+ X+t X"+

When is it convergent? Apparently, when |x| < 1. What is the value of the series when x =2 ? “Undefined!”
you say. But there is a very important sense in which the series does converge for x = 2, and it’s value is —
1! How so?
Recall the Taylor expansion around x = 0 (you can use the binomial theorem, see earlier section):
1 _
1—:(1—x) o lx e e
—X

This is exactly the original infinite series above. So the series sums to 1/(1 — x). This expression is defined
forall x = 1. And its value for x =2 is —1.

imaginary
\ o real
region of .. | ./
convergence
@)

Figure 2.4 Domain of 1/(1 —x) in the complex plane. The function is analytically continued around
the pole at x = 1, which defines meaningful values of the function even when x is outside the region
of convergence.

Why is this important? There are cases in physics when we use perturbation theory to find an expansion
of a number (or function, as in QFT) in an infinite series. Sometimes, the series appears to diverge. But by
finding the analytic expression corresponding to the series, we can evaluate that analytic expression at values
of x that make the series diverge. In many cases, the analytic expression provides an important and
meaningful answer to a perturbation problem even outside the original region of convergence. This happens
in quantum mechanics, and quantum field theory (e.g., [M&S 2010 p291t]).

This is an example of analytic continuation in complex analysis. Figure 2.4 illustrates the domain of
our function 1/(1 —x) in the complex plane. A Taylor series is a special case of a Laurent series, and anywhere
a function has a Laurent expansion it is analytic. If we know the Laurent series (or if we know the values of
an analytic function and all its derivatives at any one point), then we know the function everywhere, even for
complex values of x. Here, the original series is analytic around x = 0, with a radius of convergence of 1.
However, the process of extending a function that is defined in some region to be defined in a larger
(complex) region, is called analytic continuation (see Complex Analysis, discussed elsewhere in this
document). This gives our function meaningful values for all x# 1, such as x = 2. Thus analytic continuation
through the complex plane allows us to “hop over” the pole on the real axis, and define the function for real
x> 1 (and for x <-1).
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TBS: show that the sum of the integers 1 + 2+ 3 + ... = -1/12. ??

Algebra Family Tree

Doodad | Properties Examples
group Finite or infinite set of elements and operator rotations of a square by n x 90°
(+), with closure, associativity, identity element | ~oniinuous rotations of an object
and inverses. Possibly commutative:
a-b=c w/a, b, cgroup elements
ring Set of elements and 2 binary operators integers mod m
(+ and *), with: polynomials p(x) mod m(x)
 commutative group under +
* left and right distributivity:
a(lb+c)=ab+ac, (a+b)c=ac+hbc
+ usually multiplicative associativity
integral | A ring, with: integers
domain, | « commutative multiplication polynomials, even abstract polynomials,
or | «multiplicative identity (but no inverses) with abstract variable x, and coefficients
domain | « no zero divisors (= cancellation is valid): from a “field”
ab=0onlyifa=00rb=0
field “rings with multiplicative inverses (& integers with arithmetic modulo 3 (or any
identity)” prime)
» commutative group under addition real numbers
multiplication.
» distributivity, multiplicative inverses
Allows solving simultaneous linear equations.
Field can be finite or infinite
vector « field of scalars physical vectors
Space * group of vectors under +. real or complex functions of space:
Allows solving simultaneous vector equations | f(x, y, 2)
for unknown scalars or vectors. kets (and bras)
Finite or infinite dimensional.
Hilbert | vector space over field of complex numbers real or complex functions of space:
space with: f(x,y, 2)
* a conjugate-bilinear inner product, quantum mechanical wave functions
<avlbw> = (a*)b<v|w>,
<vjw> = <w|v>*
a, b scalars, and v, w vectors
» Mathematicians require it to be infinite
dimensional; physicists don’t.

Convoluted Thinking

Convolution arises in many physics, engineering, statistics, and other mathematical areas. As examples,
we here consider functions of time, but the concept of convolution may apply to functions of space, or
anything else. Given two functions, f(t) and g(t), the convolution of f(t) and g(t) is a function of a time-
displacement, At, defined by (Figure 2.5):

(f*g)(at)= _[ _woo dr f(r)g(At—7) where the integral covers some domain of interest .
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g9()
f(t)
t t
(@)
Aty<O0.4 A T S ;
: Aty A\ 9(AL-7) \J(At,-7)
9(Aty-7) f(z) increasing ()
At
: u LN
o) (FOALT e ¢ (oew T @ @ oy

Figure 2.5 (a) Two functions, f(t) and g(t). (b) (f *g)(Ato), Aty < 0. (¢) (f *g)(At1), Aty > 0.
(d) f*g)(Atp), At > Ats. The convolution is the magenta shaded area.

When At < 0, the two functions are “backing into each other” (above left). When At > 0, the two functions
are “backing away from each other” (above middle and right).

As noted at the beginning, convolution is useful with a variety of independent variables besides time.
E.g., for functions of space, f(x) and g(x), f*g(Ax) is a function of spatial displacement, AX.

Notice that convolution is
(1) commutative: f*g=g*f
(2) linear in each of the two functions:
f*kg=k(f*g)=(kf)*g, and
f*(g+h)="f*g+f=*h.
The verb “to convolve” means “to form the convolution of.” We convolve f and g to form the convolution
f*g. Some references use “®” for convolution: f ® g.

Two Dimensional Convolution: Impulsive Behavior

A translation invariant linear system (TILS) is completely described by its impulse response. For
example, for small angles, equivalent to narrow fields of view, an optical imaging system is approximately a
TILS. In optics, the impulse response is called the Point Spread Function, or PSF. To illustrate the use of
convolution in a TILS, consider an optical imager (Figure 2.6).

‘ | Optical y‘ ‘ /.“\::\

v imager I = ~

B (TLs) | = you| L)
u

(@)  object image () X, 0 image

Figure 2.6 (a) Optical imagerisa TILS. (b) Example image of 3 point sources, with a representative
image point. Each source is spread out by the imager according to the PSF. The red arrow is the
vector (X — u).

The imager has finite resolution, so a point object is spread over a region in the image. For a point object
at the origin with intensity O, the image has intensity distributed over space according to:

1(x,y)=0-PSF(x,Y) .
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x and y are position coordinates, such as meters or microradians. We define the object coordinates (u, v) to
be those of their image points (so we can ignore magnification). Then translation invariance says that for a
point object at (u, v):

1(x,y)=0-PSF(x—-u,y—V).

For incoherent sources, intensities add, so multiple point sources produce an image intensity that is the sum
of the individual images (Figure 2.6b). Therefore, the PSF is real, and represents the intensity response
function (rather than field amplitude). At each point on the image (X, y):

1(X,y) =0OPSF (X —uy, y —v;) + O,PSF (X —U,, y —V5) + O3PSF (X — U3, y —V3)

3
:ZPSF(x—ui,y—vi)

i=1

For a continuous object, each infinitesimal region of size (du, dv) around each point (u, v) is essentially a
point source. The image is the infinite sum of images of all these “point” sources. Then the sum above
becomes a continuous integral:

1(x,y) = j-[objectdu dvO(U,v) PSF(X—U, Yy —V) =0 ® PSF . (2.4)

This is the definition of a 2D convolution. Some references use “*” for convolution: O*PSF.

In general, for a TILS:

A convolution is an infinite sum of responses to a continuous input.
Translation invariant linear systems are fully described by their impulse response (aka PSF). The
output of such a system is the convolution of the input with the PSF.

All of the above is true for arbitrary PSF, symmetric or not. Some systems exhibit symmetry, e.g. many
optical systems are axially symmetric. In such a symmetric case, the arguments to the PSF may be negated,
though we find such expressions misleading.

For coherent systems, the PSF is generally complex, and it denotes the magnitude and phase of the light
at the image relative to the object. Such a PSF represents the field amplitude response function (rather than
intensity).

In vector notation, the convolution (2.4) can be written:

1(x) = Hobject d2u O(u) PSF (X —u) =0 ® PSF .

Structure Functions

The term “correlation” has two distinct meanings, both of which are used in astronomy: (1) correlation
between random variables, and (2) correlation between functions (of space or of time). In both meanings,
correlations are used to compare two things. For example, we might compare light, as a function of time, at
point A in space with that at point B, i.e. 1a(t) compared to Ig(t). If these intensities vary randomly in time,
we might ask, how are the two related?

Correlations between random variables: The correlation of two random variables (RVs) describes
to what extent the two RVs are linearly related to each other. The correlation is quantified with a correlation
coefficient p, where p = 1 means the two RVs are actually identical. p is proportional to the covariance of
the RVs. Two uncorrelated RVs have no linear relationship (though they may be related in other ways), and
p = 0. (See Funky Mathematical Physics Concepts for details.)

In many systems, there are an infinite number of RVs, one at each point in space. For example, above a
telescope, at each atmospheric space point x, there may be a randomly-varying temperature T(t, X), index of
refraction N(t, x), or optical phase 4(t, X). The variations are over time. It is common that there are
correlations between the RVs at different points in space. For two very nearby points, p is near 1: the two
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RVs are almost identical. For far separations, p is near 0, because the two RVs are essentially unrelated. In
general, at two points X1 and X», and near some time to, using optical phase as an example, the two-point
structure function is [Quirr eq. 1]:

to+T
Dy (4,%) = ([t x0) ~ 42, %) = [ dtlpt ) - g x)f
T ~seconds to
The averaging duration is of the order of the exposure time, typically some seconds [Fried 1966 Sec I11-1V].
The weather typically changes much slower, of order at least minutes. For translation invariant, isotropic
systems, the above depends only on the spatial distance r = |x; - Xo|. This defines a structure function of a
single variable, the distance r:

Dy (1) =({J¢(x0) — 40 + D)

T ~seconds

Since the system is translation invariant, D4 can be evaluated at any choice of x;. Because the system is
isotropic, D, can be evaluated at any r such that |r| = T.

A structure function D(r) gives the correlation (linear relationship) for a time-varying physical
quantity between two space points separated by a distance r.

Correlation Functions

The correlation between two functions is a measure of how linearly related they are. The functions are
often functions of time, or functions of space. A measure of their linear relationship is given by the integral
of their product:

o zf;dt ftgt)  or

o EI:dx f)g() o Cy Emvo|umed3X fF(09(x).

It is often useful to compare the two function with some offset in one of them. Then the correlation is a
function of this offset:

Cry (@) Ef;dt f(t+7)g(t) or Cpy(r) = mvolumed3x f(x+1)g(x).

For two unrelated zero-mean functions, the correlation function is zero.

It is frequently useful to compute the correlation of a function with an offset version of itself, called the
autocorrelation function. For example, at a fixed instant in time, consider the temperature variations
throughout the 3D atmosphere, T(x). Then:

Crr () = j ﬂvolumed3xT(x+ AT (X) .

We expect that nearby temperatures are similar, and that distant temperatures are unrelated. Since T(x) is
zero-mean, we expect the autocorrelation function to be large for small offset, and small for large offset. The
distance at which the autocorrelation becomes small is a measure of the size of atmospheric volumes with
similar temperature. A 2D or higher autocorrelation function is not necessarily isotropic. For example, the
temperature may vary differently in the vertical direction than in horizontal ones.
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3 Vectors

Small Changes to Vectors
Projection of a Small Change to a Vector Onto the Vector

dr r-r ¢

dr
dr =d|r|

Ir-r|~r-r-¢
r=|ri

(Lefty A small change to a wvector, and its projection onto the vector.
(Right) Approximate magnitude of the difference between a big and small vector.

It is sometimes useful (in orbital mechanics, for example) to relate the change in a vector to the change
in the vector’s magnitude. The diagram above (left) leads to a somewhat unexpected result:

dr-f=dr or (multiplying both sides by r and using r = rf)

And since this is true for any small change, it is also true for any rate of change (just divide by dt):

r-r=rf

Vector Difference Approximation

It is sometimes useful to approximate the magnitude of a large vector minus a small one. (In
electromagnetics, for example, this is used to compute the far-field from a small charge or current
distribution.) The diagram above (right) shows that:

[r—r|=|r|-r"f, [r|>>|r|

Why (r, 0, ¢) Are Not the Components of a Vector

(r, 9, ¢) are parameters of a vector, but not components. That is, the parameters (r, 8, ¢) uniquely define
the vector, but they are not components, because you can’t add them. This is important in much physics, e.g.
involving magnetic dipoles (ref Jac problem on mag dipole field). Components of a vector are defined as
coefficients of basis vectors. For example, the components v = (X, Yy, z) can multiply the basis vectors to
construct v:

V=XK+Yyy+722

There is no similar equation we can write to construct v from it’s spherical components (r, 6, ¢). Position
vectors are displacements from the origin, and there are no #, 0, ¢ defined at the origin.

Put another way, you can always add the components of two vectors to get the vector sum:
Let w = (a,b, c) rectangular components. Then v+w=(a+x)X+(b+y)y+(c+2z)2
We can’t do this in spherical coordinates:

Let W = (r, 6, 4 ) SPherical components. Then  v+w#(r, +5,,6, + 6.4 +dy)

However, at a point off the origin, the basis vectors f, 0, @ are well defined, and can be used as a basis
for general vectors. [In differential geometry, vectors referenced to a point in space are called tangent
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vectors, because they are “tangent” to the space, in a higher dimensional sense. See Differential Geometry
elsewhere in this document.]

Laplacian’s Place

What is the physical meaning of the Laplacian operator? And how can | remember the Laplacian
operator in any coordinates? These questions are related because understanding the physical meaning allows
you to quickly derive in your head the Laplacian operator in any of the common coordinates.

Let’s take a step-by-step look at the action of the Laplacian, first in 1D, then on a 3D differential volume
element, with physical examples at each step. After rectangular, we go to spherical coordinates, because they
illustrate all the principles involved. Finally, we apply the concepts to cylindrical coordinates, as well. We
follow this outline:

1. Overview of the Laplacian operator
1D examples of heat flow
3D heat flow in rectangular coordinates

2
3
4. Examples of physical scalar fields [temperature, pressure, electric potential (2 ways)]
5. 3D differential volume elements in other coordinates

6

Description of the physical meaning of Laplacian operator terms, such as

VT, ﬂ rzﬂ, 2(rzﬂj ﬂﬁ(ﬁﬂ)
or or or or or or

Overview of Laplacian operator: Let the Laplacian act on a scalar field T(r), a physical function of
space, e.g. temperature. Usually, the Laplacian represents the net outflow per unit volume of some physical
quantity: something/volume, e.g., something/m3. The Laplacian operator itself involves spatial second-
derivatives, and so carries units of inverse area, say m2,

1D Example: Heat Flow: Consider a temperature gradient along a line. It could be a perpendicular
wire through the wall of a refrigerator (Figure 3.1a). Itis a 1D system, i.e. only the gradient along the wire
matters.

wall wall current
metal wire carrying wire
refrigerator 8 warmer room refrigerator | warmer room
) ¢ )
i i i
ot
= ‘ S | heat flow
= 1 E !
St ! heatflow = —
2 = =
| IS
= ‘ ‘ o : ‘
ICH ; 1 = ; ;
(@) | X (b) X

Figure 3.1 Heat condition (a) in a passive wire, and (b) in a heat-generating wire.

Let the left and right sides of the wire be in thermal equilibrium with the refrigerator and room, at 2 C
and 27 C, respectively. The wire is passive, and can neither generate nor dissipate heat; it can only conduct
it. Let the 1D thermal conductivity be k = 100 mW-cm/C. Consider the part of the wire inside the insulated
wall, 4 cm thick. How much heat (power, J/s or W) flows through the wire?

dT 25C

P =k—=(100 mW-cm/C)==— =625 mW .
dx 4cm
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There is no heat generated or dissipated in the wire, so the heat that flows into the right side of any
segment of the wire (differential or finite) must later flow out the left side. Thus, the heat flow must be
constant along the wire. Since heat flow is proportional to dT/dx, dT/dx must be constant, and the temperature
profile is linear. In other words, (1) since no heat is created or lost in the wire, heat-in = heat-out; (2) but
heat flow ~ dT/dx; so (3) the change in the temperature gradient is zero:

4o o1
dx \ dx dx2 .

(At the edges of the wall, the 1D approximation breaks down, and the inevitable nonlinearity of the
temperature profile in the x direction is offset by heat flow out the sides of the wire.)

Now consider a current carrying wire which generates heat all along its length from its resistance (Figure
3.1b). The heat that flows into the wire from the room is added to the heat generated in the wire, and the sum
of the two flows into the refrigerator. The heat generated in a length dx of wire is

Pyen = |2p dx  where p =resistance per unit length, and Izp =const .

In steady state, the net outflow of heat from a segment of wire must equal the heat generated in that segment.
In an infinitesimal segment of length dx, we have heat-out = heat-in + heat-generated:

dT dT 2

P =P.+P _— = — +1 dX

out in gen = dxl, X |yyg P
ar _4ar =—1%p dx
dx a+dx an
d(dT ) s K
—| — |dx==1"pdx = —=-1
dx(dxj P o2

The negative sigh means that when the temperature gradient is positive (increasing to the right), the heat
flow is negative (to the left), i.e. the heat flow is opposite the gradient. Many physical systems have a similar
negative sign. Thus the 2" derivative of the temperature is the negative of heat outflow (net inflow) from a
segment, per unit length of the segment. Longer segments have more net outflow (generate more heat).
3D Rectangular Volume Element

Now consider a 3D bulk resistive material, carrying some current. The current generates heat in each
volume element of material. Consider the heat flow in the x direction, with this volume element:

z /

d

Outflow surface area
flow Iis the same as inflow

X

The temperature gradient normal to the y-z face drives a heat flow per unit area, in W/m?. For a net flow to
the right, the temperature gradient must be increasing in magnitude (becoming more negative) as we move
to the right. The change in gradient is proportional to dx, and the heat outflow flow is proportional to the
area, and the change in gradient:

- 2
Pout =Pin = _ki(d—TjdX dydz = Pout = Pin -k dT .
dx \ dx dx dy dz dx?

Thus the net heat outflow per unit volume, due to the x contribution, goes like the 2™ derivative of T.
Clearly, a similar argument applies to the y and z directions, each also contributing net heat outflow per unit
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volume. Therefore, the total heat outflow per unit volume from all 3 directions is simply the sum of the heat
flows in each direction:

20 2T A2
Pout =Fn _ _, [O°T 07T O\
dx dy dz x> oy?  az®

We see that in all cases, the

| net outflow of flux per unit volume = change in (flux per unit area), per unit distance

We will use this fact to derive the Laplacian operator in spherical and cylindrical coordinates.

General Laplacian

We now generalize. For the Laplacian to mean anything, it must act on a scalar field whose gradient
drives a flow of some physical thing.

Example 1: My favorite is T(r) = temperature. Then VT(r) drives heat (energy) flow, heat per unit
time, per unit area:

heat /t =q=-kVT(r) where  k =thermal conductivity
area
g = heat flow vector
oT .
Then i ~ g, = radial component of heat flow
r

Example 2: T(r) = pressure of an incompressible viscous fluid (e.g. honey). Then VT(r) drives fluid
mass (or volume) flow, mass per unit time, per unit area:

mass /t =j=-kVT(r) where k=some viscous friction coefficient
area
j=mass flow density vector
or . .
Then — ~ j, =radial component of mass flow
r

Example 3: T(r) = electric potential in a resistive material. Then VT(r) drives charge flow, charge per
unit time, per unit area:

har . . .
charge/t =j=-0oVT(r) where o =electrical conductivity
area
j = current density vector
or . . .
Then i ~ J, =radial component of current density .
r

Example 4: Here we abstract a little more, to add meaning to the common equations of
electromagnetics. Let T(r) = electric potential in a vacuum. Then VT(r) measures the energy per unit
distance, per unit area, required to push a fixed charge density p through a surface, by a distance of dn, normal
to the surface:

energy/distance = pVT(r) where p =electric charge volume density .
area

Then 8T/or ~ net energy per unit radius, per unit area, to push charges of density p out the same distance
through both surfaces.
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In the first 3 examples, we use the word “flow” to mean the flow in time of some physical quantity, per
unit area. In the last example, the “flow” is energy expenditure per unit distance, per unit area. The
requirement of “per unit area” is essential, as we soon show.

Laplacian In Spherical Coordinates

To understand the Laplacian operator terms in other coordinates, we need to take into account two
effects:

1. The outflow surface area may be different than the inflow surface area

2. The derivatives with respect to angles (6 or ¢) need to be converted to rate-of-change per unit
distance.

We’ll see how these two effects come into play as we develop the spherical terms of the Laplacian operator.
The cylindrical terms are simplifications of the spherical terms.

Spherical radial contribution: We first consider the radial contribution to the spherical Laplacian
operator, from this volume element:

z
Outflow surface area dQ =sinfd¢do
N is differentially

y larger than inflow

- Sty do
R &
fX X flow i o

The differential volume element has thickness dr, which can be made arbitrarily small compared to the
lengths of the sides. The inner surface of the element has area r? dQ. The outer surface has infinitesimally
more area. Thus the radial contribution includes both the “surface-area” effect, but not the “converting-
derivatives” effect.

The increased area of the outflow surface means that for the same flux-density (flow) on inner and outer
surfaces, there would be a net outflow of flux, since flux = (flux-density)(area). Therefore, we must take the
derivative of the flux itself, not the flux density, and then convert the result back to per-unit-volume. We do
this in 3 steps:

flux = (area )(flux-density ) ~ (rzd Q)(%j

d(ﬂUX) =£(r2dg)(£j

dr or or
EER M RETINE
volume (area)dr r2dQor or) r2or or

The constant dQ factor from the area cancels when converting to flux, and back to flux-density. In other
words, we can think of the fluxes as per-steradian.

We summarize the stages of the spherical radial Laplacian operator as follows:
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10 ,0
V2 T(r)=—=—r>=T(r

0= 575 TO
0 . .
8_T = radial flux per unit area
-

r? §T = radial flux, per unit solid-angle = (area)(flow per unit area)
r

dQ
aﬁ r? 6_T = change in radial flux per unit length, per unit solid-angle; positive is increasing flux
r r
10 5,0 . . . .
= —T =change in radial flux per unit length, per unit area
rcor or
= net outflow of flux per unit volume
102 2
rfoor o
radial flow

per unit area

radial flux
per steradian

e — |
change in radial flux per
unit length per steradian

L ]
change in radial flux per
unit length, per unit area

Following the steps in the example of heat flow, let T(r) = temperature. Then

ET = radial heat flow per unit area, W/m?

or
r2 91 _ radial heat flux, W/solid-angle = WLH_S
or steradian
§ r2 agT = change in radial heat flux per unit length, per unit solid-angle
r r
N r2 ET = net outflow of heat flux per unit volume
r2or or

Spherical azimuthal contribution: The spherical ¢ contribution to the Laplacian has no area-change,
but does require converting derivatives. Consider the volume element:

z
l Outflow surface area

is identical to inflow

flow
do

The inflow and outflow surface areas are the same, and therefore area-change contributes nothing to the
derivatives.

However, we must convert the derivatives with respect to ¢ into rates-of-change with respect to distance,
because physically, the flow is driven by a derivative with respect to distance. In the spherical ¢ case, the
effective radius for the arc-length along the flow is r sin 6, because we must project the position vector into
the plane of rotation. Thus, (0/0¢) is the rate-of-change per (r sin 6) meters. Therefore,

9
rsing o¢

rate-of-change-per-meter =
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Performing the two derivative conversions, we get
1 o0 1 0

V2. T(r)= — —T(r
o7 (1) rsing o¢ rsinf o¢ ")
1 0 . .
—— —T =azimuthal flux per unit area
rsin@ o¢
o 1 o0 . . . .
— ————T =change in (azimuthal flux per unit area) per radian
o@ rsing o¢
1 8 1 0

———————T =change in (azimuthal flux per unit area) per unit distance
rsin@ o¢ rsin@ o¢

= net azimuthal outflow of flux per unit volume
2
1 6.1 o, 1 &,
rsing o¢ rsing og r?sin 0 0¢?

e — |
azimuthal flux
per unit area

e — |
change in (azimuthal flux

per unit area) per radian
L ]

change in (azimuthal flux per
unit area) per unit distance

Notice that the r? sin? @ in the denominator is not a physical area; it comes from two derivative
conversions.

Spherical polar angle contribution:

z flow
Outflow surface area
N is differentially

y do Iarger than inflow

The volume element is like a wedge of an orange: it gets wider (in the northern hemisphere) as 0
increases. Therefore the outflow area is differentially larger than the inflow area (in the northern

hemisphere). In particular, area :(rsin e)dr , but we only need to keep the 8 dependence, because the
factors of r cancel, just like dQ did in the spherical radial contribution. So we have

area «csiné .

In addition, we must convert the 6/00 to a rate-of-change with distance. Thus the spherical polar angle
contribution has both area-change and derivative-conversion.

Following the steps of converting to flux, taking the derivative, then converting back to flux-density, we
get
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110 . 10
v T(r)=——=Lsing=<T(r
o T() sindr o6 r oo ")

L9 1 _ flux per unit area

r
sin eliT = O-flux, per unit radius = (area)(flux (;)er unit area)
r
isin HliT =change in (é-flux per unit radius), per radian
00 r
%a—aesin HliT = change in (é-flux per unit radius), per unit distance
110 . 1 . . -
——=—sin@=—T =change in (6-flux per unit area), per unit distance
sin@dr of
= net outflow of flux per unit volume
—E isi liT == l isin eiT
sin@ r 06 r oo rcsing o6 06
-flux per
unit area
6-flux, per
unit radius

change in (6-flux per
unit radius), per radian
L ]

change in (6-flux per unit
radius), per unit distance
]

change in (é—flux per unit
area), per unit distance
Notice that the r? in the denominator is not a physical area; it comes from two derivative conversions.

Cylindrical Coordinates
The cylindrical terms are simplifications of the spherical terms.
z
Radial outflow ' ¢and z outflow
. surface areas are
identical to

surface area is
differentially larger :
than inflow ow inflow dz \
dg .

. U flow N/
Cylindrical radial contribution: The picture of the cylindrical radial contribution is essentially the
same as the spherical, but the “height” of the slab is exactly constant. We still face the issues of varying
inflow and outflow surface areas, and converting derivatives to rate of change per unit distance. The change
in area is due only to the arc length r d¢, with the z (height) fixed. Thus we write the radial result directly:

flow
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lﬁraﬁT(r) (Cylindrical Coordinates)
r r

V2 T(r) =
(TO=17

§T =radial flow per unit area
r

(flow per unit area)(area)

rﬁT = radial flux per unit angle =

or d¢dz
0 0 . . . . .
a—ra—T = change in (radial flux per unit angle), per unit radius
r or
10 0 . . . . .
——r—T =change in (radial flux per unit area), per unit radius
ror or
= net outflow of flux per unit volume
l gr ET
r or or
| —
radial flow

per unit area

|
radial flux
per radian

e —
change in radial flux per
unit length per radian

]

Ichange in (radial flux per
unit area), per unit radius
Cylindrical azimuthal contribution: Like the spherical case, the inflow and outflow surfaces have
identical areas. Therefore, the ¢ contribution is similar to the spherical case, except there is no sin 6 factor;
r contributes directly to the arc-length and rate-of-change per unit distance:

v, T(n=2-2121(
rogrog
10 . .
—a—T = azimuthal flux per unit area
010 . . . .
—=—T =change in (azimuthal flux per unit area) per radian
opr og
101090 . . . -
——=—T =change in (azimuthal flux per unit area) per unit distance
rogrog
= net azimuthal outflow of flux per unit volume
2
1o 16, _12.
rog rog r? og?

_I—I
azimuthal flow
per unit area

e —
change in azimuthal
flow per radian

e ——
change in (azimuthal flux per
unit area) per unit distance

Cylindrical z contribution: This is identical to the rectangular case: the inflow and outflow areas are
the same, and the derivative is already per unit distance, ergo: (add cylindrical volume element picture??)
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0 0
VET(r)=—=T(r
dM)=2 =T

agT = vertical flux per unit area
z

§§T = change in (vertical flux per unit area) per unit distance
Z 0z
= net outflow of flux per unit volume
2
2 op 2,
oz oz oz
vertical flux

per unit area

e — |
change in (vertical flux per
unit area) per unit distance

Laplacian of a Vector Field

It gets worse: there’s a vector form of V2. If E(x, y, z) is a vector field, then in rectangular coordinates:
V?E=V.VE=V?E,i+V?E,j+V’Ek .

This arises in E&M propagation, and not much in QM. However, the above equality is only true in
rectangular coordinates [l have a ref for this, but lost it??]. This is the divergence of the gradient of a vector
field, which is a vector field. In oblique or non-normal coordinates, the gradient is a covariant derivative,
and so it and the divergence must include the Christoffel symbols.

Vector Dot Grad Vector

In electromagnetic propagation, and elsewhere, one encounters the “dot product” of a vector field with
the gradient operator, acting on a vector field. What is this v -V operator? Here, v(r) is a given vector field.
The simple view is that v(r) -V is just a notational shorthand for

v(r).Vz(vX§+vy%+vZ§j,

N N R 0, 0., O, 0 0 0
because V(I’)-V:(VXX+Vyy+VZZ)- 6—X+5y+a—z = VX6—+Vy5+VZa—
X Z X Z

by the usual rules for a dot product in rectangular coordinates.

There is a deeper meaning, though, which is an important bridge to the topics of tensors and differential
geometry.

We can view the v -V operator as simply the dot product of the vector field v(r)
with the gradient of a vector field.

You may think of the gradient operator as acting on a scalar field, to produce a vector field. But the
gradient operator can also act on a vector field, to produce a tensor field. Here’s how it works: You are
probably familiar with derivatives of a vector field:
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0
Let A(X,Y,2) bea vector field. Then%: %fwi)‘H%Z is a vector field.
OX OX oX OX
a1
OX
A oA | OA,
Writing spatial vectors as column vectors, A=| A |, and —= =
OX OX
& o
OX
Similarly, oA and oA are also vector fields.
oy oz

By the rule for total derivatives, for a small displacement (dx, dy, dz),

OAc OA OAC(AX) (oA, A oA,
aA ox oy oz ox oy oz
dA=| dA, —aAdx+%dy+%dz: aﬂ ﬂ % dy = 8& dx + ﬂ dy + % dz .
X oy oz ox oy oy OX oy oy
oA, oA, OA, OA, |ldz| | A oA, oA,
ox oy oz ox oy o

This says that the vector dA is a linear combination of 3 column vectors 0A/0X, 0A/dy, and 0A/Oz, weighted
respectively by the displacements dx, dy, and dz. The 3 x 3 matrix above is the gradient of the vector field
A(r). Itisthe natural extension of the gradient (of a scalar field) to a vector field. It is a rank-2 tensor, which
means that given a vector (dx, dy, dz), it produces a vector (dA) which is a linear combination of 3 (column)
vectors (VA), each weighted by the components of the given vector (dx, dy, dz).

Note that VA and VA are very different: the former is a rank-2 tensor field, the latter is a scalar field.

This concept extends further to derivatives of rank-2 tensors, which are rank-3 tensors: 3 x 3 x 3 cubes
of numbers, producing a linear combination of 3 x 3 arrays, weighted by the components of a given vector
(dx, dy, dz). And so on.

Note that in other coordinates (e.g., cylindrical or spherical), VA is not given by the derivative of its
components with respect to the 3 coordinates. The components interact, because the basis vectors also change
through space. That leads to the subject of differential geometry, discussed elsewhere in this document.
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4 Green Functions

We follow [Jac p??] and [Bra] in using the term “Green function,” rather than “Green’s function.”
Though we agree with Jackson’s logic, we do it mostly because it’s easier to say and type.

Green functions are a big topic, with lots of subtopics. Many references describe only a subset, but use
words that imply they are covering all of Green functions. If you are looking for a specific application of
Green functions, such as electrostatics, you may want to skip right to that section, but the “big idea” applies
to all Green functions.

Though Green functions are used to solve linear operator equations (such as differential equations), the
concepts involved apply to other applications, such as the Born approximation, impulse response analysis,
and quantum propagators.

The Big Green Idea

Green functions are a method of solving linear operator equations (such as inhomogeneous linear
differential equations) of the form:

L{f(x)} = s(x) where  £{ }isa linear operator . 4.1)
—
source
s(X) is called the “source” function. We use Green functions when other methods are hard, or to make a
useful approximation (the Born approximation). The big idea is to break up the source s(x) into infinitesimal
pieces (d-functions), solve each piece separately, and add up the solutions. Since the £ is linear, the sum of
solutions is also a solution, and is the solution to the original problem.

| A Green function give the response of a system to a point source.

In other words, a Green function satisfies:

L{G(X)} =5(x).
To uniquely define a Green from £, you must also specify sufficient auxiliary conditions (such as boundary
conditions).

Sometimes, the Green function itself can be given physical meaning, as in E&M where it is essentially
Huygen’s Principle, but with accurate phase information, or in Quantum Field Theory where it is the
propagator of a quantized field. Green functions can generate particular (i.e. inhomogeneous) solutions, and
solutions matching boundary conditions. They don’t generate homogeneous solutions (i.e., where the right
hand side is zero). We explore Green functions through the following steps:

Extremely brief review of the J-function.

The tired, but inevitable, electromagnetic example.

Linear differential equations of one variable (1-dimensional), with sources.
Delta function expansions.

Green functions of two variables (but 1 dimension).

o g &~ w bR

When you can collapse a Green function to one variable (“portable Green functions”: translational
invariance)

7. Dealing with boundary conditions: at least 5 (6??) kinds of BC
8. Green-like methods: the Born approximation

You will find no references to “Green’s Theorem” or “self-adjoint” until we get to non-homogeneous
boundary conditions, because until then, those topics are unnecessary and confusing. We will see that:
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The biggest hurdle in understanding Green functions is the boundary conditions.

Some references derive Green functions from Green’s Theorem, which derives from Gauss’ Law.
That is only a special case. In general, Green functions do not rely on Green’s Theorem.

We return to this point later, after discussing general boundary conditions.

Dirac Delta Function

Recall that the Dirac J-function is an “impulse,” an infinitely narrow, tall spike function, defined as:

a
o(x)=0, forx=0, and J- o(x)dx =1, WVa> 0 (the area under the o-function is 1) .
—a

(This also implies &(0) — oo, but we don’t focus on that here.) The linearity of integration implies the delta
function can be offset, and weighted, so that:

b+a
Ib wo(x—b) dx=w va>0.
-a
Since the J-function is infinitely narrow, it can “pick out” a single value from a function:
b+a
Ib o(x—=Dh) f(x)dx= f(b) va>0. 4.2)
-a

This is called the “filtering property” of the J-function. See Quirky Quantum Concepts for more on the delta
function. The units of §( ) are [x]™

The Tired, But Inevitable, Electromagnetic Example
You probably have seen Poisson’s equation relating the electrostatic potential at a point to the charge
distribution creating the potential (in gaussian units):
—V2¢(r) =47p(r) where ¢ = electrostatic potential, p = charge density . (4.3)

We solved this by noting three things: (1a) electrostatic potential, ¢, obeys “superposition:” the potential due
to multiple charges is the sum of the potentials of the individual charges; (1b) the potential is proportional to
the source charge; and (2) if we take the potential at infinity to be zero, the potential due to a point charge is:

d(r)=q (point charge atr'). (4.9)

1
]
(We say much more about boundary conditions later.) The properties (1a) and (1b) above, taken together,
define a linear relationship:

Given: pi(r)—#(r), and P2(r) = ¢, (r),
then:  ap(r)+p,(r) — total (N =ag (1) + ¢, (r).

To solve (4.3), we break up the source charge distribution p(r) into an infinite number of little point
charges. The set of points is spread out over space, each of charge p(r) d®r. The solution for ¢ is the sum of
potentials from all the point charges, and the infinite sum is an integral, so we find ¢ as:

# points

¢(r)_ I|m Z p(r|)d rl I.[.[sourcep )d rl| |

Note that the charge “distribution” for a point charge is a J-function: infinite charge density, but finite total
charge. Also, ¢(r) for a point charge at r’ is translationally invariant: it has the same form for all r’. We will
remove this restriction later.
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All of this followed from simple mathematical properties of Eq (1) that have nothing to do with
electromagnetics. All we used to solve for ¢ was that the left-hand side is a linear operator on ¢ (so
superposition applies), and we have a known solution when the right-hand side is a delta function at r’:

1 :
V2 4(r) = 4mp(r) and _v? - =5%(r-r).
i I | | I = ir—r Y
linear ynknown  given "source" linear | | given point
operator fynction function Operator Jnown  “source"atr’
solution

Since any given p can be written as a sum of weighted J-functions, the solution for that given p is a sum of
delta-function solutions. Now we generalize this electromagnetic example to arbitrary (for now, 1D) linear

operator equations by letting r — x, ¢ — f, -V? — £, p — s, and call the known §-function solution G(x):

o2 _ o2 15
V< ¢(r) =4np(r) and Y |r—r'| _§ (r _r) —
L f(x) s(x) L given point

G(r-r) “source"atr’

Given L£{f(x)}=s(x) and L{G(x—x)}=8(x—x),
then f(x):f dx' s(x) G(x - x).

This assumes, as above, that our linear operator, and any boundary conditions, are translationally invariant.

In 3D, as indicated above for electrostatic potential, the integral over the source becomes:

Given L{f(r)}=s(r) and L{G(r-r)}=8%(r-r),
then (=[] d’rsrycr-r).

We can even have Green functions over time and space (as in quantum field theory). Then the “point source”
is a point in both time and space:

Given lj{f(x“)}:s(x”) and L{G(x”—x"‘)}:§4(x“—x‘”),
then  f(x) :jmsoumed“x' S(X") G(X“ — xM).

A Fresh, New Signal Processing Example

If the following example doesn’t make sense to you, just skip it. Signal processing and control theory
folk have long used a Green function-like concept, but with different words. A time-invariant linear system
(TILS) produces an output which is a linear operation on its input:

o(t) = M{i(t)} where  M{ }is a linear operation taking input to output .

In this case, we aren’t given M {}, and we don’t solve for it (also it’s on the right-, rather than the left-side

of the equation). However, we are given a measurement (or computation) of the system’s impulse response,
called h(t). If you poke the system with a very short spike (i.e., if you feed an impulse into the system, i(t) =
d(t) ), the system responds with h(t):

h(t) = M{5(t)} where  h(t) is the system's impulse response .

h(t) acts like a Green function, giving the system response at time t to a delta function at t = 0. Note that h(t)
is spread out over time, and usually of (theoretically) infinite duration. h(t) fully characterizes the system,
because we can express any input function as a series of impulses (with the delta-function expansion below),
and sum up all the responses. Therefore, we find the output for any input, i(t), with:
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o(t) =j:i(t')h(t—t') dt'

Caution: many references do not distinguish between a Green function G(x) and an impulse response
h(x). The two are similar, but they differ because:

L{G(x)} =5(x), but  h(x)=M{5(x)} .

The linear operator is in a different place for a Green function vs. an impulse response. For example, in
electromagnetics, sources (charges and currents) are the stimulus that result in fields (E, D, H, and B).
Maxwell’s equations (e.g., V *D = p) have linear operators acting on the result (fields, e.g. D) to give you

the stimulus (e.g., p). A TILS does the reverse: it produces a result which is a linear operation on its input
(stimulus).

We can see a relationship between a Green function and an impulse response by taking M (if it exists)
of both sides of the second equation:

M A} =8(x).

Thus the impulse response for an operator M is the Green function for the operator M. In particular,
quantum field theory calls the field “propagator” a Green function, but it is more directly thought-of as an

impulse response.
Linear differential equations of one variable, with sources
We wish to solve for f(x), given s(x):
L{f(x)}=5s(x), where £{ }isa linear operator .

s(x) is called the "source," or forcing function.
dz d? 2
E.g., —+o° [ f(X)=— F(X)+ o f(X)=5(X).
g [dxz ]()dxz() (x)=5(x)

We ignore boundary conditions for now (to be dealt with later). The differential equations often have 3D
space as their domain. Note that we are not differentiating s(x), which will be important when we get to the
delta function expansion of s(x).

Green functions solve the above equation by first solving a related equation: if we can find a function
(i.e., a “Green function”) such that:

L{G(x)} = 5(x), where  &(x) is the Dirac delta function,
a2
e.g., —to G(x)=0(x),
dx

then we can use that Green function to solve our original equation. This might seem weird, because 5(0) —
oo, but it just means that Green functions often have discontinuities in them or their derivatives. For example,
suppose G(x) is a step function:

G(x) =0, x<0}

d
_1 >0 Then &G(x)_é(x).

Now suppose our source isn’t centered at the origin, i.c., S(X) = 5(x—a) . If £{ } istranslation invariant
[along with any boundary conditions], then G() can still solve the equation by translation:

£{f(x)}=s(x) =5(x—a), = f(x)=G(x—a) isasolution.
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If s(x) is a weighted sum of delta functions at different places, then because L{ } is linear, the solution is
immediate; we just add up the solutions from all the §-functions:

L‘,{f(x)}:s(x):ZWi(S(x—xi) = f(x):ZWiG(x—xi).

Usually the source s(x) is continuous. Then we can break up s(x) into infinitesimally small pieces (i.e.,
expand it as an infinite sum of delta functions, described in a moment), and sum the solutions for the pieces.
The summation goes over to an integral, and a solution is:

Xi —>X'
w; —>s(x)dx'

E{f(x)}=5(x)=iwi§(x—xi) o
i=1
E{f(x)}=s(x)=j s(x)dx's(x—x") and f(x)=J' dx' s(x)G (x - X)

We can show directly that f(x) is a solution of the original equation by plugging it in, and noting that
L{ } acts in the X domain, and “goes through” (i.e., commutes with) any operation in X’:

ﬁ{f(x)}zﬁ{j dx's(x')G(x—x')}
:I dx's(x)£{G(x—x)} moving £{ } inside the integral

= I dx's(x)o(x—x") =s(x) o( ) picks out the value of s(x). QED.
We now digress for a moment to understand the J-function expansion.

Delta Function Expansion

As in the EM example, it is frequently quite useful to expand a given function s(x) as a sum of &-
functions:

N
s(x) = Z wo(x—x),  where w; are the weights of the basis delta functions.
i=1

[This same expansion is used to characterize the response of linear systems to input i(t).]

w; = area
s(x) ~ 5(X;)AX
s(x)

ML I

(a) (b) — Ax—

Figure 4.1 (a) Approximating a function with 8-functions. (b) The weight of each §-function is
such that its integral approximates the integral of the given function, s(x), over the interval “covered”
by the d-function.
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In Figure 4.1a, we approximate s(x) first with N = 8 J-functions (green), then with N = 16 §-functions (red).
As we double N, the weight of each J-function is roughly cut in half, but there are twice as many of them.
Hence, the integral of the J-function approximation remains about the same. Of course, the approximation
gets better as N increases. As usual, we let the number of J-functions go to infinity: N — co.

In Figure 4.1b, we show how to choose the weight of each J-function: its weight is such that its integral
approximates the integral of the given function, s(x), over the interval “covered” by the d-function. In the
limit of N — oo, the approximation becomes arbitrarily good.

In what sense is the J-function series an approximation to s(x)? Certainly, if we need the derivative s'(x),
the delta function expansion seems to be terrible. However, if we want the integral of s(x), or any integral
operator, such as an inner product or a convolution, then the delta function series is a good approximation.
Examples:

For I s(x) dx, or j f(x)s(x)dx, or j f(x"=x)s(x) dx,

N
then s(x) zZWié(x—xi) where  w; =5(X;)AX.
i=1

As N — oo, we expand s(x) in an infinite sum (an integral) of J-functions:

Xi—>X'
Ax—dx'
w; —s(x")dx’

S(X)=ZWi5(X—Xi) - S(x):jdx‘s(x')d(x—x‘),

which if you think about it, follows directly from the definition of §(x), per (4.2).

[Aside: Delta functions are a continuous set of orthonormal basis functions, much like sinusoids from quantum
mechanics and Fourier transforms. They satisfy all the usual orthonormal conditions for a continuous basis, i.e. they
are orthogonal and normalized:

I " dx S(x—a)s(x—b) = 5@—b) ]
Note that in the final solution of the prior section, we integrate s(x) times other stuff:

f(x):j dx' s(x)G(x - X,

and integrating over s(x) is what makes the J-function expansion of s(x) valid.

[Aside: It turns out that even systems that differentiate s(x) can use the 5-function expansion, but we need not
bother with that here.]

Boundary Conditions on Green Functions

Most problems require boundary conditions on the solution to an equation.

Introduction to Boundary Conditions

We now impose a simple boundary condition on an equation we seek to solve. Consider a 2D problem
in the plane:

£{f(x,y)}=s(xy) inside the boundary;
f (boundary) =0, where the boundary is given.

We define the vectors r = (x, y) and r’ = (x’, y’), and recall that:

52(r) = 8(x)8(y), s0 that S2r-ry=6(x-x)s(y-y).
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The boundary condition removes the translation invariance of the problem (Figure 4.2). The delta function
response of E{G(r)} translates, but the boundary condition does not. I.e., a solution of:

£{G(r)}=45(r), and G(boundary)=0 = L{G(r-r)}=68(r-r)
BUT does NOT = G(boundary—r")=0.

y ) {boundary condition does
boundar boundary condition  |----*. not translate with r’
f(boundary) =0 ’ remains fixed -
N
a T e
)dmain
of f(x,y)

(@) (b)

Figure 4.2 (a) The domain of interest (blue), and its boundary (red). (b) A solution meeting the
BC for the source at (0, 0) does not translate to another point r’ and still meet the BC.

| With boundary conditions, for each source point r', we need a different Green function!

The Green function for a source point r', call it Gr(r), must satisfy both:
L{G,. ()} =5(r-r) and G, (boundary) =0
We can think of this as a Green function of two arguments, r and r', but really, r is the argument, and r'is a

parameter. In other words, we have a family of Green functions, Gr(r), each labeled by the location of the
source point, r'.

Note that finding 1D Green functions is an important prerequisite for 3D Green functions, because a 3D
problem sometimes separates into a 2D and a 1D problem. We give such an example in the section on 3D
Laplacian operator boundary conditions.

One Dimensional Boundary Conditions

Example: Returning to a 1D example in r: Find the Green function for the equation:

d? . .
F f(r)=s(r), on theinterval[0,1], subject to BC: f(0)= f(1)=0.

Solution: The Green function equation replaces the source s(r) with o(r — r'):
iG (ry=o(r—r".
arz

Note that Gy (r) satisfies the homogeneous equation on either side of r’:

2

d :
d7(5'.-(1“¢r):0.

The full Green function simply matches two homogeneous solutions, one to the left of r’, and another to the
right of r’, such that the discontinuity at r’ creates the required J-function there. First we find the
homogeneous solutions h(r) (not an impulse response):
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2
j—z h(r)=0 Integrate both sides:
r
dih(r) =C where Cis an integration constant. Integrate again: (4.5)
r
h(ry=Cr+D where C,D are arbitrary constants.

There are now 2 cases: (left) r<r', and (right) r >r'. Each solution requires its own set of integration
constants.

Left case: r<r' = G, (r)=Cr+D

Only the left boundary condition appliestor <r": G, (0)=0 = D=0

Right case: r>r' = G, (r)=Er+F
Only the right boundary condition appliestor >r': G,.()=0 = E+F=0, F=-E.
So far, we have:
Left case: G(r<r)=Cr Right case: G(r >r")=Er-E.

The integration constants C and E are as-yet unknown. Now we must match the two solutions at r = r',
and introduce a delta function there. The J-function must come from the highest derivative in £{ }, in this
case the 2" derivative, because if dG/dr had a delta function, then the 2" derivative d?G/dr? would have the
derivative of a 5-function, which cannot be canceled by any other term in £{ }. Since the derivative of a step
(discontinuity) is a 6-function, dG/dr must have a step, so that d?G/dr? has a é-function. And finally, if dG/dr
has a step, then G(r) has a cusp (aka “kink” or sharp point).

We can find G(r) to satisfy all this by matching G(r) and dG/dr of the left and right Green functions, at
the point where they meet, r = r’:

Left: iGr,(r<r')=C Right: iGr.(r>r')=E.
dr dr

There must be a unit step in the derivative across r = r’:

w©| L, %

+1=
or or

r'_

= C+1=E. (4.6)

r'+

So we eliminate E in favor of C. Also, G(r) must be continuous (or else dG/dr would have a §-function),
which means:

G (r=r_)=G,.(r=r",) = Cr'=(C+D)r-C-1, C=r'-1,
yielding the final Green function for the given differential equation and boundary conditions:
G (r<r)=(r-1r, Go(r>r)=r'r—r'=r'(r-1).

Here’s a plot of these Green functions for different values of r':

G (N G (n G (N
05+ 05+ 05+

r=0.3 =05 r'=0.8
0 i il r 0 i 1 r 0 i | r
-0.5 + -0.5 + -0.5 +

0 1 0 1 0 1
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Normalization is important, because the J-function in L{G(r)} =6(r) must have unit magnitude.

To find the solution f(r), we need to integrate over r'; therefore, it is convenient to write the Green
function as a true function of two variables:

G(r;r)=G,.(r) = L{G(r;r'}=6(r—r), and  G(boundary;r’)=0,

where the “;” between r and r' emphasizes that G(r ; r') is a function of r, parameterized by r'. l.e., we can
still think of G(r; r') as a family of functions of r, where each family member is labeled by r’, and each family
member satisfies the homogeneous boundary condition.

It is important here that the boundary condition is G =0, so that
any sum of Green functions still satisfies the boundary condition.

Finally, the particular solution to the original equation, which now satisfies the homogeneous boundary
conditions, is:

1 r 1
f(r):J.Odr's(r')G(r;r'):jodr's(r') r'(r-1) +Irdr's(r') (r=1)r

| I
G(r;r), r>r' G(r;r),r<r'-

which satisfies  f (boundary) =0
Summary: To solve £{G, .(r)}=&(r—r") in one dimension:

e We break G(r) into left- and right- sides of r'. Each side satisfies the homogeneous equation,
L{G,.(r)} =0, with arbitrary integration constants.

o We establish a first matching condition on G(r), which is usually that it must be continuous at

r.

e We establish another matching condition to achieve the J-function at r'. This establishes a set
of simultaneous equations for the integration constants in the homogeneous solutions.

e We solve for the constants, yielding the left-of-r' and right-of-r' pieces of the complete Green
function, G(r; r).

Aside: It is amusing to notice that we use solutions to the homogeneous equation to construct the Green
function. We then use the Green function to construct the particular solution to the given (inhomogeneous)
equation. So we are ultimately constructing a particular solution from a homogeneous solution. That’s not like
anything we learned in undergraduate differential equations.

When Can You Collapse a Green Function to One Variable?

“Portable” Green Functions: When we first introduced the Green function, we ignored boundary
conditions, and our Green function was a function of one variable, r. If our source wasn’t at the origin, we
just shifted our Green function, and it was a function of just (r —r’). Then we saw that with (certain) boundary
conditions, shifting doesn’t work, and the Green function is a function of two variables, r and r’. In general,
then, under what conditions can we write a Green function in the simpler form, as a function of just (r — r*)?

When both the linear operator and the boundary conditions are translation-invariant,
the Green function is also translation-invariant.

We can say it’s “portable.”

This is fairly common: differential operators are translation-invariant (i.e., they do not explicitly depend
on position), and BCs at infinity are translation-invariant. For example, in E&M it is common to have
equations such as:

~V2¢(r) = p(r), with boundary condition ¢(c0)=0.
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Because both the operator —V2 and the boundary conditions are translation invariant, we don’t need to
introduce r' explicitly as a parameter in G(r). As we did in (4.4) when introducing Green functions, we can
take the origin as the location of the delta function to find G(r), and use translation invariance to “move
around” the delta function:

G(r;r)=G,(r)=G(r—r’) and L{G(r-r)}=5(r-r)
with BC: G(x) =0

Non-homogeneous Boundary Conditions

So far, we’ve dealt with homogeneous boundary conditions by requiring G,.(r) =G(r ;r’) to be zeroon

the boundary (which may be at infinity). But there are different kinds of boundary conditions, and different
ways of dealing with each kind.

[Note that in general, constraint conditions don’t have to be specified at the boundary of anything. They are
really just “constraints” or “conditions.” For example, one constraint is often that the solution be a “normalized”
function, which is not a statement about any boundaries. But in most physical problems, at least one condition does
occur at a boundary, so we defer to common usage, and limit ourselves here to boundary conditions.]

Boundary Conditions Specifying Only Values of the Solution

In one common case, we are given a general (inhomogeneous) boundary condition, m(r) along the
boundary of the region of interest. Our problem is now to find the complete solution ¢(r) such that

£{c(r)}=s(r), and c(boundary) = m(boundary) .

One approach to find c(r) is from elementary differential equations: we find a particular solution f(x) to the
given equation, that doesn’t necessarily meet the boundary conditions. Then we add a linear combination of
homogeneous solutions to achieve the boundary conditions, while preserving the solution of the non-
homogeneous equation. There are 3 steps:

(1) First solve for f(r), as above, such that:
£{f(r)}=s(r), and f (boundary) =0,
using a Green function satisfying:
£{G(r;r)}=6(r—r’) and G(boundary;r’) =0.

(2) Find homogeneous solutions h;(r) which are non-zero on the boundary, using ordinary methods (see
any differential equations text):

£{h(r)} =0, and h; (boundary) = 0.

Recall that in finding the Green function, we already had to find homogeneous solutions, since every Green
function is a homogeneous solution everywhere except at the J-function position, r'.

(3) Finally, we add a linear combination of homogeneous solutions to the particular solution to yield a
complete solution which satisfies both the differential equation and the boundary conditions. Thus we find
coefficients A;j such that:

Ay () + Ahy(r)+...=m(r), and L{Ah(r)+Ah(r)+..}=0 by superposition .

Then our solution is c(r):

c(r)=f(r)+Ah(r)+Ahy(r)+..., because,
L{o(n)} = L{T(N) + Al (r) + Ahy (1) +...
=L{f(r)}=s(r) and c¢(boundary) = m(boundary)
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Continuing Example: In our 1D example above, we have:

L{ }=aa—22 and Gp(r<r)=(r-1r, Gy (r>r)=r'(r-1),
r
satisfying BC:  G,.(0)=G, () =0 = f(0)=f@) =0, Vs(r).

We now add boundary conditions to the original problem: c(0) = 2, and c¢(1) = 3, in addition to the original
problem. Our linearly independent homogeneous solutions are, from (4.5):

h(r) = Ar ho(r)=A, (aconstant).
To satisfy the BC, we need

h(0)+hy(0)=2 = A =2

h@®+hh@)=3 = A =1

Thus our complete solution, satisfying the given BCs, is:

c(r):U:dr's(r')G(r;r')}+r+2. 4.7

Boundary Conditions Specifying a Value and a Derivative

Another common kind of boundary conditions specifies a value and a derivative for our complete
solution. For example, in 1D:

c(0)=1 and c'(0)=5.

Recall that our previous Green function (4.7) is not required to have any particular derivative at zero. When
we find a particular solution, f(x), we have no idea what it’s derivative at zero, f'(0), will be. And in particular,
different source functions, s(r), will produce different f(r), with different values of f'(0). This is bad for our
new BCs. In the previous case of BC, f(r) was zero at the boundaries for any s(r). What we need with our
new BC is f(0) = 0 and f '(0) = 0 for any s(r). We can easily achieve this by using a different Green function!
We subjected our first Green function to the boundary conditions G(0; r’) = 0 and G(1; r’) = 0 specifically

to give the same BC to f(r), so we could add our homogeneous solutions independently of s(r). Therefore, in
2

our example E{ } = 5—2 ,we now choose our Green function BC to be:
r

2

G(0;r)=0 and %G(O;r'):o, with /J{G(r;r‘)}z;?G(r;r‘):5(r—r').

We can see by inspection that this leads to a new Green function (Figure 4.3):

G(r;r)=0 r<r', and G(rr)y=r—r" r>r".
G(r;r) G(r;r G(r;r)
0.5 0.5 / 0.5
0 1 B r 0 b 0 / r
r=0.3 r=05 r=0.8
0 1 0 1 0

Figure 4.3 Green functions for 3 different values of r’.
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The 2" derivative of G(r; r’) is everywhere 0, and the first derivative changes from 0 to 1 at r’. Therefore,
our new particular solution f(r) also satisfies:

1
f(r) =Iodr' s(r)G(r;r’) and  f(0)=0, f'(0)=0, Ws(r).

We complete the solution using our homogeneous solutions to meet the BC:
hy(r)=Ar ho(r)= A, (a constant)

h(0)+hy(0)=1 = A =1
h'(0)+hy'(0)=5= A =5. Then:

1
c(r) =U0dr' s(r')G(r;r')}+5r +1

In general, the Green function depends not only on the particular operator,
but also on the kind of boundary conditions specified.

The Green function does not depend on the values of the given BCs.

Boundary Conditions Specifying Ratios of Derivatives and Values

Another kind of boundary conditions specifies a ratio of the solution to its derivative, or equivalently,
specifies a linear combination of the solution and its derivative be zero. This is equivalent to a homogeneous
boundary condition:

cO_, or equivalently (if ¢(0) = 0) ¢'(0) - ac(0) =0.
c(0)

This BC arises, for example, in some quantum mechanics problems where the normalization of the wave-
function is not yet known; the ratio cancels any normalization factor, so the solution can proceed without
knowing the ultimate normalization. Note that this is only a single BC. If our differential operator is 2™
order, there is one more degree of freedom that can be used to achieve some other condition, such as
normalization. (This BC is sometimes given as fc'(0) — ac(0) = 0, but this simply multiplies both sides by a
constant, and fundamentally changes nothing.)

Importantly, this condition is homogeneous: a linear combination of functions which satisfy the BC also
satisfies the BC. This is most easily seen from the form given above, right:

If d'(0)—ad(0) =0, and e'(0) —ae(0) =0,
then c(r) = Ad(r) + Be(r) satisfies ¢'(0) —ac(0)=0
because c¢'(0)—ac(0)=A(d'(0)—ad(0))+B(e'(0)—ae(0))

Therefore, if we choose a Green function which satisfies the given homogeneous BC, our particular solution
f(r) will also satisfy the BC. There is no need to add any homogeneous solutions.

Continuing Example: In our 1D example above, with £ = d?/dr?, we now specify the BC:

¢ _,

0 or ¢'(0)—2c(0)=0.

Green functions for this operator are always two connected line segments (because their 2™ derivatives are
zero), so we have:

r<r': G(r;r)=Cr+D, D =0 sothat c(0) #0;
r>r': G(rr)=Er+F
BCat0: C-2D=0
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With this BC, we have an unused degree of freedom, so we choose D =1, implying C = 2. We must
find E and F so that G(r; r’) is continuous, and G’(r; r’) has a unit step at r’. The latter condition requires
that E = C + 1 = 3, and then continuity requires:

Cr'+D=Er'+F = 2r'+1=3r'+F, F=-r'+1. So:

r<r': G(r;r)=2r+1 and r>r': G(r;r)y=3r-r'+1

G(r;r) G(r;r) G(r;r)

4 4 4

2 & 2 ' 2 f

0+— et 0 EEEEY 0 e
0 r=03 1 0 r=05 1 0 r=081

Figure 4.4 1D Green functions; the slope changes of +1 occur at r' (dotted red lines), but are subtle
on this scale.

Then our complete solution is just:

1
o(r) = f(r)='|.0dr's(r')G(r;r‘).

Boundary Conditions Specifying Only Derivatives (Neumann BC)

Another common kind of BC specifies derivatives at points of the solution. For example, we might
have:

c'(0)=0 and c'@®=1.

Then, analogous to the BC specifying two values for c( ), we find a Green function which has zeros for its
derivatives at 0 and 1:

iG(r:O;r‘):O and iG(rzl;r'):o.
dr dr

Then the sum (or integral) of any number of such Green functions also satisfies the zero BCs:
1
f(r):jodr's(r')G(r i satisfies f'(0)=0 and f'@Q)=0.

We can now form the complete solution, by adding homogeneous solutions that satisfy the given BC:
c(r) = f(r)+ Ah (r)+ Ahy '(r)  where Ay '(0) + Ayh, '(0) =0
and AR 1)+ Ahy (1) =1
Example: We cannot use our previous example where £{ } = d?/dr?, because there is no solution to:
2

d—G(r;r')=5(r—r‘) with iG(r:O;r'):iG(rzl;r')zo.
dr? dr dr

This is because the homogenous solutions are straight line segments; therefore, any solution with a zero
derivative at any point must be a flat line. So we must choose another operator as our example: TBS.
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2D?7? and 3D Green Functions

Green Functions Don’t Separate

In previous sections, we described 1D Green functions, which satisfy:
L{G(x;x)} =5(x—x").

(We must change notation slightly from earlier, since in higher dimensions, “r” now has the conventional
meaning: distance from the origin.) A 3D Green function satisfies:

L{G(r;r)} =53(r-r) (coordinate free) .

Note that 5° is a (coordinate-free) spherically symmetric function, with no preferred direction. We can choose
to write it as a product of three coordinate functions. For example:

L{G(X,Y,z;x"y"2)} =8(x—x)S(y—y)5(z-12") (rectangular coordinates) .

To generalize Green functions to 3D in rectangular coordinates, you might guess that we could multiply
three separate 1D Green functions together. For example, if £ separates into x, y, and z parts, does the
following hold?

Let Ly {X (% x)} =8(x=x), andsimilarfor £, {Y(y;y)}and £,{Z(z; 2')}.
Does G(x,y,z;z',y',z')ix(x;z')Y(y; yYZ(z;z)? le,
(EX +L, +L‘Z){X(x; )WY (y; y)Z(z; z‘)}¥§3(r—r')?

We now show that does not work. As a concrete counter-example, consider the Laplacian operator, V2. In
1D, it is simply 6%/6x%. Applying our guess to 3D, we would have:

2
(j—ZX(x; x)=56(x—x", andsimilarfor Y(y;y)andZ(z;z").
X

2 (2 2 ) ' | |
(XYZ)=| —+—5+—5 [(XYZ)=6(Xx=X)WZ+5(y—y)XZ +5(z—2) XY

z0(x—xYo(y—-y)o(z-2".

Green functions do not separate the way solutions to Laplace’s equation do.

Let us explore some properties of an actual 3D Green function. A well-known 3D Green function for
the Laplacian, with BC of zero at infinity, is:

1

Grr)=-—-——.
r:r) 4z|r—r]

For simplicity, we fix r' = Ov and drop the prefactor. For insight, we write it in rectangular coordinates:

_r
w’X2+y2+Z2

This is spherically symmetric, as required by the spherical symmetry of V2 and the BCs, but has no other
obvious structure. It does not seem to factor into X(x)Y(y)Z(z). Nonetheless, we have:

G(r;0,) o S =
r
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By symmetry, the three directions each contribute the same amount to the sum, which is 1/3 of the total, so:

N AR
@(—2(')—?(')—62—2(')—55 ().

This means the 2™ derivative in a single direction is immediately a 3-order delta function; this ¢%( ) does
not result from the product of one J() in each direction.

3D Green functions are hard to understand. We give some examples in the following sections.

Green Units

Coordinates have units, operators have units, Green functions have units, and delta functions have units.
As always, we can use dimensional analysis to sanity-check results, which we do later. Asa 1D example:

[x]= L (length), {5722} =%, [s0]=L":

2
a—ZG=5 = L?[G]=L" and  [G]=L.
OX
If X is in meters, then so is G.

A 3D units example:
[X] = L (length), [vz] -2, [50]=L":
VG =4 = L2[G]=L? and [G]=L".
If the coordinates are in meters, then G is in inverse meters.

Special Case: Laplacian Operator with 3D Boundary Conditions

In electrostatics, one often uses Green functions with the Laplacian operator, £=V?, and boundary
conditions, to find the electrostatic potential ®(r). The Laplacian operator allows a “trick” (see glossary) for
common boundary conditions, that gives a solution in terms of integrals. This section assumes you are
thoroughly familiar with solving Laplace’s equation by separation of variables into eigenfunctions (see Funky
Electromagnetics Concepts). Beware that some references define Green functions only for this electrostatic
special case, and so present an overly narrow view of them.

source
volume
obserjver ; Gir r
*r surface . (", Ol

element, _ :
r d2s’ : 5

i L n

space : : X .
(@) (b) () rons

Figure 4.5 (a) A 3D distribution of charges, admired from within. (b) A 1D potential; the flux is
proportional to 0®/0x". (c) For Dirichlet BCs, form of G along the normal coordinate n for r* on the
boundary surface S.
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Consider a distribution of source charges, as in Figure 4.5a. We continue with the definition of G from
earlier sections, and gaussian units:

v2G(r;r)=63(r-r), and V2O(r) = —4ap(r) .
| |
s(r)
Some references include a factor of (—1) or (—4x) on the J-function in the definition of G. That breaks the
generality of the Green method, and simply moves the factor from s(r) into the Green function itself, but the

resulting integral (4.8) is identical, as it must be: ®(r) is uniquely determined by p(r') and the BCs. Our
convention for G is used in many references, and we believe is objectively simpler in both theory and practice.

The Laplacian boundary condition trick starts with Green’s theorem, which relates a certain kind of
volume integral to a surface integral. We give some insight to Green’s theorem in the next section, but the
result is: for any functions defined inside a volume, ®(r") and y(r"):

N2, N2 (e (430 NOW £ 0D 2g,
HIVO.W w(r) —p(r)v2ao(r)dr —gﬁﬁavm(cb(r)% w(r) an‘jd S

where n'=normal coordinate, so, e.g., Z—W=V‘y/-ﬁ'

Note that the primes denote source coordinates. In electrostatics, we let ®(r") be the electrostatic potential
inside the volume, and w(r') — G(r, r”), taking r as fixed. The operator V"' tells us how a function changes
as we move around the source coordinate r', with r held fixed. Then @ is explicitly given by (gaussian units):

o(r) = m’vm G(r; ) (<4mp(r)) dr + #avm ((D(r‘)g—nGl—G(r, r) %)dZS‘
r inside s(r)
volume

(4.8)

where Vol =boundary of the volume.

If r is outside the volume, it violates the terms of Green’s Theorem, the volume integral is zero, and the result
is meaningless. At this point, we have not given any BCs for G, so as with all Green functions, there are

many G that satisfy the defining equation V3G = 53(r— r") . We must find BCs for G to make it unique.

Dirichlet BCs: There are 2 terms in the surface integral of (4.8). For Dirichlet BCs, ®(boundary) is
given. Therefore, we make G unique by choosing G(boundary; r>) = 0, so the second surface term vanishes.
Figure 4.5c illustrates G(n, r') along n, the normal coordinate to the boundary surface. This BC for G
guarantees that ®(r) from (4.8) meets the given ®(boundary).

Neumann BCs: d®/dn' = Ey is given everywhere on the boundary. This is equivalent to specifying E |
or the surface charge density ¢ everywhere on the boundary, because:

do
dn'
You might think we choose dG/dn' = 0 everywhere on the boundary, so the first term in the surface integral
would vanish. This turns out to be a contradiction, so it fails to give a solution ( [Jac 1999 p39] or [Bra p174],

but note they use different 5-function conventions from each other, and from us). The contradiction appears
from Gauss’ Law applied to the definition of the Green function, for r inside the volume:

=-E, =—4ro (gaussian units) .

26 (r e — TV — S3(p_p Ard2e_ 370 en 3
VeG(rr)=V.vG =6°(r-r’ = avmVGn d“s Iﬂvm5 (r=r)d°r or
96 o5,
dn'
oVol
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So dG/dn' cannot be 0 everywhere. The simplest requirement to state (not necessarily to solve) is dG/dn' =
constant = 1/S, where S = surface area, which satisfies the above surface integral. However, if the system is
infinitely large, as is commonly approximated, this reduce to the simple dG/dn' =0

The final solution then comes from the fact that ®(r") is defined by Neumann BCs only up to an additive
constant. Therefore, there exists some ®(r') such that the first term in the surface integral of (4.8) is zero.
Then that @ satisfies:

@(r) _m G(rir) (4mp(r)) d d3r C_"j-)aVOIG(r,r')gdZS'

r |n3|de s(r)
volume

This gives the solution @(r) inside the volume as an integral of the given Neumann BCs.

The BCs we choose for the Green function depends only on the type of BCs for ®
(Dirichlet or Neumann), but not on the boundary values themselves.

Derivation of Green’s Theorem

This section is optional. Green’s theorem relates a certain kind of volume integral to a surface integral.
We start with a one-dimensional section of 3D space, which may be easier to think about (Figure 4.5).
Consider any two functions ®(x’) and w(Xx’); we use primes to indicate coordinates of source charges. From
simple integration by parts, we have:

:_I:(%q’j(ddx jdx

We could just as well swap the roles of ® and y, and have:

RGO

Subtracting the latter from the former cancels the integral on the RHS:

d? d? d d
—~ @ |dx'=| d— —
L( a2’ a2 JX ( o’ o j

d
dxl//

I CDdXZt//dx'zd)

b g2 d
— _®dx'=py—®
-[awdx' l//dX'

b

or
a
b (4.9)
d d
) dx'= —CD dx'+| ®— —
j ,21// j Y ( o’ Ve ja
I—I
charge
density

We recognize the charge density in the first integral on the right. We can isolate ® on the left, at a specific
point x (not x’) in the volume, by choosing y such that d?y/dx = §%(x — x'); in other words, by choosing y/(x’)
to be a Green function:

. L . o°G .
w(x') > G(x; x') such that: 6_2:5()(_)()'
"

For purposes of Green’s Theorem, ‘X’ is a constant; X' is the variable. Green’s Theorem holds for any
functions ®(x’) and w(x’), so it holds for this choice of . Then the LHS of (4.9) becomes:

J' 04" x//dx _Ib®(x)5(x—x')dx‘:®(x). (4.10)

S0 (4.9) becomes an explicit integral for ®(x), X inside the volume:
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b
. (4.11)

a

D(X) =J.:G(x; x')(—4;rp)dx‘+(®(x')§—G(x; x')%j

To generalize this to 3D, we throw in the requisite vector identities, and upgrade each term in our
development by two additional dimensions. Start by deriving a kind-of 3D version of integration by parts:

J‘” V5eA(r) d3r'= (f:ﬁ A(r')-ﬁ'dZS' where A'= unit vector pointing outward .
Vol IWI ovol

Let A(r)=o(r)V'y(r) =

.U.[vm V(@ V) d°r'= (ﬂ)avm ®r) Z_nl// d’s'

Use a vector identity for divergence:

VAOV'y)=V'OV'y +OV2y =

IJJVOI(VI®.VIW+®V|2W)d f'=@avo|q)(r')%d28'

As in our 1D warmup, we can swap the roles of ® and y, and subtract the result from the above. The first
term on the LHS cancels, leaving:

v [l [ T 1 [ 1 v 6(// f a(D 2ca0
O(r)v? —y(r)\vV2a(r) [d3r = O(r) == —y(r)y— |d?s" .
I, [o@v2p ) -p)v 2w o’ q?jSM[ ()2 —u(r) an,j

Now choose w(r') — G(r; r'), where r is a constant inside the volume, and:

V2iG(rr)=8(r-r) =

oG o
r%e B J.J‘J‘Vol G(r; rl) ("_47;5)“.)) d:%I"-’-CJ‘:}&VOI (q)(l")%—G(r, rl) a;ﬁdeSl l
volume

The particular G we use depends on the BCs given in the original problem for ®(r), as shown in the previous
section.

Desultory Green Topics

Fourier Series Method for Green Functions

In some cases, we cannot find the Green function in closed form, but we can find a Fourier series for it.
This section assumes you are familiar with Fourier Series, and Green functions without Fourier Series. The
example below constructs a Green function from a 2D Fourier Series for the x-y parts, and for each Fourier
component, uses a variant of 1D left-right construction (introduced in an earlier section) for the z part of that
component.

To illustrate the Fourier method for Green functions, we expound on the question [Jac Q2.23 and p128-
9]. There are many solutions for Q2.23 (which has no source charge) posted on the internet; most use
separation of variables and eigenfunctions. (We describe such a method generally in Funky Electromagnetic
Concepts.) We here derive one form of the Green function for such a problem [Jac 3.168 p129m]. In
principle, this solves for the potential ®(r) for arbitrary charge density by using (4.8).
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y G,(z; 2"

e
A z

@ x% “z=constant (b)

Figure 4.6 (a) A cube with specified boundary potentials. (b) Green function for the z-direction,
requiring sinh functions.

The system is a cube of side a, with one corner at the origin, extending to (a, a, a) (Figure 4.6). The
cube has arbitrary charge density p(r) inside. The two faces of z =0 and z = a are at fixed potential ® =V,
and the other 4 faces are at ® = 0. Find the potential inside the cube. As with many such problems, it is
slightly ill-posed: the potential along the x and y axes, and 6 other similar edges, are specified as both 0 and
V. We can ignore this by saying that the faces with ® = V are separated by a tiny distance from the rest of
the cube, so the edges don’t quite touch.

The geometry favors rectangular coordinates. The BCs on @ are Dirichlet (® is given everywhere on
the surface of the cube), so the BCs on G are all zero. This means the three coordinate directions are all
equivalent for G, and we could find G as a 3D Fourier series [Jac 3.167 p129]. However, the original problem
is given with z chosen as having different BCs than x and y, so we choose to treat z differently than x and y.
We will Fourier expand the x-y surfaces (2D), but write the z-dependence of each Fourier component (of G)
directly. This is desirable, because lower dimensional series usually converge faster than higher dimension.

2D Fourier Series: Recall that a well-behaved 2D function of a rectangular region of space
xe[0,a], y €[0,b] can be written as a series of sinusoids:

f(x,y)= Z Am sin(%xjsin(% yj+other cos( ) terms we won't need here .

I,m=1

basis function

We justify the lack of cos( ) shortly. Given the function f(x, y), we can find the coefficients Ain of its series
expansion from orthogonality of the Fourier basis functions:

Anm :%J:dy Joadx f(x, y)sin[%Z xjsin(% xj. (4.12)

The leading coefficient above is the inverse of the normalization of the basis function:

Cofe{o(ipu(im] 2

3D Green function: For the potential of the cube, (X, Y, z), we seek the Green function, which looks
like this in rectangular coordinates:

VZG(X, y,z;x',y',z‘):53(r—r') =5(x-x")s(y-y")s(z-2"). (4.13)

In our parlance, we say G( ) is the piece of ® at (X, Y, z) due to the piece of source at (X’, y’, z’). As described
in a previous section, G (as a whole) does not separate into X(x)Y(y)Z(z). However, each Fourier component
of G is a solution to Laplace’s equation everywhere except at r’, SO each component can be separated into
X(X)Y(y)Z(z), while still including a discontinuity. In such a separation for the V2 operator in rectangular

coordinates, at least one function is sin/cos, and at least one is sinh/cosh. Because we chose to Fourier expand
x-y, they must be sin/cos, and therefore Z(z) must be sinh/cosh. Thus G can be written:

G(x,y,z;x'y'z") = i A (X y')sin(%x}sin(% yjzm(z; z". (4.14)
I,m=1 sinh/cosh
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Note that each pair of values (x', y) has its own distinct Fourier series. We call the z part of each component
of the Green function Zin(z; z'). Note that each Im component has a different Zin, which is why there is no
global Z(z) that can be separated from the rest of G. The units of the coordinates are [x] = [y] = [z] = distance,
and [AmZm] are [x] .

As noted earlier, the BCs for @ given in the problem define the BCs for G( ), which then makes G()
unique. We must impose G() = 0 everywhere on the boundary (all 6 faces):

G(boundary; x',y',z") =0, vx',y',z'.

Each Fourier component satisfies Laplace’s equation everywhere except at (X', Y', z'), and is zero on the
boundaries. The BC on G demands a square slice of z = constant has G = 0 around its perimeter. This can
be satisfied with X and Y = sin('), but not cos(). Thus:

X|m(x):sin(%[xj, Y,m(y):sin(%y), I,minteger .

The infinite Fourier sum in X and Y compose a o(x — X)d(y — '), leaving only 6(z — z') to be constructed in
Zim. In rectangular coordinates, Xim depends only on I, and Y\ depends only on m. We retain the “Im” on
both because other coordinate systems don’t separate so cleanly. (Yim here is not a spherical harmonic.)

Now to find G, “all” we must do is find the Zin and Aim. Zim must provide the 6(z — z') in (4.13), so we
start there. The Zin must look like Figure 4.6b, because they are zero at z = 0 and z = a, and each must have
a positive step in its derivative at z = z'. We already know that Zn(z) comprises only sinh/cosh, but because
G(boundary) = 0, it must be made of only sinh. From Figure 4.6b:

Forz<z': Zin (2; 2") = Asinh(ky,2)
Forz>z" Zin(z;2") = Bsinh (ki (@—2)) where ki, = =12 +m? .
a
kim is chosen to cancel the sum of the eigenvalues from X(x) and Y(y), as described in the section on boundary

value problems. Since kim depends on the component “Im”, each Z, is a different function.

It is customary to combine these two pieces of Z, into a single form:
Zy(2;2") = Csinh(kyyz.)sinh ki, (a—z.)) where z_=min(z,2), z. =max(z,2").

Remember that for purposes of derivatives, z' is a given constant, so in the above form, one factor is a function
of z, and the other is just a constant that depends on z'. (This combined form looks clumsy, but is helpful
with deeper concepts of self-adjointness which we do not pursue here.) The coefficient C could be absorbed
into the Fourier coefficients Aim, but we have to do the work sooner or later. Therefore, we opt to keep all
the z-dependence tidily in Zjm, so we find C now:

dZy,
dz

= Ckyy, cosh(kin2)sinh (kin (@ - 2)). ‘jjA
VA

z<z' 7>7'

= —Cky sinh(kyyz ") cosh (ki (2 —2)) .

The unit step in derivative at z' gives:

_ dZIm
dz

_ 9y
dz

1

= —Ckiy [ sinh(Ky2) cosh (K (@ = 2')) + cosh(ky 2 ) sinh (ki (2 — 2)) |
z', 7'

Use: sinh(u +Vv) =sinhucoshv +coshusinhv:
-1

1= —CKyp, sinh (K (2 +a—2" © = sinh (kira)
msinh (ki (z+a-2")) = Kim Sinh (ki)

Note that C depends on the source point z', and is negative, as shown in Figure 4.6b. The complete Zj is:
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Zim(z;2) = sinh(kpz.)sinh (ki (-2 ). (4.15)

-1
Kim sinh (ki)

As expected, Zim is not a 1D Green function, because it is non-zero everywhere inside the boundary.
However, it does provide the discontinuity required in G. In fact:

2 2 2
a_zzlm(z;éz';z'):kmzzlm, aa Ziw(z=242)=06(z-2") < .[ *a_zIm dz=1.
z

2
(We could say, in general aa—zzlm(z; )= k,m22|m +8(z-12".) [km] = [z]% so the scaling of Ziy gives it
z

units of distance, [z].

For Am(X', y') we have:

2 2
2g_| 9,9 (—I] ( ]z =5(x=x)3(y-y)3(z—2'
v {ax +6y o ]I;f,m(x y)sin| =Ix [sin| =my Z,, =S(x—x)5(y-y)(z-2")

© 2 2 2 2 2
ZA1m(_I—Z—m—ZJra—Jsm(I;xjsm(—ij”n—5(X x)o(y-y)o(z-2)).

2
I'm=1 a a oz

This means the Aj, have units of [x]2. To pick out a single coefficient A, we multiply both sides by the
Fourier basis function, and integrate over the x-y region, recalling the basis function normalization is a%/4:

2_2 2_2 2 2 ' '
Arm'{—l—z_ m Z +5_]a—z,m :IOaI:dx dysin(%x]sin(%yjé(x—x')5(y—y')5(z—z‘)

a a2 o2 )4
=sin(|—ﬂx'jsin(My'j5(z -7" .
a a

2
The only term that survives on the left is from 5_22”“(2 =12")=0(z-1z"), which cancels the () on the right:
z

Ai.m|(x',y')M:izsin(l—”x‘jsin(My']M.
a a a
(Equivalently, we could integrate both sides with JZ . ()dz.) We drop the primes from I'and m', yielding:
7'
4 Iz mz
X' y) =—sin| —Xx"|sin| —
An () = sin[ o i 2y ).

The final Green function combines these Ain with Z;, from (4.15):

Stonzizyer= 3, don{ Tcon( 5y o 1o ey [ e B2

a Kim sinh (ki)

Using (4.8), this G gives ®(r) in integral form for arbitrary p(r) and Dirichlet BCs.

Green-Like Methods: The Born Approximation

In the Born approximation, and similar problems, we have our unknown function, now called w(x), on
both sides of the equation. So both our unknown function f(x) — w(x), and our source s(x) — w(X):

(V) {9} =y
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The theory of Green functions still works, so that:
w0 = w()6Ex)

but this doesn’t solve the equation, because we still have y on both sides of the equation. We could try
rearranging Eq (1):

L{w(X)} -y (x)=0 which is the same as
L{y(x)}=0, with  L{y(x)}=L{y ()} -y ().

But recall that Green functions require a nonzero source function s(x) on the right-hand side. The method of
Green functions can’t solve homogeneous equations, because s(x) = 0 yields:

L{y()} =s(x) =0 N w(x):J s(x)G(x:x") dx':J. 0dx'=0.

Technically, this is a solution, but it’s not very useful. So Green functions don’t work when w(x) appears on
both sides. However, under the right conditions, we can make a useful approximation. If we have an
approximate solution,

£y @) =v @00,
then we can expand y in a perturbation series of corrections:
v() =y Q00+ D0+ @0+
where 1//(1) is1° order perturbation, l//(z) is 2" order, .... .

Now we can use y©(x) as the source term, and use a method like Green functions, to get a better
approximation to y(x):

L{y(x)} =y (x) = w‘°)+w(1)(X)=I v Q)G (x;x’) dx’ @.15)
where  G(x;x’) is the Green's function for £,ie.  L£{G(x;X)}=8(x—x).

wO(x) + y(x) is called the first Born approximation of y(x). This process can be extended to arbitrarily
high accuracy.

In QM, L is the perturbed hamiltonian:
L=Hy+V(r),

where V(r) is “small” compared to H,. @ is an exact solution to the unperturbed Schrodinger equation, so
it can be shown that the Born approximation (4.16) reduces to:

v 0= [ ¥ )60 e

y/(z)(x)=J' vDGHGX) dX' .. y/<”+1>(x)=j v (x)G(x:x) dx’

This process assumes that the Green function is “small” enough to produce a converging sequence. The first
Born approximation is valid when y®(x) << y©(x) everywhere, and in many other, less stringent but harder
to quantify, conditions. The extension to higher order approximations is straightforward: the Born
approximation is valid when wM(x) << y©(x). See Quirky Quantum Concepts for detailed information.

TBS: a real QM example?
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Green function as inverse operator??
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5 Complex Analytic Functions

For a review of complex numbers and arithmetic, see Quirky Quantum Concepts.

Notation: In this chapter, z, w are always complex variables; x,y, r, 6 are always real variables. Other
variables are defined as used.

A complex function of a complex variable f(z) is analytic over some domain if it has an infinite number
of continuous derivatives in that domain. It turns out, if f(z) is once differentiable on a domain, then it is
infinitely differentiable, and therefore analytic on that domain.

A necessary condition for analyticity of f(z) = u(x, y) + iv(x, y) near zo is that the Cauchy-Riemann
equations hold, to wit:

- = —_ | —
OX oy ox  oX

oy

A sufficient condition for analyticity of f(z) = u(x, y) + iv(X, y) near zo is that the Cauchy-Riemann
equations hold, and the first partial derivatives of f exist and are continuous in a neighborhood of z,. Note
that if the first derivative of a complex function is continuous, then all derivatives are continuous, and the
function is analytic. This condition implies

= +— = —=—, —=——
oy oy ox oy ox oy

of . of ou .ov .(au .avj . ou oV au v o au
= = and =

Viu=v? =0

Vu-Vv=0 = "level lines" are perpendicular

IZZ f (2) dz is countour independent if f(z) is single-valued
4

Note that a function can be analytic in some regions, but not others. Singular points, or singularities,
are not in the domain of analyticity of the function, but border the domain [Det def 4.5.2 p156]. E.g., \z is
singular at 0, because it is not differentiable, but it is continuous at 0. Poles are singularities near which the

function is unbounded (infinite), but can be made finite by multiplication by (z — zo)* for some finite k [Det
pl165]. This implies f(z) can be written as:

k+1

f(z)=a,(z—- zo)‘k +aq(z—zp) " T+ +ay(z- zo)‘1 +ag+ay(z —zo)l +..

The value k is called the order of the pole. All poles are singularities. Some singularities are like “poles”
of infinite order, because the function is unbounded near the singularity, but it is not a pole because it cannot
be made finite by multiplication by any (z — zo)*, for example e'?. Such a singularity is called an essential
singularity.

A Laurent series expansion of a function is similar to a Taylor series expansion, but the sum runs from
—o0 to +oo, instead of from 1 to co. In both cases, an expansion is about some point, Zo:

© (n)
Taylor series:  f(2) = f(z,) +an (z-2)" where b, = f—(IZO)
n!
n=1
_ - 1 f(z)
Laurent series:  f(z) = a (z-1z,)", where a,=—— _
(@) n:z_oo " ( 0) " 27 <ﬁaround z (Z -7, )k+1

[Detthm 4.6.1 p163] Analytic functions have Taylor series expansions about every point in the domain.
Taylor series can be thought of as special cases of Laurent series. But analytic functions also have Laurent
expansions about isolated singular points, i.e. the expansion point is not even in the domain of analyticity!
The Laurent series is valid in some annulus around the singularity, but not across branch cuts. Note that in
general, the ax and by could be complex, but in practice, they are often real.

Properties of analytic functions:
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1. Ifitis differentiable once, it is infinitely differentiable.

2. The Taylor and Laurent expansions are unique. This means you may use any of several methods to
find them for a given function.

3. If you know a function and all its derivatives at any point, then you know the function everywhere
in its domain of analyticity. This follows from the fact that every analytic function has a Laurent
power series expansion. It implies that the value throughout a region is completely determined by
its values at a boundary.

4. An analytic function cannot have a local extremum of absolute value. (Why not??)

Residues

Mostly, we use complex contour integrals to evaluate difficult real integrals, and to sum infinite series.
To evaluate contour integrals, we need to evaluate residues. Here, we introduce residues. The residue of a
complex function at a complex point zo is the a1 coefficient of the Laurent expansion about the point zo.
Residues of singular points are the only ones that interest us. (In fact, residues of branch points are not
defined [Sea sec 13.1].)

Common ways to evaluate residues
1. The residue of a removable singularity is zero. This is because the function is bounded near the
singularity, and thus a_; must be zero (or else the function would blow up at zp):

Fora_, #0,as z—>17,, a, — o = a;=0.

-1,

2. The residue of a simple pole at z (i.e., a pole of order 1) is
ay=lim(z—-2)f(z).
-7,

3. Extending the previous method: the residue of a pole at zo of order k is
1 I L k
a, = lim -1 f(z) ,
T o e e ) @)
which follows by substitution of the Laurent series for f(z), and direct differentiation. We show it
here, noting that poles of order m imply that ax = 0 for k < -m, so we get:

f(z)=a(z— zo)‘k +a,4(z- zo)"“'l +..+a(z- zo)‘1 +ag +a1(z—zo)1 +...
(z-z )k f(2)=a, +a,_4(z-2 )1+...+a, (z-z )k‘1+ (z-z )k+a (z-z )k+1+...
0 k T8k 0 1 0 & 0 g 0
dk_l k k=1 kl K (k +l)| K+1
W(Z_ZO) f(z)=(k-1)la_4(z-17y) +an(2—zo) My a(z-29) "+
gkt k
zanz] F(Z_ZO) f(z)=(k-1)la,
0
1 . k-1 k
a, = lim - f
= 1 (k-1) o dzkfl(z %) @)
P(2)

4. Iff(z) can be writtenas f(z) = ﬁ , Where P is continuous at zo, and Q’(zo) # 0 (and is continuous
z

at zp), then f(z) has a simple pole at zo, and
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P(zo) _ P(z)

A Z

Res f(z) =

7=7,

Why? Near 5, Q(z) = (z—2¢)Q'(zp).

Then: Resf(z)=1

im
=1, 717,

_ — i _ P(zo) _ P(z)
(z zo)f(z)_zll_)ngo(z ZO)(Z—ZO)Q'(ZO) BCTONE

5. Find the Laurent series, and hence its coefficient of (z — o). This is sometimes easy if f(z) is given
in terms of functions with well-known power series expansions. See the sum of series example
later.

We will include real-life examples of most of these as we go.

Contour Integrals

Contour integration is an invaluable tool for evaluating both real and complex-valued integrals. Contour
integrals are used all over advanced physics, and we could not do physics as we know it today without them.
Contour integrals are mostly useful for evaluating difficult ordinary (real-valued) integrals, and sums of
series. In many cases, a function is analytic except at a set of distinct points. In this case, a contour integral
may enclose, or pass near, some points of non-analyticity, i.e. singular points. It is these singular points that
allow us to evaluate the integral.

You often let the radius of the contour integral go to oo for some part of the contour:

imaginary
CR

R

real

Any arc where

gﬂolf(z)l_)~|z|1+8’ £>0

has an integral of O over the arc.

Beware that this is often stated incorrectly as “any function which goes to zero faster than 1/|z| has a
contour integral of 0.” The problem is that it has to have an exponent < —1; it is not sufficient to be

! L , but the contour integral still diverges.

simply smaller than 1/z|. E.g. |z|_1<ﬂ
+

Jordan’s lemma: ??.

Evaluating Integrals

Surprisingly, we can use complex contour integrals to evaluate difficult real integrals. The main idea is
to find a contour which:

(@) includes some known (possibly complex) multiple of the desired (real) integral,
(b) includes other segments whose values are zero, and
(c) includes a known set of poles whose residues can be found.

Then you simply plug into the residue theorem:
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(ﬁc f(2) dz =27i Z Res f(z), where z, are the finite set of isolated singularities .

- z
nresidues "

We can see this by considering the contour integral around the unit circle for each term in the Laurent series
expanded about z = 0. First, consider the z° term (the constant term). We seek the value of 430 dz. dzisa

small complex number, representable as a vector in the complex plane. Figure 5.1a shows the geometric
meaning of dz. Figure 5.1b shows the geometric approximation to the desired integral.

imaginary imaginary
\“‘ — pi(6+n k‘—‘-'\

\dz = gi(®+72) d 9 Vg &

\ dzvl \\

" ¥ xdz,
unit’, I real 4dz,
circle} i otdz

d@ l'.‘ L r N
‘ 3’\ )"
0 L ~ P
) —real Sy
(a) | (b)

Figure 5.1 (a) Geometric description of dz. (b) Approximation of 950 dz as a sum of 32 small

complex terms (vectors).

We see that all the tiny dz elements add up to zero: the vectors add head-to-tail, and circle back to the starting
point. The sum vector (displacement from start) is zero. This is true for any large number of dz, so we have:

qSOdz:O.
1
z

Next, consider the z* term, gD [ j dz . First, we must convert to a 1-dimensional integral, by changing
(6]

the integration variable to 6:

. . 27 . . 27
Let  z=¢e dz=ie?do: Sﬁ(ljdzzj' e—“"ie“‘)dazj ido =27 .
O\ z 0 0

The change of variable maps the complex contour and z into an ordinary integral of a real variable.

Geometrically, as z goes positively (counter-clockwise) around the unit circle (Figure 5.2a), z goes around
the unit circle in the negative (clockwise) direction (Figure 5.2b). Its complex angle, arg(1/z) = -0, since z
= e, Asz goes around the unit circle, dz has infinitesimal magnitude & = 46, and argument & + /2. Hence,
the product of (1/z) dz always has argument of -9 + 0 + = /2 = = /2: it is always purely imaginary.
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Imaginary Imaginary Imaginary
Path of z = e/ B Path of z = ¢ ¢ D
around unit around unit
circle circle Path of dz =
eie'’ around
I | unit circIeB'éE\ real
rea 2 rea NE
G

D B

(@) (b) (©)

Figure 5.2 Paths of (a) z, (b) 1/z, and (c) dz in the complex plane

The magnitude of (1/z) dz = d@; thus the integral around the circle is 2xi. Multiplying the integrand by some
constant, a1 (the residue), just multiplies the integral by that constant. And any contour integral that encloses
the pole 1/z and no other singularity has the same value. Hence, for any contour around the origin:

(JS a7t dz
J0 -

27i

(I)O a2 tdz=2zi(a,) = a,=

Now consider the other terms of the Laurent expansion of f(z). We already showed that the ao z° term,

which on integration gives the product ag dz, rotates uniformly about all directions, in the positive (counter-
clockwise) sense, and sums to zero. Hence the ag term contributes nothing to the contour integral.

The a;z* dz product rotates uniformly twice around all directions in the positive sense, and of course, still
sums to zero. Higher powers of z simply rotate more times, but always an integer number of times around
the circle, and hence always sum to zero.

Similarly, a ,z2, and all more negative powers, rotate uniformly about all directions, but in the negative
(clockwise) sense. Hence, all these terms contribute nothing to the contour integral.

So in the end:

The only term of the Laurent expansion about 0 that contributes to the contour integral
is the residue term, a3 z1.

dx .

The simplest contour integral: Evaluate Izj 5
0 x“+1

We know from elementary calculus (let x = tan u) that | = z/2. We can see this easily from the residue
theorem, using the following contour:

imaginary

\ 4
\ 4
=
@D
=

“C” denotes a contour, and “I” denotes the integral over that contour. We let the radius of the arc go to
infinity, and we see that the closed contour integral Ic =1 + | + Iz. But Ig = 0, because f(R — o) < 1/R2. Then
I =Ic /2. f(z) has poles at £ i. The contour encloses one pole at i. Its residue is:
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. 1 1 1 . .1
Res f (i) = = =—. lc =271 ) Res f(z,)=27z1—=
® d(g 22 2i c =271 ) Res f(z) T
—|z +1) z=l n
d Z=I
|:|_C:£_
2 2

Note that when evaluating a real integral with complex functions and contour integrals, the i’s always
cancel, and you get a real result, as you must. It’s a good check to make sure this happens.

Choosing the Right Path: Which Contour?

The path of integration is fraught with perils. How will 1 know which path to choose? There is no
universal answer. Often, many paths lead to the same truth. Still, many paths lead nowhere. All we can do
is use experience as our guide, and take one step in a new direction. If we end up where we started, we are
grateful for what we learned, and we start anew.

We here examine several useful and general, but oft neglected, methods of contour integration. We use
some sample problems to illustrate these tools. This section assumes a familiarity with contour integration,
and its use in evaluating definite integrals, including the residue theorem.

0 -2
sin“ x
Example: Evaluate | =J >—dx.
o X

The integrand is everywhere nonnegative, and somewhere positive, and the limits are in the positive
direction, so I must be positive. We observe that the given integrand has no poles; it has only a removable
singularity at x = 0. If we are to use contour integrals, we must somehow create a pole (or a few), to use the
residue theorem. Simple poles (i.e. 1%-order) are sometimes best, because then we can also use the indented
contour theorem.

Imaginary Imaginary

real \

(@) (b)

Figure 5.3 Contours for the two exponential integrals: (a) positive (counter-clockwise) exp(2z);
(b) negative (clockwise) exp(—2z)

To use a contour integral (which, a priori, may or may not be a good idea), we must do two things: (1)
create a pole; and (2) close the contour. The same method does both: expand the sin( ) in terms of
exponentials:

. 2 | |
I= J.jow Si?(z . o= J.ww(el(;i_)—(::z)dz = —%I:J‘q; e;Z dz _J‘iozizdz +J.io e—Z|222 dzi|_

All three integrals on the RHS have poles at z= 0. If we indent the contour underneath the origin, then since
the function is bounded near there, the limit as r — 0 leaves the original integral unchanged (Figure 5.3a).
The first integral must be closed in the upper half-plane, to keep the exponential small. The second integral
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can be closed in either half-plane, since it ~ 1/z2. The third integral must be closed in the lower half-plane,
again to keep the exponential small (Figure 5.3b). Note that all three contours must use an indentation that
preserves the value of the original integral. An easy way to insure this is to use the same indentation on all
three.

Now the third integral encloses no poles, so is zero. The 2" integral, by inspection of its Laurent series,
has a residue of zero, so is also zero. Only the first integral contributes. By expanding the exponential in a
Taylor series, and dividing by z2, we find its residue is 2i. Using the residue theorem, we have:

© sin? Tea oom.
I :LOOSIZZ de:—Z[Zm(Zl)]:;r.

Example: Evaluate 1= * w dx [B&C p?? Q1].
X

This innocent looking problem has a number of funky aspects:
e The integrand is two terms. Separately, each term diverges. Together, they converge.

e Theintegrand is even, so if we choose a contour that includes the whole real line, the contour integral
includes twice the integral we seek (twice I).

e Theintegrand has no poles. How can we use any residue theorems if there are no poles? Amazingly,
we can create a useful pole.

e Atypical contour includes an arc at infinity, but cos(z) is ill-behaved for z far off the real-axis. How
can we tame it?

o We will see that this integral leads to the indented contour theorem, which can only be applied to
simple poles, i.e., first order poles (unlike the residue theorem, which applies to all poles).

Each of these funky features is important, and each arises in practical real-world integrals. Let us consider
each funkiness in turn.

1. Theintegrand is two terms. Separately, each term diverges. Together, they converge.

Near zero, cos(x) = 1. Therefore, the zero endpoint of either term of the integral looks like

anywhere COS ax anywhere 1 1 anywhere
jo —de~jo = dx=-= > 40
X X Xlo

Thus each term, separately, diverges. However, the difference is finite. We see this by power series
expanding cos(x):
2 4 2,2 12,2
cos()=1-> 4% _ o cos(ax)—cos(bx):—ﬂ+b—x+0(x4) and
21 41 2 2

cos(ax) —cos(bx) _ a*

x? 2

+§+O(x2)=b2;a2+o(x2) =

2

here cos(ax) — cos(bx b?-a o e
fsnyw ere CoS(ax) 5 ( )dx ~ which is to say, is finite.
X
2. Theintegrand is even, so if we choose a contour that includes the whole real line, the contour
integral includes twice the integral we seek (twice I).

Perhaps the most common integration contour (below left) covers the real line, and an infinitely distant
arc from +oo back to —o. When our real integral (I in this case) is only from 0 to oo, the contour integral
includes more than we want on the real axis. If our integrand is even, the contour integral includes twice the
integral we seek (twice 1). This may seem trivial, but the point to notice is that when integrating from
—0 to 0, dx is still positive (below middle).
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imaginary f(x) even
real (/_ﬂ Za X
(@) (b) dx>0

Figure 5.4 (a) A common contour. (b) An even function has integral over the real-line twice that
of 0 to infinity.

Note that if the integrand is odd (below left), choosing this contour cancels out the original (real) integral
from our contour integral, and the contour is of no use. Or if the integrand has no even/odd symmetry (below
middle), then this contour tells us nothing about our desired integral. In these cases, a different contour may
work, for example, one which only includes the positive real axis (below right).

f(x) odd f(x) asymmetric imaginary

[ [ :

X X

qu o | — \
@ (b) (© % real

Figure 5.5 (a) An odd function has zero integral over the real line. (b) An asymmetric function has
unknown integral over the real line. (c) A contour containing only the desired real integral.

3. The integrand has no poles. How can we use any residue theorems if there are no poles?
Amazingly, we can create a useful pole.

This is the funkiest aspect of this problem, but illustrates a standard tool. We are given a real-valued
integral with no poles. Contour integration is usually useless without a pole, and a residue, to help us evaluate
the contour integral. Our integrand contains cos(x), and that is related to exp(ix). We could try replacing
cosines with exponentials,

exp(iz) +exp(—iz)
2
but this only rearranges the algebra; fundamentally, it buys us nothing. The trick here is to notice that we

can often add a made-up imaginary term to our original integrand, perform a contour integration, and then
simply take the real part of our result:

cosz = (does no good) .

Given I:j:g(x)dx, lt  f(z)=g(2)+ih(@).  Then |=Re{j:f(z)dz}.

For this trick to work, ih(z) must have no real-valued contribution over the contour we choose, so it
doesn’t mess up the integral we seek. Often, we satisfy this requirement by choosing ih(z) to be purely
imaginary on the real axis, and having zero contribution elsewhere on the contour. Given an integrand
containing cos(x), as in our example, a natural choice for ih(z) is i sin(z), because then we can write the new
integrand as a simple exponential:

cos(x) — f(z) =cos(z) +isin(z) = exp(iz).
In our example, the corresponding substitution yields

_ ¢ cosax—coshx B w exp(iax) —exp(ibx)
I_IO X—zdx - I_Re{jo 2 dx ;.

Examining this substitution more closely, we find a wonderful consequence: this substitution introduced
apole! Recall that
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3

. z isinz .(1 z
smz=z—§+... = =il ===+..1.

72 z 3!

We now have a simple pole at z = 0, with residue i.

By choosing to add an imaginary term to the integrand,
we now have a pole that we can work with to evaluate a contour integral!

It’s like magic. In our example integral, our residue is:

2 z

isinaz —isinbz .(a—b
=i +
z

j and  residue=i(a-b).

Note that if our original integrand contained sin(x) instead of cos(x), we would have made a similar
substitution, but taken the imaginary part of the result:

Given | =I:sin(x) dx, let f(z)=cos(z) +isin(z). Then |I= Im{.f:f(z) dz}.

4. Atypical contour includes an arc at infinity, but cos(z) is ill-behaved for z far off the real-axis.
How can we tame it?

This is related to the previous funkiness. We’re used to thinking of cos(x) as a nice, bounded, well-
behaved function, but this is only true when x is real.

When integrating cos(z) over a contour,
we must remember that cos(z) blows up rapidly off the real axis.

In fact, cos(z) ~ exp(Im{z}), so it blows up extremely quickly off the real axis. If we’re going to evaluate
a contour integral with cos(z) in it, we must cancel its divergence off the real axis. There is only one function
which can exactly cancel the divergence of cos(z), and that is + i sin(z). The plus sign cancels the divergence
above the real axis; the minus sign cancels it below. There is nothing that cancels it everywhere. We show
this cancellation simply:

Let Z=X+iy
cosz +isinz =exp(iz) = exp(i (x + iy)) = exp(ix) exp(-y) and
lexp(ix) exp(-y)| = exp(ix)|- lexp(~y)| = exp(-y)
For z above the real axis, this shrinks rapidly. Recall that in the previous step, we added i sin(x) to our

integrand to give us a pole to work with. We see now that we also need the same additional term to tame the
divergence of cos(z) off the real axis. For the contour we’ve chosen, no other term will work.

5. We will see that this integral leads to the indented contour theorem, which can only be applied
to simple poles, i.e., first order poles (unlike the residue theorem, which applies to all poles).

We’re now at the final step. We have a pole at z = 0, but it is right on our contour, not inside it. If the
pole were inside the contour, we would use the residue theorem to evaluate the contour integral, and from
there, we’d find the integral on the real axis, cut it in half, and take the real part. That is the integral we seek.

But the pole is not inside the contour; it is on the contour. The indented contour theorem allows us to
work with poles on the contour. We explain the theorem geometrically in the next section, but state it briefly
here:

Indented contour theorem: For a simple pole, the integral of an arc of tiny radius around the pole,
of angle 4, equals (i6)(residue). See diagram below.
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imaginary imaginary As p—0
arc L .
) j . F(2) dz = (i6)(residue)
%
real \
(a) l (b) real

Figure 5.6 (a) A tiny arc around a simple pole. (b) A magnified view; we let p — 0.

Note that if we encircle the pole completely, 8 = 27, and we have the special case of the residue theorem for
a simple pole:

95 f(2) dz = 27zi (residue) .

However, the residue theorem is true for all poles, not just simple ones (see The Residue Theorem earlier).

Putting it all together: We now solve the original integral using all of the above methods. First, we
add i sin(z) to the integrand, which is equivalent to replacing cos(z) with exp(iz):

| :jwwdx N | = Re{J' o exp(iax) —exp(ibx) dx}
0 W2 . >
Define ) EI ;O exp(laX)_zeXp(lbx) dx, so | =Re{J}
X

We choose the contour Figure 5.7a, with R — oo, and p — 0.
imaginary
AN
‘p o |
@) > > rea (b)

Figure 5.7 (a) A contour for the integral. (b) Alternate contour for the integral.

There are no poles enclosed, so the contour integral is zero. The contour includes twice the desired integral,
so define:

f(z)zeXp(iaZ)Z_zeXp(ibz). Then  §f@dz=[ f@dz+20+ [ f()dz=0. (51)

For Cr, [f(z)] < 1/R? s0 as R — oo, the integral goes to 0. For C,, the residue is i(a — b), and the arc is =
radians in the negative direction, so the indented contour theorem says:

lim [ f(z)dz=—(xi)i(a-b)=r(a-b).
p—0 °Cp
Plugging into (5.1), we finally get
23 +z(a-b)=0 = I:Re{J}:%(b—a).

In this example, the contour integral J happened to be real, so taking | = Re{J} is trivial, but in general,
there’s no reason why J must be real. It could well be complex, and we would need to take the real part of
it.

To illustrate this and more, we evaluate the integral again, now with the alternate contour Figure 5.7b.

Again, there are no poles enclosed, so the contour integral is zero. Again, the integral over Cr = 0. We then
have:
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<ﬁf(z)dz:W+.{C f(z)dz+1J +.[c f(z)dz=0.

And - lim jcp f(2) dz:—(i;r/2)i(a—b)=%(a—b).

The integral over C; is down the imaginary axis:
Let z=x+iy=0+1iy =1y, then dz =i dy, and
J- f(2) dz :J. exp (iaz)—exp(ibz) d :Io exp(—ay)—exp(-by)
C2 C2 2

z ® —y?
We don’t know what this integral is, but we don’t care! In fact, it is divergent, but we see that it is purely
imaginary, so will contribute only to the imaginary part of J. But we seek | = Re{J}, and therefore:

idy.

| = lim Re{J} is well-defined.

p—0

Therefore we ignore the divergent imaginary contribution from C,. We then have:
. . T v
i (something ) +J +E(a—b):0 = I:Re{J}:E(b—a),

as before.

Evaluating Infinite Sums

. o : : ! .
Perhaps the simplest infinite sum in the world is S = Z_z The general method for using contour
n
n=1
integrals is to find a countably infinite set of residues whose values are the terms of the sum, and whose
contour integral can be evaluated by other means. Then:

Ic =271 ) Res f(z,) = 27iS = s=Je_
—~ 2ri

The hard part is finding the function f(z) that has the right residues. Such a function must first have poles at
all the integers, and then also have residues at those poles equal to the terms of the series.

To find such a function, consider the complex function z cot(zz). Clearly, this has poles at all real integer
z, due to the sin(zz) function in the denominator of cot(z). Hence:

cos(ﬂzn)} _cos(rz,) _

sin(7z,) meos(rz,)

For z, = n (integer), Res| zcot(z,) = Resl:ﬂ

where in the last step we used: if Q(z) =0, then Res@ __P@)

=2, Q(z)  Q'(z0)

Thus 7 cot(zz) can be used to generate lots of infinite sums, by simply multiplying it by a continuous
function of z that equals the terms of the infinite series when z is integer. For example, for the sum above,

if this is defined.

S= Zniz we simply define:
n=1
1
_2!
n

f(z)= izﬂCOt(ﬂZ), and its residues are Res f(z,) = n=0.
z
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[In general, to find ZS(I’I) , define:

n=1

f(z) =s(z)[ zcot(zz)], and its residues are Res f (z) =s(n).

Depending on your contour, you may now have to deal with the residues for n <0.]

Continuing our example, we might use the contour of Figure 5.8. Then we need the residue at n = 0.
Since cot(z) has a simple pole at zero, cot(z)/z has a 3" order pole at zero. We optimistically try tedious
brute force for an m" order pole with m = 3, only to find that it fails:

zcotzz . | 1d? gmcotzz| . |1 d?
Res———= —— 727" = lim| =—zzcotxz
7=0 z 2-0| 21 dz? 72 70| 21 dz?2
1sin2 71-71
7. d 2 7. d|coszzsingkz—zz| x,. d remr
=—I|m—[cot7r2—7rzcsc 7Z'Z]=—|Im— ==lim—|4%¥————
2 200z 2 200z sin® 7z 2 200z sin? zz
Use d!:VdU —UdV:
\Y V2
., 1. .
sin® zz(wcos2zz—n)—| Zsin2xz—rxz |2z sinzzcosxz
rcotrnz «.. 2
es———=—_1im —
=0 7 220 sin” zz
. 1.
sinzz(zcos2rxz—rx)- Esm27rz—7rz 27C0S w2
= lim
2 7550 sin® 7z
Use L’hopital’s rule:
cotrz . 1 . .
sZ 2” -7 lim —|:7Z'COS7[Z(7TCOSZ7Z'Z—7[)+SIH7TZ(—27ZSIH27[Z—1)
= 2 72550 in2
=0 7z 3zsin“ rzcosxzz

—(7wcos2rz—r)2xcosnz —(%sin 272 —7:2)27:2 sin ;rz}

—r° coszz(cos2zz—1)+sinzz(—2zsin2zz-1)- 272 (;sin 277 — nzjsin nz

2 250 3zsin® rzcosxz

At this point, we give up on brute force, because we see from the denominator that we’ll have to use
L’Hopital’s rule twice more to eliminate the zero there, and the derivatives will get untenably complicated.

Butin 2 lines, we can find the a_; term of the Laurent series (about the origin) from the series expansions
of sin and cos. The z! coefficient of cot(z) becomes the z* coefficient of f(z) = cot(z)/z*:

cotz= cosz _ -2/ 2. ~(1j&z(1](1—22 /2)(1+ 22/6):(3(1— 22/3):1—§

sinz z-7%/6+... \z)1-7%/6 \z z
2
1 xz cotrz T
cotrz~ ——— = Res 5 =-—=K,.
rz 3 7=0 z 3

Now we take a contour integral over a large circle centered at the origin (Figure 5.8), and passing through
the real axis between integers (because cot(zz) blows up every integer !).
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imaginary

|
PINNG

real

Figure 5.8 A contour for the integral leading to an infinite sum.

AsSR — oo, Ic — 0 (why??). Hence:

—00

.C:ozzﬂi[zniﬁmin%} . keyieo TAoe
n=1

n=-1

Multi-valued Functions

Many functions are multi-valued (despite the apparent oxymoron), i.e. for a single point z in the domain,
the function can have multiple values. A simple example is a square-root “function”: given a complex
number, there are two complex square roots of it. Thus, the square root function is two-valued. Another
example is arc-tangent: given any complex number, there are an infinite number of complex numbers whose
tangent is the given complex number.

[picture??]

We refer now to “nice” functions, which are locally (i.e., within a small finite region) analytic, but multi-
valued. If you’re not careful, such “multi-valuedness” can violate the assumptions of analyticity, by
introducing discontinuities in the function. Without analyticity, all our developments break down: no contour
integrals, no sums of series. But, you can avoid such a breakdown, and preserve the tools we’ve developed,
by treating multi-valued functions in a slightly special way to insure continuity, and therefore analyticity.

A regular function, or region, is analytic and single valued. (You can get a regular function from a
multi-valued one by choosing a Riemann sheet. More below.)

A branch point is a point in the domain of a function f(z) with this property: when you traverse a closed
path around the branch point, following continuous values of f(z), f(z) has a different value at the end point
of the path than at the beginning point, even though the beginning and end point are the same point in the
domain. Example TBS: square root around the origin. Sometimes branch points are also singularities.

A branch cut is an arbitrary (possibly curved) path connecting branch points, or running from a branch
point to infinity (“connecting” the branch point to infinity). If you now evaluate integrals of contours that
never cross the branch cuts, you insure that the function remains continuous (and thus analytic) over the
domain of the integral.

When the contour of integration is entirely in the domain of analyticity of the integrand,
“ordinary” contour integration, and the residue theorem, are valid.

This solves the problem of integrating across discontinuities. Branch cuts are like fences in the domain
of the function: your contour integral can’t cross them. Note that you’re free to choose your branch cuts
wherever you like, so long as the function remains continuous when you don’t cross the branch cuts.
Connecting branch points is one way to insure this.

A Riemann sheet is the complex plane plus a choice of branch cuts, and a choice of branch. This defines
a domain on which a function is regular.
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A Riemann surface is a continuous joining of Riemann sheets, gluing the edges together. This “looks
like” sheets layered on top of each other, and each sheet represents one of the multiple values a multi-valued

analytic function may have. TBS: consider /(z—a)(z—-b).

imaginary imaginary

real real

branch cut " *branch cuts—*

Laplace Transforms: Joseph and Pierre-Simon

Laplace transforms can help solve integro-differential equations, similarly to Fourier Transforms. They
arise frequently in control systems analysis, and many other scientific and mathematical areas. (In Statistical
Mechanics, the partition function is the Laplace transform of the density of states; see Statistical
Mechanifesto.) The Fourier Transform (FT) of f(t) has a fairly straightforward interpretation (or “physical”
description) as the sinusoidal components that sum to f(t). However, the Laplace Transform (LT) is a little
more subtle. The “meaning” of the LT is rarely discussed, and it is often presented as a purely mathematical
device. However, the LT is closely related to the FT, and also has a conceptual interpretation.

This section assumes you are familiar with the basics of the FT, and its use in solving differential
equations.

The big picture: We show below that one simple way to understand the LT is this: it is a trick to make
the Fourier Transform work on a broader range of functions, such as for “infinite-energy” functions. The
Laplace Transform of f(t) can be thought of as a Fourier Transform of f(t) times a decreasing exponential:

L(s)=LT{f(®)} =FT { f (t)e—‘ﬂ} - IO f (e ote 1t dt where s=o+io.
N —

except for limits
of integration

Details: As a brief review, and to establish notation and conventions, we define the Fourier Transform
as most engineers do: given a function f(t), its FT F(w) satisfies:

ft) = j: F(o)e" ™ do . (5.2)

In other words, we represent f(t) as an infinite sum of sinusoidal components. F(w) is generally complex.
This expression explicitly defines the inverse Fourier Transform (F(w) — f(t) ), and implicitly defines the
FT (f(t) — F(w) ). Itis readily shown that this definition demands that F(w) is given explicitly by:

F(w):zi 7 F et . (5.3)

T J—0
(NB: Some references use different conventions for the sign of the exponential, and the factors of 2x).

A major property of the FT is that it converts a differential equation into an algebraic one, through the
integral and differential identities (dropping some subtleties):

FT {i f(t)}: i F (), FT {jt f(t) dt } ~LF@). (5:4)
dt -0 1w
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We can see these identities quickly from (5.2), by differentiating both sides:

% f(t) :%Iw Foe' do=[" ioF(@)e" do = FT{f(0)=ioF(a).
The third expression above is the definition of the inverse Fourier Transform (5.2). (Again: ignoring some
complication for now.) For integration: if differentiating f(t) corresponds to multiplying F(w) by iw, then
integrating f(t) corresponds to dividing F(w) by iw.

| One major limitation on Fourier Transforms is that the Transform (5.2), (5.3) must exist.

This is guaranteed if f(t) is absolutely integrable [ref??]:

f|f(t)|dt<oo,

and sometimes even if not [ref??]. But in some applications, this is a crippling restriction. For example, in
control theory, a crucial aspect of a system is its step-response: how does the system respond to a (Heavyside)
step input:

f(t)=0, t<0;
=1 t>0.

For example, you change the set-point of a temperature control system. How does the system arrive at the
new set-point? The input to this system is a step-function (step change in set-point). But this function has
no (simple) Fourier Transform.

A more-divergent example: the system’s “ramp response” is also often important, e.g., how does a
telescope track a moving star across the sky? The input (position) to the tracking system is f(t) = vt; this is
not only non-Fourier-integrable, it isn’t even bounded.

The Laplace Transform (LT) gives us a simple way to handle such cases. To develop it, we must extend
Fourier-like methods to non-transformable functions. So we must first consider how the benefits of existing
FTs derive. The whole benefit of converting differential equations into algebraic equations comes from these
properties:

o the derivative and integral rules (5.4);
o linearity;
e the convolution rule.

But notice that these properties do not depend on the specific factor i in the exponential, nor on the limits
of integration; their validity derives entirely from writing a function f(t) as a superposition of exponentials.
If we can write:

f(t) = Lb F(s)e*! ds, (5.5)

for some limits a and b, and for some set of s, then the derivative and integral rules (5.4), and the two other
properties, follow. Furthermore, s need not be real. If s is complex, then the integral can even be a contour
integral over a specified path. Indeed, in the FT, s is replaced by iw.

Let us write a complex s in rectangular components: s=o +1iw@. Then our Fourier Transform (5.3)
becomes:
b .
F(s) :I f(t)e e ds = FT { f (t)e"’t} (except maybe the limits of integration) .
a
(5.6)

(We will use the term “Fourier Transform” for any Fourier integral like (5.3), regardless of the limits of

integration.) This is the Laplace Transform: the FT of a modified time-domain function: f (t) —» f(t)e ",
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We can always choose o constant and large enough to make a step function, or a ramp, or any polynomial,
and most other practical functions, into a well-behaved, convergent function. One with a Fourier Transform.

It is most common to define the Laplace Transform with limits from 0 to oo:
F(s) EJ. f (t)e > ds, scomplex (most common definition).
0

However, there are left-sided, two-sided, and other variations which differ only by the limits of integration.
Now we see that the FT (5.3) is a special case of the LT (5.6): that where ¢ = 0, and (a, b) = (-0, +o0).

Inverse Laplace Transform: We often don’t need an explicit formula for the LT, because we get
much information from F(s) itself. When we do need an explicit inverse, it usually comes from tables and
theorems. However, we can find an explicit formula for inversion by inspection of the LT (5.6). Working
in reverse, we invert the LT by (1) taking the inverse FT to recover the modified time-domain function, and
then (2) removing the modification by multiplying by the inverse exponential:

meLT4W@n=FT4ﬁwwn€“=IwF@@&de&“ or

fm:LF@yﬂw,

where in the last integral, the contour is as shown in Figure 5.9a.

Im4+io 4o+ i
i set- 4~ error output
! point G(s)
gy Re -
1 i H(s)
@ i g— i (b)

Figure 5.9 (a) Integration contours for the inverse Laplace Transform (blue), and the inverse
Fourier Transform (magenta). (b) Typical feedback-control system.
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6  Conceptual Linear Algebra

Instead of lots of summation signs, we describe linear algebra concepts, visualizations, and ways to think
about linear operations as algebraic operations. This allows fast understanding of linear algebra methods that
is extremely helpful in almost all areas of physics. Tensors rely heavily on linear algebra methods, so this
section is a good warm-up for tensors. Matrices and linear algebra are also critical for quantum mechanics.

Caution In this section, vector means a column or row of numbers. In other sections, “vector” has
a more general meaning.

In this section, we use bold capitals for matrices (A), and bold lower-case for vectors (a).

Matrix Multiplication

It is often helpful to view a matrix as a horizontal concatenation of column-vectors. You can think of it
as a row-vector, where each element of the row-vector is itself a column vector.

Equally valid, you can think of a matrix as a vertical concatenation of row-vectors, like a column-vector
where each element is itself a row-vector.

Matrix multiplication is defined to be the operation of linear transformation, e.g., from one set of
coordinates to another. The following properties follow from the standard definition of matrix multiplication:

Matrix times a vector: A matrix B times a column vector v, is a weighted sum of the columns of B:

Bll BlZ BZI.3
Bv = =V"| B, [+V| By, |[+V*| By,
BSl BBZ B33

We can visualize this by laying the vector on its side above the columns of the matrix, multiplying each
matrix-column by the vector component, and summing the resulting vectors:

V" Al v? _\
B, B, Bsl|lV x X x = B, B
Bv=|B,, B, By|lV'|=|B,|+]|B,|+]|Bgs =V*|B,, |[+V’| B, |+V’| B,
By, By, ByllV B,, B,, B, B, B., B.,
_831 B32 B33_

The columns of B are the vectors which are weighted by each of the input vector components, v,

Another important way of conceptualizing a matrix times a vector: the resultant vector is a column of
dot products. The i element of the result is the dot product of the given vector, v, with the it row of B.
Writing B as a column of row-vectors:
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M S eV
B = I’2 - BV = r2 V|= rz vV
r3 I’3 r3 vV

This view derives from the one above, where we lay the vector on its side above the matrix, but now consider
the effect on each row separately: it is exactly that of a dot product.

In linear algebra, even if the matrices are complex, we do not conjugate the left vector in these dot
products. If they need conjugation, the application must conjugate them separately from the matrix
multiplication, i.e. during the construction of the matrix.

We use this dot product concept later when we consider a change of basis.

Matrix times a matrix: Multiplying a matrix B times another matrix C is defined as multiplying each
column of C by the matrix B. Therefore, by definition, matrix multiplication distributes to the right across
the columns:

Let C=x§y§z,then BC=Bx§yEZEBx§ByEBz

[Matrix multiplication also distributes to the left across the rows, but we don’t use that as much.]

Determinants

This section assumes you’ve seen matrices and determinants, but probably didn’t understand the reasons
why they work.

The determinant operation on a matrix produces a scalar. It is the only operation (up to a constant
factor) which is (1) linear in each row and each column of the matrix; and (2) antisymmetric under
exchange of any two rows or any two columns.

The above two rules, linearity and antisymmetry, allow determinants to help solve simultaneous linear
equations, as we show later under “Cramer’s Rule.” In more detail:

1. The determinant is linear in each column-vector (and row-vector). This means that multiplying any
column (or row) by a scalar multiplies the determinant by that scalar. E.g.,

detkaé b c =kdeta§b§c; and  det a+d§b§c =deta§b§c +detd§b§c.

2. The determinant is anti-symmetric with respect to any two column-vectors (or row-vectors). This
means swapping any two columns (or rows) of the matrix negates its determinant.

The above properties of determinants imply some others:

3. Expansion by minors/cofactors (see below), whose derivation proves the determinant operator is
unique (up to a constant factor).

4. The determinant of a matrix with any two columns equal (or proportional) is zero. (From anti-
symmetry, swap the two equal columns, the determinant must negate, but its negative now equals
itself. Hence, the determinant must be zero.)

det|b ibic|=-detbibic| =  det{bibic|=0.
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5. det|A|-det|B| =det|AB|. This is crucially important. It also fixes the overall constant factor of the
determinant, so that the determinant (with this property) is a completely unique operator.

6. Adding a multiple of any colu