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 “Quantum Mechanics is a silly theory, perhaps the silliest 

theory to come out of the 20th century.  The only reason it has any 

following at all is that it is completely supported by experiment.”  

− Unknown physicist 

 

“We are all agreed that your theory is crazy.  The question that 

divides us is whether it is crazy enough to have a chance of being 

correct.”  − Niels Bohr 

 

“Now in the further development of science, we want more 

than just a formula.  First we have an observation, then we have 

numbers that we measure, then we have a law which summarizes 

all the numbers.  But the real glory of science is that we can find a 

way of thinking such that the law is evident.”  − Richard Feynman 

* Physical, conceptual, geometric, and pictorial physics that didn’t fit in your textbook. 

http://ucsandiegobookstore.com/p-58292-quirky-quantum-concepts.aspx
http://www.springer.com/physics/quantum+physics/book/978-1-4614-9304-4
http://www.amazon.com/Quirky-Quantum-Concepts-Conceptual-Undergraduate/dp/1461493048/ref=sr_1_1?ie=UTF8&qid=1391655086&sr=8-1&keywords=eric+l+michelsen
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Physical constants:  2006 values from NIST.  For more, see http://physics.nist.gov/cuu/Constants/ . 

 

Speed of light in vacuum   c = 299 792 458 m s–1  (exact) 

Gravitational constant   G = 6.674 28(67) x 10–11 m3 kg–1 s–2   

 Relative standard uncertainty ±1.0 x 10–4 

Boltzmann constant   k = 1.380 6504(24) x 10–23 J K–1 

Stefan-Boltzmann constant   σ = 5.670 400(40) x 10–8 W m–2 K–4  

 Relative standard uncertainty ±7.0 x 10–6  

Avogadro constant    NA, L = 6.022 141 79(30) x 1023 mol–1  

 Relative standard uncertainty  ±5.0 x 10–8 

Molar gas constant   R = 8.314 472(15) J mol-1 K-1 

calorie     4.184 J (exact) 

Electron mass    me = 9.109 382 15(45) x 10–31 kg 

Proton mass    mp = 1.672 621 637(83) x 10–27 kg 

Proton/electron mass ratio   mp/me = 1836.152 672 47(80) 

Elementary charge   e = 1.602 176 487(40) x 10–19 C 

Electron g-factor    ge = –2.002 319 304 3622(15) 

Proton g-factor    gp = 5.585 694 713(46) 

Neutron g-factor    gN = –3.826 085 45(90) 

Muon mass    mμ = 1.883 531 30(11) x 10–28 kg 

Inverse fine structure constant  –1 = 137.035 999 679(94) 

Planck constant    h = 6.626 068 96(33) x 10–34 J s 

Planck constant over 2π   ħ = 1.054 571 628(53) x 10–34 J s 

Bohr radius    a0 = 0.529 177 208 59(36) x 10–10 m 

Bohr magneton    μB = 927.400 915(23) x 10–26 J T–1 

 

 

http://physics.ucsd.edu/~emichels
http://physics.nist.gov/cuu/Constants/
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0 Front/Back Matter 

0.1 Back Cover 

Quirky Quantum Concepts explains the more important and more difficult concepts in theoretical 

quantum mechanics, especially those which are consistently neglected or confusing in many common 

expositions. The emphasis is on physical understanding, which is necessary for the development of new, 

cutting edge science. 

Quirky Quantum Concepts is therefore a supplement to almost any existing quantum mechanics text. 

Students and scientists will appreciate the combination of conversational style, which promotes 

understanding, with thorough scientific accuracy. The book is not a simplification or popularization: it is 

real science for real scientists. Physics includes math, and this book does not shy away from it, but neither 

does it hide behind it. Without conceptual understanding, math is gibberish. In particular, this book 

explains the basis for many standard quantum methods, which are too often presented without sufficient 

motivation or interpretation. The discussions here provide the experimental and theoretical reasoning 

behind some of the great discoveries, so the reader may see how discoveries arise from a rational process of 

thinking, a process which Quirky Quantum Concepts makes accessible to its readers. 

0.2 Dedication 

To my wife, Laura, for all her patience and support, and to my children, Sarah and Ethan, for 

understanding of my absences while I was working on the book. 

0.3 Preface 

Why Quirky? 

The purpose of the “Quirky” series is to help develop an accurate physical, conceptual, geometric, and 

pictorial understanding of important physics topics.  We focus on areas that don’t seem to be covered well 

in most texts.  The Quirky series attempts to clarify those neglected concepts, and others that seem likely to 

be challenging and unexpected (quirky?).  The Quirky books are intended for serious students of physics; 

they are not “popularizations” or oversimplifications.  

Physics includes math, and we’re not shy about it, but we also don’t hide behind it.   

Without a conceptual understanding, math is gibberish. 

We seek to be accurate, but not pedantic.  When mathematical or physical words have precise meanings, 

we adhere to those meanings.  Words are the tools of communication; it is impossible to make fine points 

with dull tools. 

Who Is It For? 

This work is one of several aimed at graduate and advanced-undergraduate physics students, engineers, 

scientists, and anyone else who wants a serious understanding of Quantum Mechanics.  The material ranges 

from fairly elementary (though often neglected) to graduate level.  Go to http://physics.ucsd.edu/~emichels 

for the latest versions of the Quirky Series, and for contact information.  We’re looking for feedback, so 

please let us know what you think. 

How to Use This Book 

This book is an informal, topical review.  We strive to be accurate, but not tedious. 

This work is not a text book. 

http://physics.ucsd.edu/~emichels
http://physics.ucsd.edu/~emichels
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There are plenty of those, and they cover most of the topics quite well.  This work is meant to be used with 

a standard text, to help emphasize those things that are most confusing for new students.  When standard 

presentations don’t make sense, come here.  In short, our goal is to provide the foundation that enables 

future learning from other sources. 

If you have some background in quantum mechanics, then most of the sections stand alone.  The larger 

sections start by naming the prerequisites needed to understand that section.  This work is deliberately 

somewhat redundant, to make sections more independent, and because learning requires repetition. 

You should read all of Chapter 1, Basic Wave Mechanics Concepts, to familiarize yourself with the 

notation and contents.  After the first two chapters, this book is meant to be read in any order that suits you.  

Each section stands largely alone, though the sections are ordered logically.  You may read it from 

beginning to end, or skip around to whatever topic is most interesting.  The “Desultory” chapter is a diverse 

set of short topics, each meant for quick reading. 

We must necessarily sometimes include forward references to material which has not yet been covered 

in this book.  If they are unfamiliar, most such references may be ignored without loss of continuity. 

If you don’t understand something, read it again once, then keep reading.   

Don’t get stuck on one thing.  Often, the following discussion will clarify things. 

Scope 

What This Text Covers 

This text covers most of the unusual or challenging concepts in a first-year graduate course in non-

relativistic Quantum Mechanics (QM).  Much of it is suitable for undergraduate QM, as well, because it 

provides a conceptual foundation for all of QM.  We expect that you are taking or have taken such a QM 

course, and have a good text book.  This text supplements those other sources. 

What This Text Doesn’t Cover 

This text is not a QM course in itself, nor a review of such a course.  We do not cover all basic QM 

concepts; only those that are unusual or especially challenging (quirky?).  There is almost no relativistic 

QM here. 

What You Already Know 

This text assumes you understand basic integral and differential calculus, partial differential equations, 

have seen complex numbers, and have some familiarity with probability.  You must have a working 

knowledge of basic physics: mass, force, momentum, energy, etc.  Further, it assumes you have a Quantum 

Mechanics text for the bulk of your studies, and are using Quirky Quantum Concepts to supplement it.  You 

must have been introduced to the idea of particles as waves, and photons as particles of light.  Beyond that, 

different sections require different levels of preparation; some are much more advanced than others.  Each 

section lists any particular prerequisites at the beginning.  Some sections require some familiarity with 

classical Lagrangian and Hamiltonian mechanics, including canonical momentum. 

Notation 

Important points are highlighted in solid-border boxes. 

Common misconceptions are sometimes written in dashed-line boxes. 

References: As is common, we include references to published works in square brackets, where the 

abbreviations in the brackets are defined in the “References” section of this document.  Where page 

numbers are given, they may be augmented by “t”, “m”, or “b”, for “top”, “middle”, and “bottom” of the 

page. 

http://physics.ucsd.edu/~emichels
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Unit vectors:  We use ex, ey, etc. for unit spatial vectors.  In other disciplines, these are more likely 

written as ˆ ˆ,x y , etc., but we reserve “hats” to indicate quantum operators. 

Keywords are listed in bold near their definitions.  All keywords also appear in the glossary. 

We use the following symbols regularly: 

 

Symbol Name  Common scientific meanings 

 del gradient of a scalar field, divergence or curl of a vector field. 

 identity (1) is defined as; (2) identically (always) equal to. 

 for all for all. 

 element is an element of (sometimes written as epsilon, ). 

≈ approximately equals approximately equals. 

~ tilde scales like; is proportional to in some limit.  For example, 1/(r + 1) ~ 

1/r for large r because 
1 1

lim
1r r r



.  Note that we want to preserve 

the scaling property, so we don’t take such a limit all the way to r  

∞ (limit of zero), which would hide any r dependence. 

!! double factorial n!! ≡ n(n – 2)(n – 4) ... (2 or 1). 

Integrals:  In many cases, we present a general integral, whose exact limits depend on what problem 

or coordinate system the integral is applied to.  To provide a general formula, independent of such 

particulars, we give the limits of integration as a single “∞”, meaning integrate over the entire domain 

appropriate to the problem: 

( ) integrate over entire domain relevant to the given problemf x dx


 . 

Open and closed intervals: An open interval between c and d is written “(c, d)”, and means the range 

of numbers from c to d exclusive of c and d.  A closed interval between c and d is written “[c, d]”, and 

means the range of numbers from c to d including c and d.  A half-open interval “[c, d)” has the expected 

meaning of c to d including c but not d, and “(c, d]” means c to d excluding c but including d. 

Operators: I write most operators with a “hat” over them, e.g. x̂ .  Rarely, the hat notation is 

cumbersome, so I sometimes use the subscript op to denote quantum operators, as in [P&C].  Thus the 

symbol x is a real variable, x̂  is the position operator, and  2

op
p is the operator for p2. 

Conjugates and Adjoints:  We use “*” for complex conjugation, and “†” for adjoint: 

z* ≡ complex conjugate of the number ‘z’, †ˆ ˆadjoint operator ofa a . 

[Note that some math texts use a bar for conjugate: ā ≡ complex conjugate of ‘a’, and a “*” for adjoint.  

This is confusing to physicists, but c’est la vie.] 

[Interesting paragraphs that may be skipped are “asides,” shown in square brackets, smaller font, and 

narrowed margins.] 

[Short asides may be also be written in-line in square brackets.] 

Vector variables:  In some cases, to emphasize that a variable is a vector, it is written in bold; e.g., 

V(r) is a scalar function of the vector, r.  E(r) is a vector function of the vector, r.  We write a zero vector 

as 0v (this is different than the number zero). 

http://physics.ucsd.edu/~emichels
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Matrices:  Matrices are in bold, B.  A particular element of a single matrix may be specified with 

subscripts, e.g. Bij.  A particular element of a matrix expression uses brackets, e.g. [AB]ij ≡ the ijth element 

of the matrix product AB. 

Tensor products:  Sometimes, we write a tensor product explicitly with the  symbol.   

In-line derivatives sometimes use the notation d/dx and ∂/∂x.  There is not always a clear mathematical 

distinction between d/dx and ∂/∂x.  When the function arguments are independent, they are both the same 

thing.  I use d/dx when a function is clearly a total derivative, and ∂/∂x when it is clearly a partial 

derivative.  However, in some cases, it’s not clear what arguments a function has, and it’s not important.  In 

that case, I tend to use ∂/∂x for generality, but don’t worry about it. 

Also, for the record, derivatives are fractions, despite what you might have been told in calculus.  They 

are a special case of fraction: the limiting case of fractions of differentially small changes.  But they are still 

fractions, with all the rights and privileges thereof.  All of physics treats them like fractions, multiplies and 

divides them like fractions, etc., because they are fractions.   

Greek Letters 

The Greek alphabet is probably the next-best well known alphabet (after our Latin alphabet).  But 

Greek letters are often a stumbling block for readers unfamiliar with them.  So here are all the letters, their 

pronunciations, and some common meanings from all over physics.  Note that every section defines its own 

meanings for letters, so look for those definitions. 

The Greek alphabet has 24 letters, and each has both upper-case (capital) and lower-case forms.  Not 

all can be used as scientific symbols, though, because some look identical to Latin letters.  When both 

upper- and lower-case are useable, the lower-case form is listed first.  Lower case Greek variables are 

italicized, but by convention, upper case Greek letters are not.  Don’t worry if you don’t understand all the 

common meanings; we’ll define as we go everything you need to know for this book. 

 

Letter Name (pronunciation) Common scientific meanings 

 alpha (al’fuh) coefficient of linear thermal expansion.  (Capital: A, not used.) 

β beta (bae’tuh) velocity as a fraction of the speed of light (β ≡ v/c).   

(Capital: B, not used). 

 gamma (gam’uh) the relativistic factor (1 – β2)–1/2, aka time-dilation/length-

contraction factor. 

Γ capital gamma Christoffel symbols (General Relativity); generalized factorial 

function. 

 delta (del’tuh) the Dirac delta (impulse) function; the Kronecker delta; an 

inexact differential (calculus). 

∂ old-style delta partial derivative (calculus). 

Δ capital delta a small change. 

ε epsilon (ep’si-lon) a small value.  (Capital: E, not used.) 

ζ zeta (zae’tuh) damping ratio.  (Capital: Z, not used.) 

η eta (ae’tuh) efficiency; flat-space metric tensor.  (Capital: H, not used.) 

θ theta (thae’tuh) angle. 

Θ capital theta not commonly used.  Sometimes angle. 

 iota (ie-o’tuh) not commonly used.  (Capital: I, not used.) 

κ kappa (kap’uh) decay constant.  (Capital: K, not used.) 

λ lambda (lam’duh) wavelength. 
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 capital lambda cosmological constant. 

μ mu (mew) micro (10–6); reduced mass.  (Capital: M, not used.) 

 nu (noo) frequency.  Not to be confused with an italic v: v vs. nu: .   

(Capital: N, not used.) 

 xi (zie, sometimes 

ksee) 

dimensionless distance measure. 

Ξ capital xi not commonly used. 

 omicron (oe’mi-kron) not used.  (Capital: O, not used.) 

 pi (pie) ratio of a circle’s circumference to its diameter, ≈ 3.14159... . 

 capital pi product (multiplication). 

ρ rho (roe) mass density; charge density; correlation coefficient.   

(Capital: P, not used.) 

σ sigma (sig’muh) standard deviation; surface charge density. 

Σ capital sigma sum (addition). 

τ tau (rhyme: cow, or 

sometimes saw) 

time; torque.  (Capital: T, not used.) 

υ upsilon (oops’i-lon) not commonly used.  (Capital: Y, not used.) 

 phi (fee or fie) angle. 

 old-style phi angle 

Ф capital phi electric potential; general potential. 

χ chi (kie) degrees of freedom.  (Capital: X, not used.) 

ψ psi (sie) wave-function amplitude. 

Ψ capital psi not commonly used. 

ω omega (oe-mae’guh) angular velocity; angular frequency. 

Ω capital omega angle; solid angle; ohm (unit of electrical resistance). 
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1 Basic Wave Mechanics Concepts 

The goal of this chapter is to convey a conceptual and pictorial understanding of the workings of 

quantum mechanics.  We introduce the experimental results that motivate quantum mechanics, turning 

them into a reliable, quantitative model that will underpin all of our future developments.  This chapter is 

conceptually the most difficult, but it is essential. 

1.1 The Meaning of Science 

Quantum Theory is true.  It is not a speculation, nor are the major parts of it in any doubt at all.  In 

science, unlike ordinary conversation, a theory is the highest level of scientific achievement: a quantitative, 

predictive, testable model which unifies and relates a body of facts.  A theory becomes accepted science 

only after being supported by overwhelming evidence.  A theory is not a speculation, e.g. Maxwell’s 

electromagnetic theory.  Note that every generally accepted theory was, at one time, not generally accepted.  

A fact is a small piece of information backed by solid evidence (in hard science, usually repeatable 

evidence).  If someone disputes a fact, it is still a fact.  (“If a thousand people say a foolish thing, it is still a 

foolish thing.”)  A speculation is a guess, perhaps motivated by facts, perhaps by intuition. 

We must be careful when we talk of what is “really” happening in quantum mechanics.  Because QM 

is so far removed from everyday experience, there is no “really.”   

All we can hope for are mathematical models which predict the outcomes of experiments.   

Any such model is valid (or “real”). 

Throughout this work, we adopt the simplest valid model we can.  Other valid models exist.  They may 

disagree on the wording or interpretation of the theory, but by definition, all valid models agree on known 

experimental results.  When two models disagree on predictions that are not yet tested, then in principle, 

performing an experiment can falsify one model, and be consistent with the other.  In general, it is not 

possible to prove that a theory is correct, only that it is consistent with all known facts (definitive 

experiments). 

1.2 Not Your Grandfather’s Physics: Quantum Weirdness 

The following realistic (but here idealized) experiment demonstrates that quantum mechanics is not 

your everyday physics. 

film

atom

atom

light

atom

atom

atom

atom

photon detectors

photon photon

 

Figure 1.1  (Left) A bright light fluoresces from both atoms and exposes an interference pattern.   

(Middle) A single photon at a time fluoresces off one atom or the other, but never both.   

(Right) A large number of individual photons still produces interference on the film. 

Consider a box (Figure 1.1, left), that admits light on the left, and has two identical atoms midway across, 

one each at the top and bottom.  A black screen blocks light from passing in-between the atoms.  On the 

right is photographic film which records the cumulative energy of light striking it at each point.  The atoms 

fluoresce, i.e. they absorb photons, and quickly re-radiate new photons of fixed energy.  If we shine a bright 

light into the hole, the atoms fluoresce, and the film records a standard interference pattern (dark indicates 

higher exposure).  Classical physics predicts this. 

If we now place photon detectors in front of each atom (Figure 1.1, middle), and send in a series of 

individual photons (one at a time), our detectors show that either one atom or the other fluoresces, but 

never both.  Recall that all photons of a given frequency have the same energy.  When an atom does 

fluoresce, it radiates a single photon with the full photon energy, just as when under a bright light.  The 
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energy is never split between the two atoms.  This is quantum: an atom either absorbs and radiates, or it 

doesn’t.  The event is quantized: there is no half-way.  That is perhaps unexpected, but not yet truly weird. 

Next, we remove the detectors and replace the film (Figure 1.1, right).  We again send in a series of 

individual photons (one at a time), and accumulate enough photons to expose the film.  By extension of our 

previous single-photon experiment, we expect only one atom to radiate from each entering photon, and 

therefore we do not expect interference.  However, the actual experimental result is an image of 

interference on the film. 

It seems that the atoms behave differently when we are “looking at” them with detectors, than when we 

are not.  Some physicists have called this “dual” behavior “quantum weirdness.”  This result says that 

quantum mechanics isn’t just a modified set of laws from classical mechanics, but instead, the very nature 

of causality, time evolution, and observation are somehow different on the quantum scale.  For example, 

this experiment goes far beyond saying “electrons are waves.”  Water travels in waves, too, but does not 

(macroscopically) exhibit this “weirdness.”   

Quantum mechanics is more than just a new “wavy model” of particles.   

QM also implies that  the fundamental nature of causality, time evolution, and observation  

is different at the quantum scale than at the everyday macroscopic scale.   

This experiment is essentially the famous double-slit experiment (each atom is a slit), but with the 

added twist that the atoms seems to change their behavior when the observational setup changes, even 

though that setup does not directly impinge on the process of photon absorption and re-radiation: the 

observational setup only changes how we observe the results.  A short time after a photon enters the box, 

we might think the two possible states of the system are “top atom is excited” or “bottom atom is excited.”  

However, the recording of an interference pattern on the film indicates that the actual state is some kind of 

superposition of both. 

This experiment is also directly analogous to the Schrödinger’s cat experiment, wherein a radioactive 

element sits in a box with a cat.  Over time, the element either decays or not, causing a mechanism to either 

kill the cat, or not.  After a time interval, the two states of the system are “the cat is alive” and “the cat is 

dead.”  In principle, we could add film to the box, and a “life-detector:”  If the cat is alive, it radiates a 

photon from the top; if the cat is dead, it radiates a photon from the bottom.  After killing a large number of 

cats, the idealized experiment would produce an interference pattern on the film: each cat has indeed been 

in a superposition of “alive” and “dead.” 

The reason we cannot successfully perform the cat experiment has nothing to do with life, death, or 

consciousness.  It has to do with the cat being macroscopic.  We describe all these aspects of quantum 

mechanics in much more detail throughout this book. 

Although the photon-atom-film experimental result demands a new mechanics, quantum mechanics, I 

think it is not truly the essence of QM.  QM is more about quantization of energy, angular momentum, and 

other properties of microscopic systems, which have a long history of experimental verification.  In many 

ways, these effects are more important, though perhaps less exciting, than the mind-bending nature of 

causality and observation.  Either way, it is the quantization effects that consume the vast majority of the 

study of QM, and to which we devote the vast majority of this book. 

1.3 The Job of Quantum Mechanics 

What, then, does Quantum Mechanics do?  Like any physical theory, it predicts the results of 

experiments.  All other physical theories, given enough information, predict the exact result of an 

experiment.  The unique feature of QM theory is that predicting one single result is not generally possible.  

The universe itself is probabilistic.  The exact same experiment can produce different results when 

repeated.   

Quantum mechanics tells what results are possible, and with what probabilities.   
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In QM talk: QM defines the “spectrum” of results, and their probabilities of occurrence.  Therefore, by 

combining this information, you can also predict the average value of a measurement A.  We’ll have more 

on this later, but for now, recall some statistical facts about averages: 

1

Pr( ) , or pdf( )

N

i i

i

A a a A a a da





   , 

where the a are possible values, Pr(ai) is the probability of a discrete measurement, and pdf(a) is the 

probability distribution function of a continuous measurement. 

1.3.1 The Premises of Quantum Mechanics 

We introduce here some of the underlying principles of quantum mechanics, and then explore those 

principles more deeply in the “Axioms” section below. 

Quantum mechanics says that, in general, systems exist in a linear superposition  

of oscillating states, i.e. they exist simultaneously in many different states.   

These superpositions have two important characteristics: 

First: Each state in the superposition has its own mathematical weight.  For example, a system might 

be 1/3 state A, 1/6 state B, and 1/2 state C.  We say the system’s “component states” are A, B, and C.  

Before a measurement, interactions occur with each component state acting independently, and as if it were 

the whole system.  The resulting final state is a superposition of all the resulting component states.   

For brevity, it is often said that taking an (ideal) measurement “collapses” the system to a state  

(possibly a superposition) consistent with the measurement.  Often, the system then evolves into a broader 

superposition of states again, over time.  We will see, however, that such a simple model cannot explain the 

full set of experimental observations, and leads to conceptual difficulties.  A more complete model of 

measurements includes “decoherence,” discussed later. 

Second: The states oscillate sinusoidally (in some way).  Therefore, each state has not only weight (or 

“magnitude”), but phase.  The phase of a state describes where in its periodic oscillation the state is, at a 

given moment.  States oscillate sinusoidally, and since sin( ) has period 2, the phase is often given as an 

angle, between 0 and 2. 

Note There is a big difference between a “superposition” state, and a “mixed” state.  We will describe 

the difference in more detail later, but for now: superpositions include phase information in the set 

of component states, and describe a single system (e.g., particle).  “Mixed states” have no phase 

information between the constituent states, and describe one of a set (ensemble) of multiple 

systems (e.g. particles), each in a different state.  This is essentially a classical concept, but with 

very non-classical (quantum) consequences.  See “Density Matrices” later for more discussion. 

1.3.2 The Success of Quantum Mechanics 

There are many fundamental successes of quantum mechanics.  The following rules of calculation 

follow from the axioms of linearity and superposition (described more fully below): 

1. Dynamic quantities are described by complex numbers, called amplitudes (or “complex 

amplitudes”), which have a magnitude and a phase.  (This is different than some other applications 

where “amplitudes” are real numbers that quantify only the size of a sinusoidal oscillation.) 

2. The probability of an observation is proportional to the squared-magnitude of the amplitude for 

that observation. 

3. When there are two or more paths from an initial state to a final state, the complex amplitudes for 

each path add as complex numbers, called adding coherently. 

4. When there is a path from initial state A, through an intermediate state B, to a final state C, the 

amplitude for that path is the complex product of the amplitudes for transitions from AB and 

BC. 
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complex 

amplitude SAB

|A> |B>

SAB = SAB1 + SAB2

|A> |B>1

2 SAC = SABSBC

|A> |B> |C> |A> |B> |C>

2

SAC = (SABSBC) + SAC2

 

Figure 1.2  The Laws of Quantum Mechanics for combining amplitudes. 

These rules, shown diagrammatically in Figure 1.2, are the basis for essentially all of quantum mechanics.  

[Quantum Field Theory uses them heavily, and Feynman diagrams build on the scheme depicted above.] 

1.3.3 The Failure of Quantum Mechanics 

The original Quantum Mechanics was non-relativistic, and it did not describe the creation and 

annihilation of particles.  For relativistic quantum physics, which requires particle creation and 

annihilation, one must use Quantum Field Theory.  QFT is the most successful physical theory of all time, 

in that it predicts the magnetic dipole moment (g-factor) of the electron to 13 digits.  The reasons for the 

failures of QM are that it assumes that the number of particles is known and definite, and the hamiltonian is 

non-relativistic.  Whether we use 1-particle wave functions, or multi-particle wave functions, QM assumes 

a fixed set of particles.  For non-relativistic physics, a fixed set of massive particles is a good 

approximation, because the low energies have negligible probabilities of creating a particle/antiparticle 

pair, or other massive particles.  However, at relativistic energies, the probability of massive particle 

creation can be significant.  Particle creation (including photon creation) adds new “paths” for quantized 

interactions to take place, thus changing the probabilities of the outcomes.  For example, the g-factor of the 

electron is measurably affected by these phenomena.  Quantum Field Theory is the extension of quantum 

mechanics to relativistic dynamics and particle creation. 

1.4 Axioms to Grind: The Foundation of Quantum Mechanics 

One can develop most of quantum mechanics from a small set of principles.  Well-chosen axioms 

provide great power to work with quantum mechanics, and learn new systems (unlike mathematical 

axioms, which are often cryptic and unenlightening).  Each of our axioms is directly motivated by 

experimental results.  Different references choose different axioms, and even different numbers of axioms.  

Their developments are generally not mathematically rigorous, and neither is ours.  Instead, our 

development aims to illuminate the conceptual workings of quantum mechanics.  We reiterate that at the 

quantum level, we cannot talk of what is “really” happening; the best we can hope for is a simple, valid 

model.  Here, we choose a model that is grounded in simple experiments, and therefore intuitive and 

instructive to the behavior of quantum systems. 

This section assumes that you have seen some quantum mechanics and wave-functions, and know the 

de Broglie relation between momentum and wavelength.  It also refers to phasors, and their representation 

of oscillations, which are described in more detail later.  Briefly, a phasor is a complex number that 

represents the amplitude and phase of a real sinusoid.  The axioms below are written for a single-particle 

continuous system (wave-functions), but can be adapted easily to discrete systems (e.g., angular 

momentum).  We also later extend them to multiple particles. 

Quantum mechanics can be formulated from the following observations, taken as axioms: 

1. Quantum systems oscillate sinusoidally in space with a frequency proportional to momentum:  k = 

p/ħ.  In other words, quantum systems have a wavelength, given by de Broglie.  k is the spatial 

frequency in (say) radians per meter, and points in the direction of momentum.  This momentum-

wavelength relation was known true for photons from simple interferometry [which means it’s 

true relativistically, as well, since photons travel at light speed].  This was demonstrated for 

electrons serendipitously by Davisson and Germer in 1927, after their equipment failed.  No one 

knows what exactly is oscillating, as it cannot be directly observed, however its interference 

patterns can be observed.  We model the (unknown) thing that oscillates as the quantum state of 

the system.  Initially, we consider quantum states which are wave-functions.  Later, we’ll extend 

that to include discrete states. 
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2. Quantum systems oscillate sinusoidally in time with a frequency proportional to energy:  ω = E/ħ.    

This was known true for photons from the photo-electric effect [which again means it’s true 

relativistically].  It is also experimentally confirmed for both electrostatic and gravitational 

potential energy [Sak p125-9].  Any temporal oscillation has a frequency, phase, and real 

amplitude.  The real amplitude and phase can be described mathematically by a phasor: a complex 

number that represents a sinusoid.  The frequency is not given by the phasor, and must come from 

other information, in this case, the energy.  In quantum mechanics, a phasor may be called a 

complex amplitude, or confusingly, often just “amplitude.”  Because quantum systems oscillate, 

and we represent those oscillations with complex-valued phasors, the wave-function is a complex-

valued function of space (or a phasor-valued function of space).  Since energy can be positive or 

negative, the frequency of oscillation can be positive or negative.  We describe phasors and 

negative frequency later.  [In a relativistic treatment, axioms (1) and (2) combine into a Lorentz 

covariant form that unifies the time and space pieces.] 

3. Systems exist in a linear superposition of states.  In other words, even a single, indivisible system 

behaves as if it is separated into pieces (components), each in a different state, and each of which 

behaves like the whole system.  This is suggested by the observed interference of matter waves: 

electrons, atoms, molecules, etc.  When measuring such a superposition, one will get a 

measurement consistent with one of the components of the system, but no one can predict exactly 

which component will be seen in the measurement.  The “weights” of the pieces, though, 

determine the probability of measuring the system according to that component: larger weights 

have larger probabilities of being observed.  For example, a spin-1/2 particle could be 1/3 spin up, 

and 2/3 spin down.  Furthermore, because systems oscillate sinusoidally, each piece has not only a 

magnitude, but a phase of its oscillation.  This means we can represent each piece by a complex 

number (phasor), giving its weight and phase of oscillation.  Again, the frequency of oscillation is 

given by the energy of each piece (Axiom 2).  The concept of a superposition leads to the need for 

linear operators, which quantum mechanics uses heavily. 

4. Quantum mechanics is consistent, in the sense that if you measure something twice, you get the 

same answer (provided you measure quickly, before the system time evolves into a different 

state).  This implies the collapse of the quantum state (aka, loosely, “collapse of the wave-

function”).  This was observed easily in many experiments, such as Stern-Gerlach filtering. 

5. The weight of a given component of a superposition is proportional to the square of the amplitude 

of its oscillations, much like the intensity of an EM wave is proportional to the square of the E-

field (or B-field, or A-field).  A “point particle” actually exists in a superposition of locations.  

Thus each point in space has a phasor (complex number) representing the fractional density (per 

unit volume) of the particle being at that point.  This function of space is the particle’s wave-

function.  The volume density is therefore given by the square of the wave function, which we 

normalize such that 

2 2 3( ) ( ) ( ) 1d  


  r r r r . 

6. Note that the axioms of time and space oscillation, and superposition, imply the Schrödinger 

equation for classically allowed regions where the particle energy is above the potential energy.  

We could show this by considering particles of definite momentum, and noting that any particle 

can be written as a superposition of such momentum states.  However, we must postulate that the 

Schrödinger equation is also valid in the classically forbidden regions, where the particle energy is 

less than the potential energy.  In these regions, the quantum kinetic energy is negative, and the 

“momentum” is imaginary.  This axiom is consistent with the empirically confirmed phenomenon 

of tunneling. 

These axioms are the foundation of quantum mechanics, and we rely on them implicitly and explicitly 

throughout our discussion.  We also develop many of the implications of these axioms, which yields the 

incredibly large and diverse science of quantum mechanics. 

Note that the quantum formulas for energy use the classical nonrelativistic hamiltonian, e.g. E = p2/2m 

+ V(x), though x and p become operators.  You might be surprised that QM is so weird, yet still uses a 
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classical hamiltonian.  However, classical mechanics is the high-energy and/or large-system limit of QM, 

so perhaps it is to be expected that the classical hamiltonian matches the underlying quantum hamiltonian. 

What is a wave function?  A wave-function is some unknown “thing” that oscillates.  That thing can 

be thought of as a “quantum field,” similar to an electric or magnetic field, but with some important 

differences.  [This is the basis of the more-complete theory of QFT.]  Note that an EM field is a classical 

field on large scales, and also a quantum field on small scales, so the two types of field are clearly related.  

In QM, though, a whole molecule (or other complex system) can be represented by a single “wave-

function.”  This follows from the linear nature of superpositions.  Such a representation is an 

approximation, but is quite good if the internal details of the system are not important to its observable 

behavior. 

Collapse of the wave-function:  This is the most difficult concept of quantum mechanics.  It stems 

from the consistency postulate.  There are several models of wave-function collapse, all of which predict 

the same results; therefore, all of them are valid.  In this book, we choose the model we believe is simplest 

and most consistent over all sizes of systems, spanning a continuum from microscopic to macroscopic.  We 

compare some other “collapse models” later.  We introduce the ideas here, with more details to come. 

Briefly, a wave-function is said to “collapse” when you make a measurement on it.  If the quantum 

state were a superposition of multiple possibilities, your measurement changes the state to one consistent 

with your measurement.  A more detailed analysis reveals that you can think of “collapse” as happening in 

two steps: first, the system “decoheres” by being measured (entangled) by any macroscopic measuring 

system (dead or alive).  Note that there is no concern for sentience, just “bigness.”  Once a system has 

decohered, it follows classical probabilities, and there is no further possibility of quantum interference.  In 

other words, decoherence eliminates any “quantum weirdness” (i.e., nonclassical behavior).  However, in 

our model, time evolution is governed by the Schrödinger equation, and even a decohered system is in a 

superposition of states.  Only when you observe a measurement do the other possibilities disappear (the 

quantum state collapses).  This decoherence model is equivalent to one in which the quantum state 

collapses upon decoherence, but you simply don’t know the result until you look at it.  However, the 

decoherence model fully explains partial coherence with no additional assumptions, and is therefore 

preferable. 

Note that since all sentient observers are macroscopic, they necessarily decohere a system before 

“seeing” the result of a measurement.  Also, both models above have a collapse somewhere in them. 

Before decoherence was widely recognized, scientists wondered about whether consciousness 

somehow affected quantum results.  This was the puzzle of Schrödinger’s cat: is it “sentient enough” to 

collapse a quantum state?  One interpretation was that, regardless of whether a cat can collapse a wave 

function or not, an outside observer experiences the (idealized) “cat-in-the-box” as being in a superposition 

of states.  This is still true even if the cat is replaced by an idealized physicist (whom we shall call “Alice”).  

However, realistic macroscopic systems (cats, physicists, or dial gauges) cannot exist in “coherent 

superpositions” for any noticeable time, because uncontrollable and unrepeatable interactions with the 

environment randomize the phase relationship between components of the superposition.  This fact renders 

the riddle of Schrodinger’s Cat moot: decoherence leads to classical probabilities, and prevents any 

observable quantum effect.  It is impossible to measure whether a cat collapses a wave-function, so the 

question is scientifically meaningless. 

Uncertainty is not an axiom:  Note that there is no axiom about uncertainty, or wave-particle duality 

(complementarity).  These concepts follow from the given axioms.  The wave nature of the Schrödinger 

equation, combined with the collapse of the wave-function, allows us to summarize “duality” roughly as 

“particles propagate like waves, but measure like points.”  We examine the nature of measurements in 

some detail later. 

Note on superpositions:  Every quantum state can be written as a superposition in some bases, and 

also as a (non-superposed) basis state in other bases.  Thus, there is nothing fundamental about a state being 

either a “superposition” or a “basis” state.  (We discuss bases in more detail later.)  However, some bases 

are special, with special properties, such as energy, position, and momentum.  Basis states in those bases 

have properties of particular interest, which we will discuss throughout this work. 
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1.5 Energy and Momentum Are Special 

Energy and momentum are very special physical quantities: they are linearly related to a quantum 

particle’s frequency and wave-number, by the constant ħ (“h-bar”): 

E = ħω  and p = ħk . 

Energy and momentum relate directly to the wave nature of particles.  This is not true of other physical 

quantities such as velocity, acceleration, etc.  Therefore, energy and momentum get special treatment; we 

use them as much as possible, because they fit most easily into the wave equations.  For example, we 

quantify kinetic energy as  

2
21

rather than
2 2

p
T T mv

m
   , 

because p (momentum) is directly related to wave functions, and v (velocity) is not.   

All other physical quantities have to be expressed in terms of energy and momentum.  For example, to 

find the velocity of a particle (in the absence of a magnetic field), we find its momentum, which is 

fundamental, and divide by its mass: 

(absent magnetic fields)
p

v
m

 . 

Not coincidentally, energy and momentum have a special place in relativity, as well: they compose the 

energy-momentum 4-vector, which is Lorentz invariant.  In other words, relativity ties together energy and 

momentum in a special way, so they must both be special.   

There is also a complication in that the quantum momentum p is canonical momentum, not kinetic 

momentum.  As we will see, in systems with magnetic fields, this distinction becomes important. 

1.6 Complex Numbers 

1.6.1 Fundamental Properties of Complex Numbers 

OK, so we admit complex numbers aren’t really all that quirky, but here’s a summary of the 

characteristics of complex numbers that are most relevant to QM. 

Why do we use complex numbers?  We could write everything with only real numbers; after all, 

everything measurable uses real numbers to measure it.  But using only real numbers makes the formulas 

very complicated.   

We use complex numbers because they make mathematical formulas simpler.   

Since we spend more time working with formulas than with the actual numbers, it’s much more efficient to 

use complex numbers and simpler formulas, rather than simple (real) numbers and complicated formulas.  

We start by defining: 

1i   ,  an imaginary number. 

i is a constant, whose square is –1.  There is no real number with this property, so i is said to be imaginary.  

[Electrical engineers write ‘j’ instead of ‘i’, because ‘i’ stands for electric current.]  From the definition: 

2 2 2( ) 1 and 1i i i      . 

Since all the rules of arithmetic, algebra, and calculus apply to imaginary numbers, you’ll commonly see 

these types of identities: 

1
,i i

i i


   , etc.   
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i can be multiplied by any real number, say y, to give iy.  Any such real multiple of i is also imaginary, 

and its square is a negative number: –y2.  The sum of a real number and an imaginary number is a complex 

number:  x + iy.  The label ‘z’ is often used for complex variables: 

z = x + iy . 

The graphical interpretation of complex numbers is critical.  Recall that we can plot any real number as 

a point on a 1-dimensional number line.  Similarly, we can plot any complex number as a point, or a vector, 

on a 2-dimensional plane (the complex plane); see Figure 1.3. 

z = 3 + 4i

imaginary

real

imaginary

real

3

4

3

4
z = 3 + 4i

 

Figure 1.3  Rectangular picture of z in the complex plane. (Left) As a point.  (Right) As a vector. 

The z = x + iy form is called the rectangular form of a complex number. Adding (or subtracting) complex 

numbers is straightforward; the rectangular components add (or subtract), because complex numbers are 

vectors:  

           1 2 3 4 4 6a ib c id a c i b d i i i            . 

Besides rectangular form, complex numbers can also be expressed in polar form.  Polar form is 

intimately tied to Euler’s identity (pronounced “oilers”), which relates an angle to real and imaginary 

components (Figure 1.4, left). 

cos sin , in radiansie i     . 

z = 3 + 4i = r cos θ + i r sin θ

= 5 cos(0.927) + i 5 sin(0.927)

r = 5,  θ = 0.927 rad

radius

angle

1  2  3 4  5

/2

real

imaginary

θ
cos θ

unit 

circle

i
si

n
 θ

1-1

3/2

z = eiθ = cos θ + i sin θ



 

Figure 1.4  (Left)  Euler’s identity in the complex plane.  (Right) Polar picture of z in the complex 

plane. 

[Aside: Euler’s identity can be derived from the Maclaurin expansion 

0
!

n
x

n

x
e

n





 , or from solving the 2nd 

order differential equation, 

2

2
( ) ( )

d
f x f x

dx
  .] 

Multiplying eiθ by a magnitude, r, allows us to write any complex number in polar form:  z = (r, θ), by 

choosing r and θ appropriately (Figure 1.4, right).  Comparing the two graphs in Figure 1.4, we see that we 

can relate the polar and rectangular forms by a mathematical expression: 
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 2 2 1
4

( , ) (cos   sin ) cos   sin .

cos , sin , and , tan , ,

i

q

z r re r i r ir x iy

x r y r r x y x y

    

   

       

    

 

where tan4q
–1(x, y) is a full, 4-quadrant arctangent of (y/x).  E.g., the usual 2-quadrant arctangent gives: 

 1 1 1
4

1 1 5
tan tan , but tan 1, 3

6 63 3
q

       
       

   
. 

Rectangular and polar forms are two different, but equivalent,  

ways of expressing complex numbers. 

Note that θ may be positive or negative.  Polar form is not unique, because: 

 2
, any integer

i nie e n
  

 . 

The angle of purely real numbers is either 0 or π, and the angle of purely imaginary numbers is ± π/2. 

All the rules of algebra and calculus work with complex numbers: commutativity, associativity, 

distributivity, exponentials, derivatives, integrals: 

, ,z w z w z z z zd
e e

dz
e e e e dz e C

   , etc. 

Therefore, multiplying (or dividing) is easier in polar form, using Euler’s identity (Figure 1.5): 

     ( ), and
i

ii i i

i

re r
re se rse e

sse


    



   . 

(r eiθ)(s eiφ) = rs ei(θ+φ)

real

imaginary

θ

rφ
s

rs

θ+φ

(r eiθ) eiφ = r ei(θ+φ)

real

imaginary

θ

rφ

r

θ+φ

 

Figure 1.5  (Left) Picture of complex multiply. (Right) Special case: multiplication by eiφ 

When multiplying (or dividing) complex numbers, the radii multiply (or divide), and the angles add (or 

subtract).  This fact suggests the concept of a “magnitude” for complex numbers.  We define the 

magnitude (aka absolute value) of a complex number as its radius in polar form: 

2 2 (magnitude is a real number  0)z r x y   . 

Thus when multiplying (or dividing) complex numbers, the magnitudes (radii) multiply (or divide): 

|z1z2| = |z1| |z2| and 
11

2 2

zz

z z
 . 

Note that when z happens to be real, |z| reduces to the familiar real-valued magnitude (aka absolute value).   
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An important special case:  When we multiply z by some unit-magnitude number (eiφ
), the magnitude 

of z doesn’t change, but z gets rotated in the complex plane by the angle φ (Figure 1.5, right).  This is 

important for phasors, described shortly. 

Using the polar form, we can easily raise a complex number to any real power: 

 
a

a i a iaz re r e    magnitude is raised to power a; angle is multiplied by a. 

Adding complex numbers follows the “head to tail” rule for adding vectors.  The two examples in 

Figure 1.6 illustrate two different results possible from adding complex numbers of the same magnitude, 

but different angles: 

real

imaginary

real

imaginary

(3 + 4i) + (-3 − 4i) = 0(3 + 4i) + (3 − 4i) = 6 + 0i
 

Figure 1.6  A variety of results of adding complex numbers of equal magnitude. 

A crucial fact is: 

 When adding or subtracting complex numbers, there is no simple relationship between the 

magnitudes of the addends and the magnitude of the sum. 

Their angles, or “phases,” are important to the result.  This is the essence of interference. 

You can also define logarithms and exponents of complex numbers, but we don’t need them at this 

level. 

The angle of a complex number may be written as arg(z), and is sometimes called its phase (or its 

argument).  As shown above, when multiplying (or dividing) complex numbers, the angles add (or 

subtract): 

1
1 2 1 2 1 2

2

arg( ) arg( ) arg( ), and arg arg( ) arg( )
z

z z z z z z
z

 
    

 
. 

The complex conjugate of a number z is written z*, and is defined as follows: 

If    z = a + ib,  z* ≡ a – ib,  and in polar form,  

if , then *i iz re z re   . 

Note that the conjugate of a real number is itself:  x* = x.   

An important identity is 

  

  

2 2 2 2 2

2 2

* because * ,

or in polar form: * .i i

z z z z r x y x iy x iy z z

z r re re z z 

       

  

 

Any complex function can be expressed by its real and imaginary parts, e.g. let ψ(x) be a complex 

valued function of the real value, x: 

ψ(x) = a(x) + i b(x) . 

Linearity then provides identities for derivatives and integrals, which are also complex valued functions: 
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( ) ( ) ( ), ( ) ( ) ( )
d d d

x a x i b x x dx a x dx i b x dx
dx dx dx
       . 

The conjugate of a complex function [ψ(x)]* is written as ψ*(x).  Important conjugation identities 

(derived simply from the rules above): 

   * * * * * *

*
*( ) ( ) *( ) ( ) .

z w z w zw z w

x x x dx x dx
x x
   

   

          
 

   

Let v(z) be a complex valued function of the complex value, z.  In general, v(z*) ≠ v*(z).  A simple 

counter example is v(z) = z + i; then v*(z) = z* – i ≠ v(z*).  However, there are some special cases relating 

functions and conjugates.  Most importantly: 

 

   

         

*

**

* * * *
( *)

For real: .

For :

because .

iy iy

z z

x iyz x iy x iy x iy z

y e e

z x iy e e

e e e e e e e e



   



  

    

 

The real part of a complex number, z, is written as Re(z).  The imaginary part of ‘z’ is written Im(z).  

Note that Im(z) is a real number: it is the coefficient of i in the complex number z.  Thus, 

z = Re(z) + i Im(z) . 

Derivatives and integrals of functions of complex values [say, w(z)] are uncommon in elementary QM, 

because dz has both a real and imaginary differential component.  Though contour integrals of complex 

differentials do appear in more advanced studies, we won’t need them here. 

1.6.2 Phasors, Rotation in the Complex Plane, and Negative Frequency 

Phasors are critical to nearly all aspects of oscillation in engineering and physics.  The simple picture 

of a phasor starts with a clockwise rotating stick, and its projection (shadow) onto the horizontal axis 

(Figure 1.7).  The stick rotates at a constant angular velocity, ω. From the definition of cosine, the shadow 

traces out a sinusoid, of frequency ω, with amplitude equal to the length of the stick.  We can add a phase 

to the sinusoid by having the stick start at some angle, θ, when t = 0: 

   ( ) cosa t length t   . 

|A|

ω

θ = arg A

shadow

t1 > 0

ω

shadow

ω

t = 0 t2 > t1
imaginary imaginary

real real real

imaginary

shadow

 

Figure 1.7  For physicists, the stick usually rotates clockwise (as shown), per e–iωt.   

Note that θ > 0 in this example. 

Rotation in the complex plane:  We’ve seen how multiplication by a unit-magnitude complex 

number simply rotates another complex number in the complex plane.  Now imagine the unit-magnitude 

angle is not fixed, but changes linearly with time, i.e. rotate not by a fixed angle, but by an increasing angle 
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ωt.  ‘ω’ is the angular frequency, in rad/s.  In physics, time-dependence usually goes as e–iωt.  If we 

multiply some complex number r eiθ by e–iωt, we get 

   i ti i tr e e r e
     , 

a complex function of time that rotates continuously in the complex plane.  The magnitude of the result is 

fixed at |r|, because |e–iωt| = 1 at all times.  But the angle of the result decreases with time, at the rate ω (Fig 

Figure 1.8, left).  (NB: Engineers, and some physics applications, use a different time dependence, e+iωt, in 

which the complex vector rotates counter-clockwise for ω > 0.) 

(r eiθ)eiωt

ω < 0
real

imaginary

(r eiθ)eiωt

imaginary

r

ω > 0

θ

r

realθ

 

 Figure 1.8  (Left) Clockwise rotation in time at positive frequency ω > 0.  

(Right) Counter-clockwise rotation in time at negative frequency ω < 0. 

We are now prepared to define a phasor: a phasor is a complex number which represents the 

amplitude and phase of a real-valued sinusoid.  The phasor does not define the frequency of the sinusoid, 

which must come from other information.  Specifically, the real-valued sinusoid a(t) represented by a 

phasor A is: 

   ( ) Re cos arg( )i ta t Ae t A     

The Re{} operator returns the “shadow” of the complex number on the real axis.  Thus graphically, as 

before, a(t) is the projection of a rotating vector onto the real axis; the vector’s magnitude is |A|, and its 

starting angle (t = 0) is arg(A).  A phasor is also called a “complex amplitude.” 

A key fact, proven in Quirky Electromagnetic Concepts, is that the sum of any two sinusoids of 

frequency ω is another sinusoid of frequency ω.  Furthermore: 

The phasor for the sum of two sinusoids is the sum of the phasors of the two sinusoids. 

Mathematically, for a given ω: 

If ( ) ( ) ( ), then

, , phasors for ( ), ( ), ( ).

c t a t b t C A B

where A B C a t b t c t

   


 

Negative frequency:  In QM, system frequency is proportional to energy, and energy can be negative.  

Therefore, instead of just oscillating, quantum systems can be thought of as rotating (in some unknown 

space).  This requires both positive and negative frequencies (rotations in opposite directions).  Again, no 

one knows what is rotating, but the interference consequences can be observed.  Therefore, angular 

frequency is not constrained to be positive; it can just as well be negative.  Rotation by a negative 

frequency rotates in the counter-clockwise direction, rather than clockwise (Figure 1.8, right).  Hence, both 

positive and negative frequencies occur in complex rotations, and in Quantum Mechanics. 

In QM, only frequency (and energy) differences are significant.  Therefore we could, in principle, 

eliminate negative frequencies in all our calculations by adding a large, positive constant frequency to 

everything.  That would be tedious, and problematic in future studies of QFT and anti-particles.  Therefore, 

negative frequency gives us a convenient way to accommodate arbitrary frequency differences, while still 

allowing an arbitrary zero-point for frequencies.  Since frequency is proportional to the system’s energy (E 
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= ħω), the zero point of frequency corresponds to the zero point of energy, and negative energies have 

negative frequencies.  In other words, negative frequencies preserve our freedom to choose the zero-point 

of energy. 

1.7 Probability, Density, and Amplitude 

Quantum Mechanics relies heavily on probability, probability density, and probability amplitude.  

Probability and probability density (henceforth often shortened to “density”) are concepts common to many 

fields; “probability amplitude” is unique to QM.  We briefly review here the concepts of probability, and 

precisely define our terms. 

1.7.1 Probability of Discrete Events 

Probability is a quantification of how likely a random event is to occur.  A random event is one 

whose occurrence cannot be predicted exactly.  The probability of an event is the fraction of the time that 

the event will occur in a large number of repetitions (trials) of an experiment.  Each trial, of course, is set 

up exactly like all the others.  It is in the nature of “random” events that even though all trials are set up 

identically, different trials may produce different events.  So it is with QM measurements: most 

measurements of observables are random events.  For experiments with discrete outcomes, such as rolling 

a die or measuring the energy of a particle in a superposition of discrete energy states, each possible 

outcome has a finite probability.  For experiments with continuous outcomes, such as the position or 

momentum of a particle, each outcome has a finite probability density (more on this below). 

Discrete example: measuring the spin of a spin-½ particle can produce only two possible values: 

parallel to the measuring equipment (call it “up”), or anti-parallel to it (“down”).  The two values, “up” and 

“down,” are mutually exclusive.  If in a given experiment the probability of “up” is 0.7, then the probability 

of “down” must be 0.3, because the sum of all possibilities must be 1 (i.e., the probability of measuring up 

or down is 1). 

Note that an event is random if its outcome cannot be exactly predicted.  All the possibilities need not 

be equally likely.  Some references use the term “completely random,” to mean all possibilities are equally 

likely.  We find that term ambiguous.  “Random” events are not exactly predictable, and the possible 

outcomes may or may not be equally likely. 

A more complicated discrete example: the energy of a particle in a bound state has discrete values.  

However, though discrete, there may be an infinite set of possible values.  For example, an electron bound 

to a proton (hydrogen) has an infinite set of possible energies, characterized by an integer, n, such that: 

2Ry/ Ry Rydberg constantnE n where  . 

Clearly, not all of them can be equally likely, since the infinite sum of their probabilities is 1. 

The probability of an event, e, may be written as Pr(e), e.g., the probability of measuring En may be 

written “Pr(En)” or “Pr(E = En)”. 

1.7.2 Probability Density of Continuous Values 

We’ve seen that probability describes discrete random variables, such as rolling a die, or measuring 

(discrete) bound-state energy.  But what about continuous random variables?  Suppose I spin the pointer on 

a board game (Figure 1.9, left), and consider the angle at which the pointer stops.  That angle could be any 

of an infinite set of values, but a continuous infinite set, not a discrete infinite set.  Angle, in this case, is a 

continuous random variable: between any two values are an infinite number of other possible values.  

There are uncountably many angle values that could occur.  Probability density (aka “density”) addresses 

such continuous random variables. 

In the case of a simple pointer that rotates in a plane, all angle values are equally likely; the pointer has 

no preference for one position over any other.  The range of possible measurements is the half-open 

interval [0, 2π), i.e., 0 ≤  θ < 2π.  The probability of measuring an angle < 0 or ≥ 2π is zero: 

Pr(θ < 0) = 0, and Pr(θ ≥  2π) = 0. 
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However, the probability of measuring the pointer between a range of allowed angles is finite.  

Suppose we divide the angles into two halves: upper [0, π), and lower [π, 2π).  The probability of 

measuring in the upper half is 0.5, and the probability of measuring in the lower half is also 0.5.  We could 

divide the circle into quadrants, and the probability of measuring in any quadrant is 0.25.  In fact, for any 

finite angular range, there is a finite probability of measuring an angle in that range.  In the simple pointer 

example, the probability of measuring in a range is proportional to the size of the range, i.e. all angles are 

equally likely.  Noting that Pr(0 ≤  θ < 2π) = 1, and that all angles are equally likely, it must be that (given 

0 ≤ θ1 ≤ θ2 < 2π): 

2 1
1 2Pr( )

2

 
  




   . 

We can find and graph a function of angle, pdf(θ), such that (Figure 1.9, right): 

2

1

1 2Pr( ) pdf( ) for all ,d



             . 

pdf(θ)

1/(2)

2
θ

0

2

1

1 2Pr( ) pdf( ) d



       θ

θ1 θ2

 

Figure 1.9  (Left) A simple spinner.  (Right) Example of pdf(θ), and Pr(θ1 < θ < θ2). 

Since the angle must be somewhere in [0, 2π),  

2

0

1
pdf( ) 1 pdf( )

2
d


  


   . 

Note that the probability of measuring any given, specific value (with no interval around it) is vanishingly 

small, i.e. zero.  Therefore, Pr(θ in [a, b]) = Pr(θ in (a, b) ). 

As a slightly more complicated example, let’s measure the 1-dimensional position of a hypothetical 

particle.  Position is a continuous random variable, and with many real-world measurements, the 

probability of finding the particle is concentrated near a point, though finite probabilities extend to infinity 

in both directions.   

Within a differentially small region dx, around a value x,  

the probability of finding the particle is proportional to dx.   

This is the relationship between probability and probability density: 

 Pr(random value being in the region [x, x+dx] ) = pdf(x) dx . 

pdf(x) varies for different values of x, and is called the probability distribution function, or PDF:   

 
0

Pr
pdf( ) lim , is a random variable described by pdf( )

dx

x X x dx
x where X x

dx

  
 . 

Thus we can graph the PDF (proportionality factor) as a function of x (Figure 1.10). 

pdf(x)

x

pdf(x) Pr(x < X < x+dx) = 

pdf(x) dx

x

dx

x+dx  

Figure 1.10  Typical probability distribution functions (PDFs). 
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The PDF is like a smoothed-out histogram of samples of the random variable.  If you made billions of 

trials, and a fine-grained histogram of the results, you’d get (essentially) the PDF. 

What about the probability of the random value being in a finite interval [a, b]?  From: 

Pr(random value being in the region [x, x+dx] ) = pdf(x) dx , 

it follows that: 

 Pr random value being in the region [ , ] pdf( )
b

a
a b x dx  . 

Furthermore, since the particle must be somewhere in (–∞, +∞),  

pdf( ) 1x dx



 . 

When there is more than one pdf under consideration, we use a subscript to distinguish them.  E.g., the PDF 

for a random variable X might be given as pdfX(x). 

[Sometimes, one encounters a function whose value is proportional to the probability density, i.e., the 

function is some constant times the PDF.  In that case, ( ) 1f x dx



 .  Such a function is called an 

unnormalized PDF.]  In this book, we always use normalized PDFs (and wave-functions).   

1.7.3 Complex (or “Probability”) Amplitude 

In Quantum Mechanics, probabilities are given by a wave-function, such as ψ(x).  ψ(x) is a complex-

valued function of the real position x: for every real number x, ψ(x) gives a complex number.  ψ(x) is 

related to pdf(x), i.e., the probability density function for measuring the particle at the point x: 

|ψ(x)|2 = pdf(x),  and recall  |ψ(x)|2 = ψ*(x) ψ(x). 

Because PDFs must integrate to 1, we say ψ(x) is “normalized” if: 

*( ) ( ) 1dx x x 



 .  

ψ(x) is the complex-valued probability amplitude  [Bay p8t], or just amplitude, at each point, x.   

Why do we need a complex valued function to define a simple real-valued PDF?  We need it 

because of the way probability amplitudes combine when a wave-function is a superposition of 

two or more possible states.   

The two states of a superposition combine as if their amplitudes were oscillating sinusoids at every point, 

with both an amplitude and a phase.  We can think of ψ(x) as a phasor-valued function of space.  This 

means the aggregate probability is not the sum of the (real) probabilities of the component states.  Instead, 

the aggregate (complex) probability amplitude is the sum of the (complex) amplitudes of the component 

states.  An example illustrates this: 

Suppose there exists a state, ψ, which at some point a is: ψ(a) = (1 + i).  Then |ψ(a)|2 = 2 = pdf(a).  

Suppose another state exists, φ, which at the point a is the same as ψ: φ(a) = (1 + i).  Then |φ(a)|2 = 2 = 

pdf(a).  Now suppose a particle is in an equally weighted superposition of states ψ and φ (call this new state 

χ).  What is the pdf of χ(a)?  Let’s start by noting that, if ψ(x) is orthogonal to φ(x): 

( ) ( )
( )

2

x x
x

 



  (we insert the 2 to keep χ normalized) . 

Then 
(1 ) (1 )

( ) 2 2
2

i i
a i

  
   , and pdf(a) = |χ(a)|2 = 4, which is twice the PDF of either ψ or φ.  

This is because ψ and φ reinforce each other at that point.. 
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Now let’s suppose that ψ and φ are different at the point a.  We’ll leave ψ(a) = (1 + i), but let φ(a) = 

(1 – i).  Then |φ(a)|2 = 2 = pdf(a), just as before.  But what happens now if a particle is in an equally 

weighted superposition of states ψ and φ?  Then, the state χ is given by (again assuming orthogonal ψ and 

φ): 

( ) ( ) (1 ) (1 )
( ) 2

2 2

a a i i
a

 


   
    

Then pdf(a) = |χ(a)|2 = 2.  In this case, even though the magnitudes of both ψ and φ are the same as 

before, the magnitude of their sum is different than before.  This is because they only partially reinforce 

each other; the phase of the complex values of ψ and φ are different, so their magnitudes don’t simply add.   

Finally, suppose φ(a) = (–1 – i).  Then |φ(a)|2 = 2 = pdf(a), as before, but χ(a) = 0 and pdf(a) = 0.  In 

this case, the magnitudes of ψ and φ are still the same as before, but they are of opposite phase, so they 

cancel completely in an equally weighted superposition of states.   

It is this adding of complex valued probability amplitudes  

that accounts for most quantum weirdness.   

In other words, QM is weird because of interfering sinusoids. 

Note that this kind of interference (that of adding complex amplitudes) is identical to phasor 

computations in fluids, electromagnetics, or any other kind of wave interference.  In other words: 

The algebra of adding sinusoids of a fixed frequency, but arbitrary amplitude and phase,  

is the same as the algebra of complex numbers. 

1.7.4 Averages vs. Expectations 

It can be shown that the average value of a random variable (averaged over many trials) is: 

1

pdf( ) , or Pr( )

N

i i

i

x dx x x x x x





  . 

It is clear that the average value of many trials may be an impossible value for any single trial; e.g., the 

average value of the roll of a die is 3.5, but no single role can produce that value.  Often, the term 

“expectation value” or “expected value” is used to mean “average value.”  This can be confusing, because 

the “expected value” of a die roll is 3.5, yet you would never expect the value of a die roll to be 3.5.  Since 

the term “average” is clear and precise, we don’t use the term “expectation value.” 

1.8 The Origin of Schrödinger’s Equation 

The Schrödinger equation is the equation of motion (EOM) for a wave-function, as well as for other 

quantum systems, including spin and multi-particle systems.  Like all EOMs, it predicts the future state 

from an initial state.  The Schrödinger Equation is completely deterministic; it is the measurement of 

quantum systems that is probabilistic.  Where does Schrödinger’s equation come from?  Many books note 

that it cannot be derived from anything; it is a discovery of Quantum Mechanics.  Nonetheless, it must be 

motivated by something; Erwin Schrödinger didn’t just pull it out of thin air. 

1.8.1 The Wave Equation 

Wave Mechanics began when experimentalists noticed that particles had wave properties; most 

notably, they exhibited wave-like diffraction and interference.  (Davisson and Germer discovered electron 

waves by accident after their equipment malfunctioned.)  Moreover, the wavelength of particles has the 

same relationship to their momentum as photons, namely: 

 spatial frequency (aka wave-number), in rad/m
h

p k where k


   . (1.1) 

Since one wavelength, λ, is 2π radians, k = 2/λ.   
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Since photons are traveling waves, and particles had similar wave-like properties, physicists wondered 

if particles could be represented by similar traveling waves.  A real-valued wave, traveling in the x-

direction, can be represented by: 

 ( , ) cos frequency in time, measured in rad/s

real amplitude of the wave .

a t x B kx t where

B

   


 

Thus at a fixed point in space, the amplitude varies sinusoidally over time; at a fixed point in time, the 

amplitude varies sinusoidally over space.  Viewed over space and time, the wave travels smoothly in the 

positive x direction (Figure 1.11). 

Real amplitude

x

direction 

of travel

 

Figure 1.11  A wave traveling smoothly in the positive x direction. 

Particles were found experimentally to interfere like sinusoids.  The mathematics of interfering 

sinusoids is, in fact, the mathematics of complex arithmetic. 

(See Phasors section earlier).  This means that particles’ waves are well-described by complex-valued 

traveling waves.  Complex-valued wave-functions add as complex numbers and then square to produce 

probability densities.  The complex wave equation then has both real and imaginary parts as traveling 

waves: 

 
( , ) complex amplitude of the wave

i kx t
t x Ae where A





  . 

In other words, A is a phasor.  The instantaneous value of a wave at a given point in space at a given point 

in time is sometimes called the instantaneous amplitude.  Thus, ψ(t, x) is the instantaneous (complex) 

amplitude of the wave-function at the point (t, x). 

1.8.2 Energy, the Hamiltonian, and the Wave Equation 

Further work found that for a fixed-energy quantum particle or system, the phase of its representing 

sinusoid shifted in time at a constant rate:  = ωt.  This is equivalent to the complex wave function rotating 

in the complex plane over time as e–iωt (i.e., the complex value, at each point in space, had its phase 

decrease continuously with time).  Here again, the analogy to photons was useful.  The frequency of 

rotation (in the complex plane) of the complex value of a wave-function is proportional to its energy, just 

like a photon: 

E = ħω  where  E is the total energy of the particle (or photon) .   (1.2) 

Total energy is kinetic energy plus potential energy: E = T + V.  For a particle, kinetic energy is 

T = p2/2m.  The potential energy of a particle is a given function of its position in space; call it V(x).  (For 

simplicity, we’ve assumed V is independent of time, but all of this works even if V = V(t, x)).  Therefore: 

2

( )
2

p
E T V V x

m
      (just as in classical mechanics). 

We will see that Schrödinger’s equation is just this equation, written as quantum operators acting on the 

wave-function: 

2

2
ˆ

2

ˆ ˆ

ˆ ˆ ˆ ( )
2

V
E T

E T V i V x
t m x
 

 
  

      
  

  

 (Schrödinger’s equation). 
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If a particle of fixed energy is represented by a traveling wave-function, ψ(t, x) = A ei(kx – ωt), then its 

derivative with respect to time is: 

( )( , ) ( , ) ( , )i kx t E
t x i Ae i t x i t x

t

     
       

  
, 

and rearranging: 

( , ) ( , )i t x E t x
t
 





.  (1.3) 

The derivative with respect to time multiplies the wave function by a value proportional to the particle’s 

total energy. 

The derivative with respect to x of a simple traveling wave function (which has definite momentum, 

eq. (1.1)) is: 

22
( )

2
( , ) ( , ) and ( , ) ( , )i kx t ip p
t x ikAe t x t x t x

x x

       
      

    
. 

Rearranging the latter equation, to get kinetic energy: 

2
2 2

2

2 2 2

2

( , ) ( , ), and dividing by 2  ( particle mass)

( , ) ( , ) ( , ) .
2 2

t x p t x m m
x

p
t x t x T t x

m mx

 

  


  



 
 



  

The derivative with respect to x multiplies the wave function ψ by a value proportional to the particle’s 

momentum, and the second derivative multiplies ψ by a value proportional to p2, and thus proportional to 

the particle’s kinetic energy.  Now simply plug E = T + V(x) into the time derivative above, eq. (1.3): 

 
2 2

2
( , ) ( ) ( , ) ( , ) ( ) ( , )

2
i t x T V x t x t x V x t x

t m x
   

  
   

 
. 

Voila!  Schrödinger’s equation!  It’s nothing more than a Hamiltonian operator (T + V) applied to the 

wave function, using the experimental relationship between total energy and temporal frequency (ω), and 

momentum and spatial frequency (k).  The Hamiltonian produces a particle’s total energy, kinetic plus 

potential (even if V(t, x) varies in time).  On the left side of Schrödinger’s equation is the time derivative, 

producing total energy times ψ: Eψ.  On the right side is the spatial second derivative, producing Tψ, plus 

the potential energy, V(x)ψ.  (Magnetic fields complicate this simple picture somewhat.) 

The final piece of the puzzle is that a particle usually can not be in a state of a single traveling 

sinusoidal wave function (because then it would be equally likely to be found anywhere in infinite space).  

It must be in a superposition of many (even infinitely many) sinusoidal wave functions.  But each 

component traveling wave function individually satisfies Schrödinger’s equation.  And Schrödinger’s 

equation is a linear differential equation.  So given a set of functions which satisfy the equation, any 

superposition (linear combination) of those functions also satisfies Schrödinger’s equation.  Thus: 

In nonrelativistic QM, Schrödinger’s equation applies  

to all massive particles and all wave-functions. 

1.9 The Meaning of the Wave-Function 

1.9.1 Where Are We, and Where Do We Go From Here? 

The most evident feature of the wave function is that it tells the probability density of finding the 

particle at any point in space; in 1D the unit of probability density is m–1; in 2D the unit of probability 
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density is m–2; in 3D the unit of probability density is m–3.  But the wave function is much more [P&C 

p59m]:   

A particle’s wave-function defines all the spatial properties of the particle, not just its position.   

It defines it momentum, orbital angular momentum, kinetic energy, etc.   

To compute things involving external fields, such as potential energy, we must know (in addition to the 

wave-function) the potential field V(r).  Note that even the probability density of a particle is more than just 

the probability of measuring it to be somewhere: for many quantum purposes, a single particle behaves as if 

it were actually distributed throughout space, as defined by its wave function.  [In fact, in Quantum Field 

Theory, they often call it “particle density” or “number density” instead of “probability density.”  Particle 

density for anti-particles can be taken as negative.]   

For example, if the particle has charge q, we compute the potential produced by it from the charge 

distribution defined by 
2

charge ( ) ( )x q x   [Blo p434b].  (However, the distribution of charge from a 

single particle does not push on itself.)  If the particle has mass m, we distribute its mass according to 
2

mass ( ) ( )x m x  , as well.  If a particle has spin, it’s spin angular momentum, and therefore also 

magnetic dipole moment, is actually a spin (and dipole moment) density, spread out according to 

2

spin ( ) ( )
2

x x   [Bay 14-92 p326m].   

However, there are limits to the model of a physically distributed particle.  When things like mass 

appear in a denominator, as with kinetic energy = p2/2m, we cannot consider an infinitesimal point as 

having an infinitesimal fraction of the mass.  If it did, and the momentum were macroscopic, the KE would 

blow up everywhere. 

You can localize a particle to a very small region of space with a good measurement, but until you do 

so, it may be spread out.  Also, immediately after you measure it, it will start spreading out again, and 

become distributed over time.  (The concept of actually being distributed in space gets trickier with 

entangled multi-particle states, which we address later.)  [In QM, a particle can be localized to an arbitrarily 

small region, but in reality, as described by QFT, even a so-called “point particle” has a limit to how tightly 

you can localize it, but that is beyond our scope.]   

The wave function does not define the particle’s spin (if any), nor any angular momentum or energy 

associated with the spin (such as magnetic-moment/B-field interactions).  Spin-1/2 and related values are 

defined by “spinors,” described later. 

Because the wave-function defines a particle’s momentum, it tells us not only where it is, but where 

it’s going.  The question of where it’s going is tricky in QM, though, because any real particle is in a 

superposition of momentum states, i.e. it’s moving in multiple ways.  For example, consider bound states: a 

particle is tied to some region by an inescapable potential.  For a stationary state (where the particle 

properties don’t change with time), the average momentum must be zero, otherwise the particle would be 

moving, and escape the potential. 

Non-stationary states and unbound states can be subtle; we discuss these in the text as the need arises. 

1.9.2 Gross Anatomy of a Wave Function 

We now describe some important qualitative properties of wave-functions, whose understanding helps 

make quantum mechanics more sensible and intuitive.  We first introduce a particle at a high energy above 

the potential, which behaves fairly classically, then discuss a more “quantum-like” energy, to reveal some 

of the non-classical consequences of QM. 

High energy wave-function:  Consider a particle in a box, with a potential step at the bottom (Figure 

1.12).  What does the wave function look like? 
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x

V(x)

particle 
energy, E

c0

ψ(x)

kinetic energy

transition  

Figure 1.12  Particle of energy E, in a box with a step potential bottom.  From the correspondence 

principle, we expect the wave-function to be larger on the left, where the particle is moving 

“slower.” 

The stationary state ψ(x) is real, and is everywhere a superposition of positive and negative momenta.  The 

real-valued sinusoids oscillate according to  
1/ 2

( ) 2 / /clk x m E V p     .  (We will see that since p2 

can be thought of as an average, pcl ≡ (p2)1/2 is not the same as p.)  On the left, the kinetic energy (T = E – 

V = p2 / 2m) is low, so p2 is low, and k = pcl / ħ (rad/m) is low (low spatial frequency).  On the right, T is 

higher, pcl  is higher, and k is higher (higher spatial frequency).  Not only is ψ(x) a superposition of 

momenta, but it is important that we can associate different momenta to different locations on the wave-

function.  pcl is lower on the left, and higher on the right.  This introduces the concept of “local 

momentum,” and “local properties” in general. 

Concerning the amplitude of ψ(x): on the left of the step-bottom box, the kinetic energy (E – V) is 

lower, so a classical particle moves “slowly.”  On the right, the kinetic energy is higher, so a classical 

particle moves “quickly.”  Classically, then, the particle is more likely to be measured on the left half than 

the right.  The correspondence principle says that at high energy, these classical results must be born out 

quantum mechanically.  The particle “spends more time” on the left side, where it is moving slowly, so the 

amplitude of ψ is larger (more likely to find the particle there).  Conversely, the particle “spends less time” 

on the right, where it is moving quickly, so the amplitude of ψ is smaller (less likely to find the particle 

there). 

As always, the allowed energies of this potential are quantized by the boundary conditions on ψ, in this 

case, that ψ(x) = 0 at the edges.   

If the potential box is wide (many cycles of ψ in each half), then the potential step has only a small 

transient effect on ψ, indicated as a transition from the sine wave on the left to the sine wave on the right.  

The perturbation on ψ from the discontinuity decays rapidly away from the transition. 

Low energy wave-function:  Consider the ground state of a harmonic oscillator: 

 
1/ 4

2
0 0

1
( ) exp / / [Gos 7.18 p144]

2

m
x x x where x m


 



   
     
   

, 

and also consider the 1st excited state (both shown in Figure 1.13). 
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Figure 1.13  Ground state (left), and first excited state (right) of a harmonic oscillator.  E1 = 3E0. 

There are several important points to notice, which illustrate general quantum mechanical principles.  We 

discuss the following points: 

1. All bound states can have ψ(x) real. 

2. At a peak, the local momentum p = 0, but p2 ≠ 0.   

3. In the classically allowed region, ψ(x) turns toward zero: down when it’s positive (negative 

curvature), and up when it’s negative (positive curvature). 

4. Beyond the classical turning points, p2 < 0, and p is imaginary! 

It is less obvious than with the previous wave-function, but each point on this wave-function also has a 

value of momentum associated with it.  We call that the “local momentum,” and define it more precisely 

later, when we examine operators. 

Bound states can have ψ(x) real:  Simple hamiltonians, 
2ˆ ˆ / 2 ( )H p m V x  , are symmetric with 

respect to p: any solution for p also has –p as a solution, with the same energy.  Since Schrödinger’s 

equation is linear, then the superposition wave function for p + (–p) is also a solution.  Their sum is real.  

For example, ignoring normalization, we have: 

 ( ) , ( ) are wavefunctions for and .

( ) 2cos( ), is also a solution, and is real .

ipx ipx
p p

ipx ipx

x e x e p p

x e e px

 








  

  

 

[With magnetism, the hamiltonian is: 

2
1ˆ ˆ ( ) ( ) ( ) is the magnetic vector potential

2

q
H x V x where x

m c

 
   

 
p A A . 

The hamiltonian no longer commutes with p̂ , and the situation is more complicated.] 

Ultimately, all hamiltonians are real, so the time-independent Schrodinger eigenvalue equation is real, 

and the existence theorem of differential equations says it has a real solution.  Therefore all bound states 

can be real. 

At a peak of ψ(x), 
( )

ˆ ( ) 0
x

p x
i x





 


.  We will see that the momentum operator at a point x 

multiplies the wave-function by the local value of the momentum at that point.  When ∂ψ/∂x = 0, there are 

equal contributions at x from each of +p and –p, so they cancel.  However, (p2)local is not generally zero at 

such a point.   

In the classically allowed region, ψ(x) turns toward zero: down when it’s positive, and up when 

it’s negative.  In other words, when the spatial frequency k (aka wave number) is real, ψ oscillates (i.e., we 

have a wave, given enough room).  In the ground state of Figure 1.13, there’s not enough room in the 

classically allowed region for ψ to actually cross zero, which is why the original claim is about ψ “turning 
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toward 0,” instead of “oscillating.”  This means every zero of ψ(x) is also an inflection point.  From the 

local momentum, we will find that: 

 2
2

2 2

( )
( )local

p
x

x
x





 


. 

In the classically allowed region of space, kinetic energy T > 0, so (p2)local > 0.  Then, when ψ(x) > 0, 

∂2ψ/∂x2 < 0, and ψ curves downward.  When ψ(x) < 0, ∂2ψ/∂x2 > 0, and ψ curves upward.   

Negative kinetic energy and imaginary momentum:  Related to wave-function curvature, we see 

that beyond the classical turning point, (p2)local < 0!  This surprising result is consistent with ψ(x) being an 

energy eigenstate: the energy operator, ˆ ˆ ˆ( )H T V x  , must evaluate to the same local energy E at every 

point of ψ(x).  But in the classically disallowed region (beyond the classical turning point), V(x) > E, so 

kinetic energy T = p2/2m must be less than zero!  This is crucially important to orbital angular momentum, 

which we discuss later.  Furthermore, the classically disallowed region adds a negative contribution to the 

overall averages of T and of p2.   

A negative kinetic energy implies that formally, in the disallowed region, p itself is imaginary.  For an 

energy eigenstate, the local  momentum is either real or purely imaginary.  For superpositions of energy 

eigenstates, the local momentum may be complex.  We will see later, in the discussion of probability 

current, that the real part of the local momentum has a direct physical meaning.  However, negative kinetic 

energy and imaginary momentum have no classical or simple interpretation.  Nonetheless, we accepted 

their validity as an axiom earlier (#6, p15), and their consequences are fully verified by experiment.   

Also, at the classical turning points, ψ(x) has inflection points.  (Recall that a change in curvature is 

defined as an inflection.)  In the classically allowed region, ψ curves toward the x-axis, as noted above.  In 

the classically forbidden region, ψ is asymptotic to the x-axis, and therefore curves away from the axis. 

1.10 Operators 

Operators are an essential part of quantum mechanics.   

The existence of superpositions of states leads to the need for operators  

to compute the properties of such superpositions, because an operator can associate  

a different number with each component of the superposition.   

In this section, we focus on operators on functions.  Later, we consider operators on discrete-state systems.  

Before discussing the physical meaning of operators, we must first give some mathematical description.   

Operators turn a function of space into another function of space (or more generally, a vector into 

another vector).  In QM, there are three main uses for operators: 

1. To extract observable (measurable) attributes of a particle from a wave function.  These are 

hermitian operators.  The functions resulting from such operators are not quantum states. 

2. To compute new states from old states, such as the state of a particle or system after some time, or 

after a rotation.  These are unitary operators, and their results are quantum states. 

3. To perform mathematical operations which yield valuable information about quantum mechanics, 

and which are much more difficult to discover with non-operator methods.  These algebraic 

operators are usually neither hermitian nor unitary, but some of them might be either.  Their 

results are not generally quantum states. 

We describe each of these uses in more detail shortly.  Examples of the three uses of operators: 

Observable operators State transformation operators Algebraic operators 

2 2ˆ ˆ ˆˆ ˆ ˆ, , , , , , ...z zx p H L L s s   ˆ ˆ ˆ( ), , , ( )T a R U t   â, â†, Ĵ+, Ĵ– 

An operator acting on a spatial function ψ(x) produces another spatial function. 
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Operators are part of the algebra of quantum mechanics; operators are written in both wave-function 

notation, and Dirac notation (described later).  Operators exist for both spatial wave-functions, and discrete 

states, such as particle spin.  In quantum mechanics, all operators [except time-reversal] are linear 

operators.   

A linear operator acting on a superposition, say ψ(x), produces a superposition of results  

based on the superposition of functions which compose ψ(x).   

We distinguish between a quantum state, which is wave-function that describes all the spatial 

properties of a particle, and more general functions of space which have other uses but are not quantum 

states.  The result of an operator may be either a quantum state, or some other function of space that is not a 

quantum state.  For example: 

ˆ ˆ( ) ( ) is a hermitian operator
d

p x x where p
i dx

  , 

is a function of space (function of x), but is not a quantum “state,” because it is not a wave-function.  It is 

not normalized, and has the wrong units for a wave-function.  In contrast, given a 2D wave-function, 

ψ(x, y), which is a state, we can rotate it in the x-y plane: 

 1 2 1
ˆ ˆ( ) ( , ) ( , ) cos sin , sin cos ( ) is a unitary operatorR x y x y x y x y where R            . 

This is a new quantum state, computed from the old one. 

Some references do not properly distinguish between a “spatial function” and a quantum “state.”  

Some even define an “operator” as a thing which acts on a “state” to produce another “state.”   

This is incorrect.  An operator acts on a function to produce another function.   

Either one or both functions may or may not be quantum “states.” 

For example, imagine a particle state ψ(x) = 1/2 between [0,4], and 0 elsewhere (Figure 1.14, left).  

Consider also the position operator acting on it, ˆ ( ) ( ) / 2x x x x x    between [0, 4], and 0 elsewhere 

(Figure 1.14, middle).   

ψ(x)

0  1 2  3 4

xψ(x)

2

ψ*(x)xψ(x)

1

2

1

2

1

0  1 2  3 4 0  1 2  3 4  

Figure 1.14  (Left) A normalized wave-function, ψ(x).  (Middle) xψ(x).  (Right) ψ*(x)xψ(x). 

Note that, though ψ(x) is a quantum state, ˆ ( )x x  is not a state, because it is not a wave-function: it doesn’t 

define the properties of a particle or system; it’s not even normalized, and it has the wrong units!  However, 

it can be used to calculate things related to the particle’s position, as shown later.  

Operators may also act on a given function which is not a quantum state, e.g. the result of some other 

operator on a state.  Such a given function may still be a superposition of results.  A second operator acting 

on such a function which is not a state produces a new superposition of new results based on the 

superposition of old results in the given function.  For example, in two dimensions, we have wave-

functions ψ(x, y).  The ˆ
zL  operator (angular momentum about the z-axis) is a composition of 

ˆˆ ˆ ˆ ˆ ˆˆ ˆˆ, , , and :y x z y xx p y p L xp yp  .  ˆ
zL  typically acts on a state, which means that in the first term, 

ˆ yp
i y





acts first on the given state to produce a function of space which is not a state.  Then x̂  acts on 

that spatial function to produce a new spatial function, which is also not a state.  Similarly for the second 

term, ˆˆxyp .  The result of ˆ
zL  acting on a state is a spatial function that is not a state. 
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1.10.1 Linear Operators 

In quantum mechanics, all operators [except time-reversal] are linear operators.  A linear operator 

produces a superposition of results based on the superposition of components in the given function.   

A linear operator distributes over addition,  

and commutes with scalar multiplication: 

 ˆ ˆ ˆ( ) ( ) ( ) ( )L a x b x aL x bL x      . 

Examples:  Is multiplication by x a linear operator?  Let’s see: 

 ( ) ( ) ( ) ( )x a x b x ax x bx x      . It’s linear! 

How about multiplication by x2 ?   2 2 2( ) ( ) ( ) ( )x a x b x ax x bx x      .  It’s also linear. 

How about multiplication by cos(x)?  Or multiplication by any arbitrary function f(x)? 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )f x a x b x af x x bf x xs      . It’s linear! 

Is squaring a spatial function a linear operation? 

 
2 2 2 2 2 2 2( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( )a x b x a x ab x x b x a x b x             . It’s not linear. 

Note that complex conjugation, the Re{}, and Im{} operators are all nonlinear. 

Composition of operators:  We frequently operate on a function with one operator, and then operate 

on that result with another operator.  For example, we may first operate with the operator ‘x’, which means 

multiply the function by ‘x’ everywhere:  ψ(x)  xψ(x).  We may then operate on that result by 

differentiating w.r.t. x: ( )x x
x





.  Acting with one operator and then another, is called composition of 

operators.  The composition of ˆ ˆˆ ˆon isA B AB .  Because operators act to the right, this means act with B̂  

first, then act with Â.  Many references call the composition of two operators the “product” of the two, and 

sometimes even “multiplying” the two.  In such a case, there is generally no multiplication involved (unless 

one of the operators is a “multiply by” operator). 

1.10.2 Operator Algebra 

Operators have their own algebra, or rules, for performing mathematical operations and for being 

manipulated.  In wave mechanics, operators are linear operators on continuous functions.  (Matrix 

mechanics is discussed later.)  Some operators are simple and straightforward: 

x




  This is a linear operator: it takes a derivative with respect to ‘x’. 

However, some other operators are more involved.  For example, ‘ x
x

 
 
 

’ can be a compound operator.  It 

means “multiply by x, and then take the derivative with respect to x.”  As an operator, it is not an arithmetic 

expression (where 1x
x

 
 

 
).  Instead,  

1 (an operator equation)x x
x x

  
  

  
. 

How can this be?  What happened to basic calculus?  The key here is to distinguish the operator from the 

operand.  The operator is the action to be taken.  The operand is the object on which the action is taken.  

For example: 
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x




  ‘

x




’ is an operator.  There is no operand or result here. 

1x
x

 
 

 
  The operator is ‘

x




’, the operand is ‘x’, and the result is ‘1’. 

But in the case of the operator equation: 

1x x
x x

  
  

  
 , ‘ x

x

 
 
 

’ is an operator, and ‘1 x
x





’ is an equivalent operator. 

In other words, this is an operator identity.  The above is not an arithmetic equation; it is a statement of 

equivalence of two operators.  There is no operand in the above equation, and no result (just like writing 

‘∂/∂x’ by itself).  Let’s establish the equivalence in the operator equation (aka operator identity) above: 

( )x x
x


 

 
 

  We insert an arbitrary operand, ψ(x), so we can operate on it. 

 ( )x x
x


 

  
 

  The operator says to first multiply by x, then differentiate w.r.t. x. 

  ( ) ( )x x x x
x x

 
    

      
 Using the product rule for derivatives. 

( ) ( )x x x
x

 


 


 because 1x
x

 
 

 
 , where x is an operand here. 

1 x
x


 
  

 
  “factoring out” ψ, because linear operators distribute over addition. 

Thus the operator ‘ x
x

 
 
 

’ is exactly equivalent to the operator ‘1 x
x





’. 

When you see something like ‘ x
x

 
 
 

’, how do you know if this is an arithmetic expression (with an 

operator ‘
x




’ and operand ‘x’), or just an operator?  You can only tell from context.  In other cases, 

though, operators may have a “hat” over them, to explicitly indicate they are operators. 

Let’s now derive an example of operator equivalence without actually inserting an arbitrary operand.  

We keep the operand silently in our minds, and write our steps as we operate on this hypothetical operand: 

2

2 2 2

2 2 2

What is an equivalent operator to this?

Using product rule for derivatives; in the 1st term,  is an .

2 Because 2 , where  is an  here.

x
x

x x x operand
x x

x x x x x operand
x x

 
 
 

  
    

 
  

 

 

Notice how there are fewer steps compared to the previous derivation, because we didn’t actually insert an 

operand, and then remove it at the end.  However, this shortcut method may take some getting used to. 

Beware that many pairs of operators do not commute, i.e. ˆ ˆˆ ˆAB BA ., so keep operators in order.  In 

ordinary algebra, we often write: 
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 
2 2 22a b a ab b    . 

When ‘a’ and ‘b’ are numbers (or functions), this is fine.  But if instead of numbers, we had operators 

ˆ ˆandA B , this would be wrong, because we changed the order of ‘a’ and ‘b’ in the second term.  Instead, 

we should write: 

  
2 2 2ˆ ˆ ˆ ˆˆ ˆ ˆ ˆA B A AB BA B     . 

For example, the hamiltonian of a charged particle in a magnetic field includes: 

 
2 2

2 2

2
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) and ( ) do not commute

q q q
x x x x where x

c c c

 
     

 
p A p pA A p A p A . 

This preservation of ordering is also required for matrix operators in discrete-state systems.  (See the later 

section on commutators for more on operator identities.) 

1.10.3 Operators: What Is the Meaning of This? 

We continue our focus here on wave-mechanics, i.e. operating on wave-functions such as ψ(x).  Later, 

we’ll discuss operators in Dirac notation, and in discrete state quantum mechanics. 

1.10.3.1 Think Globally, Act Locally: Local Values, Local Operators 

Just what do operators do?  What is the meaning of some arbitrary operator, ôψ(x)?  Let’s start simply, 

with a spatial wave function ψ(x), in the position basis.  At each point in space, the wave function defines 

the particle density (or probability density of finding the particle).  Also, for a given ψ(x), a given operator 

has a local value at each point in space (i.e. for each x), which generally depends on ψ(x).  In other words, 

at each point in space, the wave function and the operator together define the local value of the operator.  

We could write this local value as a function of position, say oψ(x), where the subscript ψ indicates that the 

local value of the operator at each point x was computed from a given ψ(x).  The result of an operator 

acting on a spatial function ψ(x) is to simply multiply ψ(x) at each point in space by the local value of the 

operator at that point in space, oψ(x): 

ˆ ( ) ( ) ( )o x o x x  .  (1.4) 

The operator ô is a mathematical operation that turns ψ(x) into oψ(x)ψ(x). 

For example, in the position basis, the simplest operator is the position operator, x̂ : 

ˆ ( ) ( ) ( )localx x x x x  . 

But what is the local position associated with the position ‘x’?  It is simply ‘x’!  Therefore, 

ˆ( ) ( ) ( )localx x x x x x x    . 

We will show shortly that we can use this to compute the overall average value of ‘x’ (the particle’s 

position), from its wave-function ψ(x): 

ˆ *( ) ( )x x x x dx 


  . 

A more complicated example is “local energy,” which is an important quantity.  In computational 

quantum chemistry, one can find numerical solutions to the time-independent Schrödinger equation by 

starting with a trial wave-function (a trial solution), and adjusting it according to its local energy at each 

point, to construct the next iteration of trial wave-function.  But how can we compute Elocal(x)?  We use the 

definition of an operator: 

ˆ ( )ˆ ( ) ( ) ( ) ( )
( )

local local

H x
H x E x x E x

x


 


   . 
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For the non-magnetic hamiltonian, we have: 

   

2 2 2

2

2 22 2
2 2

ˆˆ ( ) ( )
2 2

/ 2 ( ) ( ) / 2 ( )ˆ ( )
( ) ( ).

( ) ( ) ( )
local

p
H V x V x

m m x

m V x x m x
xH x xE x V x

x x x

 


  


    



     
       

 

Given some trial wave-function ψ(x), one can evaluate the local energy from this formula. 

In general, then, we define the local value of any operator as: 

ˆ ( )
( ) , provided ( ) 0

( )
local

o x
o x x

x





  . 

There is a subtlety if ψ(x) is zero somewhere, because then the local value is undefined.  This is usually not 

a problem, because the “local density” is well defined, as we will see later.  However, for well-behaved 

wave-functions, a zero of ψ(x) is a “removable singularity” in the local value, and can be “filled” by its 

limiting value: 

0

0 0If ( ) 0, then ( ) lim ( )local local
x x

x o x o x


  . 

A local operator is an operator determined only by ψ at x, or ψ in an infinitesimal neighborhood of x.  

Thus ∂/∂x is a local operator.  Some operators depend on more than one point of ψ, or even on all of ψ(x); 

they are nonlocal operators.   

All common observables are local operators.   

In general, an operator can act on any function of space; it need not be a quantum state. If a spatial 

function is not a state, then what is it?  It is usually the result of some other operator acting on a state, but it 

could instead be a given potential (e.g., V(x) or A(x)), or one of various other functions of space. Such a 

spatial function encodes information.  To get at that information, you usually have to take a dot product 

with another relevant spatial function. 

Summary:  An operator acting on a given spatial function ψ(x) produces another spatial function.  

The given function may or may not be a quantum state, and the resulting function may or may not be a 

quantum state, i.e. it may or may not represent a quantum state that a particle or system could be in.   

Here is a summary of some common operators: 

 

Operator 

Position basis 

representation 

 

Comments 

position, x̂  x multiplies ψ(x) by position x.  The value of x does 

not depend on ψ. 

potential energy, V̂  
V(x) multiplies ψ(x) by potential V(x).  The value of 

V(x) does not depend on ψ. 

momentum, p̂  –iħ ∂/∂x multiplies ψ(x) by momentum plocal(x).  The value 

of plocal(x) does depend on ψ. 

kinetic energy, T̂  
2 2 2

2

ˆ

2 2

p

m m x

 




 
multiplies ψ(x) by kinetic energy Tlocal(x).  The 

value of Tlocal(x) does depend on ψ. 

Hamiltonian, Ĥ  2 2 2

2

ˆ ˆ ( ) ( )
2 2

p
V x V x

m m x

 
  


 

just a sum of kinetic and potential energy. 
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total energy, Ê  iħ ∂/∂t multiplies ψ(t, x) by energy Elocal(t, x).  The value 

of Elocal(t, x) does depend on ψ(t, x).  Note that 

∂/∂t works in the momentum basis, and other 

bases, as well. 

1.10.3.2 Operators as Eigenfunction/Eigenvalue Weighting 

Another way to think of a linear operation on a given function is this: the operator mentally 

decomposes the given function into a superposition (weighted sum) of the operator’s own eigenfunctions, 

then multiplies each eigenfunction component by its eigenvalue, and then sums up the result.  I.e.,  

1 1

ˆGiven: ( ) eigenfunctions of ; eigenvalue for ( ),

ˆand ( ) ( ), then ( ) ( ) .

n n n

n n n n n

n n

x o o x

x c x o x c o x

 

   
 

 

 

  
 

In other words, the operator “factors in” its eigenvalues as additional weights to the eigenfunction 

components of ψ(x).  We will examine more details of operator behavior in discrete bases in the chapter on 

matrix mechanics. 

1.10.3.3 Computing Measurable Results, Local Density 

Example: position:  As an example of extracting a measurable attribute of a particle from a wave 

function, let’s consider the position operator, x̂ .  From our earlier discussion, we know that: 

ˆ ( ) ( ) ( ) ( )localx x x x x x x    . 

We use this to compute the overall average value of ‘x’, the particle’s position, from its wave function ψ(x): 

ˆ *( ) ( )x x x x dx   . 

For example, in Figure 1.14 (left), we had ψ(x) = 1/2 between [0, 4], and 0 elsewhere.  The average value 

of the particle’s position is 

4 4
2

00

1 1 1
ˆ *( ) ( ) 2

2 2 8
x x x x dx x dx x 




     , 

which we can also see by inspection. 

You can think of the “average value” equation,  ˆ ˆ*( ) ( )o x o x dx   , as a direct statistical 

computation of an average value from a probability distribution function (PDF), where 
2

pdf( ) ( ) *( ) ( )x x x x    .  Then statisticians would write  

ˆ ( ) pdf( ) ( ) *( ) ( )local localo o x x dx o x x x dx    . 

So why do we write ‘ô’ in between ψ* and ψ?  Because the operator notation of QM is that an operator acts 

on the function to its right (or sometimes in a different way, it acts to the left).  Therefore: 

 *( ) ( ) is quite different from  *( ) ( )x x dx x x dx
i x i x

   
    

   
      . 

In QM, we must write the operator between ψ* and ψ, so that it acts on ψ: 
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ˆ ( )

ˆ ( ) pdf( ) ( ) *( ) ( ) *( ) ( ) ( )

ˆ*( ) ( ) .

loc

o

al local l

x

ocalo o x x dx o x x x dx x o x x dx

x o x dx



   

 

  



  



 (1.5) 

Example: momentum in position basis:  An operator such as momentum includes a derivative: 

 ˆ / /p i x   .  [Therefore, the value of the momentum at any point in space depends not only on the 

value of ψ(x) at x, but on ψ(x) in an infinitesimal neighborhood near x.]  How can we understand this 

operator for momentum?  Recall that one of the starting points of wave mechanics was that particles of 

definite momentum have a definite spatial frequency (wave-number), k = p/ħ.  This implies the 

eigenfunctions of momentum are (ignoring normalization): 

/( ) for a definite momentum,ipx
p x e p  . 

This particle has the same momentum, p, everywhere, so plocal(x) = p (a constant).  Then by the definition of 

operators, the momentum operator must take p(x) to pp(x).  That is: 

/ /ˆ ( ) ( )ipx ipx
localpe p x x pe  . 

What linear operator brings down the p from the exponent, as a multiplier in front?  The derivative w.r.t. x: 

/ /ipx ipxi
e pe

x





. 

This is almost what we need.  We fix the prefactor by simply multiplying by ħ/i 

/ / ˆipx ipxe pe p
i x i x

 
  

 
. 

We derived the momentum operator from the definition of operators,  

and the empirical fact that particles of definite momentum have definite wave-number k. 

Then for a general state ψ(x), at each point x there is a local value of momentum: 
'( )

( )
( )

local

x
p x

i x




 , 

provided ψ(x) ≠ 0.  We can then compute the average value of p for the particle in the standard way: 

ˆ ( ) pdf( ) *( ) ( ) ( )

ˆ*( ) ( ) *( ) ( ) .

local localp p x x dx x p x x dx

d
x x dx x p x dx

i dx

 

   

 

 

 

 

 

 
  

 

 

 
 

It is instructive to see how this works when ψ(x) is a superposition of two momenta, p1 and p2: 

   

   

   

2 2
1 2

1 1 2 2

1 2

( ) exp / exp / , , complex, 1

exp / exp /'
( ) .

exp / exp /
local

x A ip x B ip x A B A B

A ip x p B ip x p
p x

i A ip x B ip x







    


 



 

This is a weighted average of p1 and p2, where the weights depend on both the coefficients A and B, and on 

the values of the momentum eigenfunctions at x.  The weights are complex, and given explicitly by: 

   1 1 2 2
1 1 2 2

1 2

( ) exp / , exp /local

w p w p
p x where w A ip x and w B ip x

w w


  


. 

Momentum squared:  We noted earlier that at an extremum of a real-valued ψ(x), ∂ψ/∂x = 0, and the 

local momentum plocal(x) = 0.  This can be thought of as a weighted average of two different momenta: one 
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at +p and one at –p.  But when considering momentum-squared at that same extremum, 
2

2 2

2

( )
ˆ ( )

x
p x

x





 


, the contributions from (+p)2 and (–p)2 add; they don’t cancel.  In other words: 

 
2 2

2 2 2 ˆ ( ) ''( )
( ) ( ) ( )

( ) ( )
local local local

p x x
p x p x where p x

x x

 

 


   . 

This implies that globally, <p>2 ≠ <p2>, as is well-known.  A similar situation exists with angular 

momentum  2L̂ , which we will examine more closely later. 

Local density:  We’ve noted that the overall average of an operator is an integral over all space of the 

local value, weighted by the particle density (PDF) at each point: 

ˆ ˆ( ) *( ) ( ) *( ) ( )localo o x x x dx x o x dx   
 

   . 

This suggests we define a local density of ô as: 

ˆ ˆ( ) ( ) *( ) ( ) *( ) ( ),e.g., *( ) ( )o local px o x x x x o x x p x          . 

A local density is analogous to physical densities such as mass density.  Then the global average is just the 

integral over all space of the local density: 

ˆ ˆ ˆ ˆ( ) *( ) ( ) , e.g., ( ) *( ) ( )o po x dx x o x dx p x dx x p x dx     
   

       . 

Conceptually, the local density can be thought of, in most single-particle cases, as describing the actual 

distribution in space of a physical quantity, such as momentum density.  Also: 

Local density has an advantage over the local value, olocal(x),  

because it is well defined, even when ψ(x) = 0.   

When ψ(x) = 0, the local density is zero, regardless of the local value at that point, since (roughly) no part 

of the particle exists at that point. 

Even non-wave properties, such as a particle’s intrinsic spin, have local densities given by the wave-

function.  E.g., for a spin-up electron, its spin angular momentum density is: 

 ( ) *( ) ( ) from Bay 14-92 p326m
2

spin x x x   . 

1.10.3.4 New States From Old States: Time Evolution, and More 

An example of an operator producing a new state from an old state is the time-evolution operator.  This 

section requires an understanding of composing an arbitrary state from energy eigenstates. 

The time evolution operator takes a wave-function at some time t0, and produces what the wave-

function will be at a later time t1.  Therefore, the time-evolution operator is really a family of operators, 

parameterized by both t0 and t1.  In the simple case where the hamiltonian is not explicitly time-dependent, 

the time evolution operator depends only on the time difference, Δt ≡ t1 – t0.  Then, for arbitrary t: 

ˆ ˆ( , ) ( ) ( , ) ( ) time evolution operator,

ˆ independent of time .

t t x U t t x where U t

H

      
 

For this simple case of time-independent hamiltonian, we can derive the time-evolution operator from 

the fact that energy eigenstates un(t, x), with energy En, evolve in time with a particularly simple form.  The 

spatial form of energy eigenstates does not change with time.  By definition, energy eigenstates satisfy the 
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time-independent Schrödinger equation ˆ ( , ) ( , )n n nHu t x E u t x .  Then for the full Schrödinger equation, we 

have: 

ˆ( , ) ( , ) ( , ) ( , ) ( , )n
n n n n n n

iE
i u t x Hu t x E u t x u t x u t x

t t

 
    

 
. 

This is of the form '( ) ( )y t ky t , with solution (by inspection) (0) kty y e .  Also, by a simple time-shift, 

( ) ( ) k ty t t y t e   .  Applying this form to our equation for un(t, x), we get the time evolution for an 

energy eigenstate: 

/
( , ) ( , ) time evolution of an energy eigenstateniE t

n nu t t x e u t x
 

  . (1.6) 

Time evolution simply multiplies the wave-function by a complex phase, exp(–iEnt/ħ).  Since phase does 

not affect any quantum property, all the properties of such a system are independent of time; such a state is 

called stationary.  Note that stationary does not imply “static:” a stationary state can be moving (such as an 

electron orbiting a nucleus).   

Decomposing an arbitrary state ψ(t, x) into energy eigenstates yields the general time evolution.  At an 

arbitrary time t: 

/ˆ( , ) ( , ) ( , ) ( ) ( , ) ( , )niE t
n n n n

n n

t x c u t x t t x U t t x e c u t x    
       . (1.7) 

This gives the explicit form of time evolution of a state from its energy eigenstate components.  We now 

show how to write this as an operator, independent of components.  Recall that the exponential of a linear 

operator is another linear operator, and is defined by the power series expansion of the exponential.  For 

example: 

2 32 3
ˆˆ /

ˆ ˆ ˆˆ ˆ 1 1ˆ ˆˆ ... ...
2! 3! 2! 3!

a iH ta a i tH i tH i tH
e a e          

             
   

1 1  . 

Thus the exponential of the hamiltonian operator is a power series of hamiltonian operators.  When acting 

on an energy eigenstate un(t, x), each appearance of Ĥ gets replaced by the energy En.  Therefore, 

2 3
ˆ // 1 1ˆ( , ) ... ( , ) ( , )

2! 3!
niE tiH t n n n

n n n

i tE i tE i tE
e u t x u t x e u t x

  
         

          
     

1  

Thus we see that for an energy eigenstate, the exponential of the hamiltonian (times some factors) gives the 

simple form for time evolution of an energy eigenstate shown in (1.6).  But again, any state can be written 

as a sum of energy eigenstates, and 
ˆ /iH te 

 is linear, so 
ˆ /iH te 

gives the time evolution of an arbitrary 

state shown in (1.7).   

ˆ ˆ // /( , ) ( , ) ( , ) ( , )

ˆ ( ) ( , ) .

niE tiH t iH t
n n n n

n n

e t x e c u t x e c u t x t t x

U t t x

 



        

 

 
. 

Therefore, the general time evolution operator is: 

ˆ /ˆ ( ) time evolution operator for time-independent hamiltonianiH tU t e   . 

This is a pure operator equation, and is independent of any representation of the wave-function. 

We note in passing that, in general, the future value of ψ at some point x0, ψ(t, x0), depends on all the 

values of ψ(0, x) for all x.  Therefore: 
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The time-evolution operator, ˆ ( )U t , is a nonlocal operator. 

More on nonlocal operators later.   

In the general case, where the hamiltonian explicitly depends on time, we must keep t0 and t1: 

1 1 0 0 1 0
ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) time evolution operator, depends on timet x U t t t x where U t t H   . 

Time evolution for a time-dependent hamiltonian is much more complicated, and we do not address that 

here. 

A second example of “new states from old states” is rotation operators, e.g. in 

3D, ˆ( ) ( , ) ( )rotated R   r r .  Here again, the rotation “operator” is really a family of operators, 

parameterized by the rotation angles, θ and .  We return to rotations later when considering generators. 

1.10.3.5 Simplifying Calculations 

A third use for operators is to aid and simplify calculations.  For example, raising and lowering 

operators (â†, â, Ĵ+, Ĵ– ) do not represent observables, and have nothing to do with physically changing a 

state, or adding/removing energy (or angular momentum).  They are used for computing matrix elements, 

for analysis, proving relationships and theorems, perturbation theory, etc. 

The harmonic oscillator raising and lower operators, â and â† (often written without hats), are usually 

defined as acting on entire states: 

†ˆ ˆ1 1 1a n n n a n n n     . 

From this definition, you might think that they are nonlocal operators (since they seem to depend on the 

entire state).  However, it turns out that these definitions are achieved with local operators.  We can see this 

from the formulas for â and â† in terms of ˆ ˆandx p , which are both local operators: 

 † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,
2 2 22 2

m i m i
a x p a x p x a a

mm m

 

 
       . 

These definitions and formulas allow us to evaluate common inner products (aka “matrix elements”) 

without any integration: 

   
2

2
2 † † 2

ˆ2 0 2 0 2 0 2 2
2 2 2

x a a a
m m m  

 
    

 

1

2 m
 . 

This would be substantially more work to evaluate by integrating products of Hermite polynomials and 

exponentials. 

1.10.3.6 Non-Local Operators 

The time evolution operator, Û(t1, t0) (described above), takes a quantum state (a function of space) 

into another quantum state (another function of space).  Recall that for time-independent hamiltonians: 

2 3
ˆ /

ˆ ˆ ˆ1 1ˆˆ ˆ( ) ... (time-independent )
2! 3!

iH t i tH i tH i tH
U t e H          

         
   

1 . 

For a finite time interval, the new value of the wave-function at a given point x depends not only on the 

infinitesimal neighborhood of x, but on values of ψ far away from x.  Therefore, the time evolution operator 

for a finite time interval is a nonlocal operator.  It may be surprising that the time evolution operator is 

nonlocal, since it is written as a Taylor series sum of (local) hamiltonian operators.  This is a subtle issue 

that requires careful examination, but briefly, the hamiltonian requires an infinitesimal neighborhood 

around the point x to evaluate the momentum.  Then, integrating over an infinite number of such 
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infinitesimal neighborhoods makes the time evolved state at any point x depend on distant points of the 

original state.  (The space translation operator has a similar characteristic.)   

[This nonlocality is evident in the more advanced concept of “propagators.”  Propagators are the time 

evolution of a localized particle (delta-function) in space, and for all finite times, they extend to infinity.]  

We do not consider this nonlocality of operators further. 

1.10.4 Commutators 

The commutator of two operators is also an operator.  Commutators are compound operators built from 

other operators.  A commutator is written with square brackets, and defined as the difference between the 

operators acting in both orders: 

ˆ ˆ ˆˆ ˆ ˆ,A B AB BA   
 

. 

We usually think of operators as acting to the right, so the first term above has B̂  acting first.   

Commutators are often a convenient way to specify operator identities: 

 ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ,x p i xp px i xp i px       . 

As with all operators, their algebraic forms are generally dependent on the representation basis (bases are 

described in some detail later).  The only commutators that are independent of representation are constants, 

e.g.,  ˆ ˆ,x p i .  It is mildly interesting to evaluate this explicitly in both the x (position) and p 

(momentum) bases: 

 

 

ˆ ˆbasis: , , the identity operator .

ˆ ˆbasis: , .

op op

op

x x p x x x x i where
i x i x i x x

p x p i p p i i p p i
p p p p

    
       

    

      
        

      

1 1

1

 

We’ve noted that a commutator is an operator, so is there a physical meaning to the function 

 ˆ ˆ, ( )x p x ?  Let’s see: the first term of the commutator is ˆˆxp .  Recall that p̂  multiplies a function by the 

(local) momentum at each point, and produces a function of space which is not a quantum state.  Similarly, 

x̂  multiplies a function by the position ‘x’ everywhere, and also produces a function of space which is not 

a state.  What does it mean then for ˆ ˆto act on ( )x p x , since ˆ ( )p x  is not a state?  In other words, what is 

the physical meaning of ˆˆxp ?  Answer: nothing!  This kind of commutator, taken as an operator, has no 

direct physical interpretation.  It is simply an algebraic relationship that is used to derive extremely 

important results (such as the uncertainty principle).   

Many commutators, taken as operators, have no direct physical interpretation;  

they are simply algebraic relationships that are used to help derive physical results. 

A second use for commutators relates to simultaneous eigenstates.  The uncertainty principle says that 

some pairs of dynamic quantities cannot both have definite values.  It is important to know which physical 

properties a quantum system can have with simultaneously definite values.  A set of quantum numbers, one 

for each possible definite value, then fully specifies the state of the system, and therefore all its properties, 

definite or not.  When two operators commute, it means they produce the same result acting in either order: 

ˆ ˆ ˆˆ ˆ ˆ, (the zero operator)opab ba a b   
 

0 . 

Note that the “zero” on the right hand side is an operator, not exactly a number.  It means to multiply the 

function on which it acts by the number 0, which always returns the zero-valued function of space.  

Similarly, in a general vector space (say, spin states), it means to multiply the ket (i.e., vector) on which it 

acts by the number 0, which always returns the zero-vector, 0v.   
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When two operators commute, they have a common set of eigenvectors, and this set is complete: it 

forms a basis for constructing any vector in the vector space. 

Units of commutators:  The units of a composition of operators is the product of the units of the 

constituent operators.  Therefore, the units of each term of a commutator are the same: the product of the 

commutator’s constituent operators.  For example, the units of  ˆ ˆ,x p  are: 

    2ˆ ˆ ˆˆ, m kg m/s kg m /sx p xp   . 

Commutators are linear:  Commutators are linear in both arguments (where the arguments are 

themselves operators).  Recall that linearity implies commuting with scalar multiplication, and 

distributivity over addition: 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,ka b kab bka k a b a jb ajb jba j a b            
       

     (scalar multiplication), 

   

   

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,

a c b a c b b a c ab ba cb bc a b c b

a b d a b d b d a ab ba ad da a b a d

               
     

               
     

  (distributes) (1.8) 

There is also a composition rule (loosely, a “product rule”) for commutators: 

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , and similarly,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , , .

ac b acb bac acb abc abc bac a c b a b c

a bd b a d a b d



            
     

      
     

 

You can remember the commutator composition rule as the sum of two terms, which you create as follows: 

“pull the left factor out to the left, and pull the right factor out to the right” (Figure 1.15). 

ˆ ˆˆ ˆ, ,

ˆ,

ˆ

ˆ ˆ

ˆ c b

ca

a

b

ca b

  


   
   



 

Figure 1.15  The two terms of the composition rule: pull the left factor out the left,   

and the right factor out the right. 

1.10.5 External Fields 

A quantum system may include “external fields,” e.g. an externally applied magnetic fields whose 

value at all points is a given, and not part of the state vector |ψ>.  Such fields are good approximations to 

the more precise quantized EM field.  In such a case, the value of the field is embedded in the operators we 

define for observables of the system.  For example, the energy operator of an electron in a given B-field 

would be: 

ˆ 1ˆ ( ) ( ) 2 ( ) ( ), using 2
2

magnetic e B B B eH g g  
   

             
   

s
μ B r B r σ B r σ B r . 

Similarly, the (canonical) momentum operator would include the given potential function A(r). 

Including a “given” field in the operators of the system is in contrast to descriptions of a system where 

the field itself is quantized, and its value is part of the system state.  Quantizing such fields involves 

Quantum Field Theory.  Then, a function such as B(r) is replaced by the field operator, B̂ ,which supplies 

the value of the field from the quantized field state vector. 
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1.11 From Schrödinger to Newton: Deriving F = ma 

We now show the quantum mechanical statement of Newton’s 2nd law, dp = F dt [which is still true 

relativistically], and which is (non-relativistically) equivalent to F = ma.  Consider a 1D particle with 

definite momentum p(t0) = p0, at some time t0.  Its wave-function is ψ(t0, x) = exp[(i/ħ)p0x] (dropping the 

normalization factor, for simplicity).   

V(x)

x

ψ(t, x) F
p

 

Figure 1.16  ψ(t, x) is a 1D wave-function moving right.  The force is also to the right.  

Now apply a force F = –dV(x)/dx to it for a time dt.  From Newton’s 2nd law, we expect that its new 

momentum and wave-function are: 

  0 0 0 0( ) ( , ) exp /p t dt p F dt t dt x i p F dt x          . (1.9) 

We now derive that result from quantum dynamics.  Recall that the Schrödinger equation implies the 

time evolution operator, which tells how a wave-function evolves in time: 

     
2

0
0 0 0

0

ˆ( ) exp / ( ) exp / ( ) exp /
2

initial momentum .

p
t dt i H dt t i V x dt i p x

m

where p

 
  

                  



 

The force is constant everywhere along the wave-function, so V(x) = –Fx.  Rearranging the exponentials, 

and replacing V(x) with –Fx, we get (to first order in dt): 

     

    

    

2
0

0 0

2
0

0

2
0

0

( ) exp / exp / exp /
2

exp / exp /
2

exp / exp / .
2

p
t dt i dt i Fx dt i p x

m

p
i dt i p x Fx dt

m

p
i dt i p F dt x

m


 

           
  

 
      

  

 
      

  

 

This is of the form expected in (1.9).  The first factor is the usual complex rotation in time according to the 

energy, and does not affect the observable properties of the particle.  The second factor is the wave function 

throughout space of momentum (p0 + F dt).  Thus quantum mechanics has proven the impulse law, dp = F 

dt.  Then non-relativistically, as in classical mechanics: 

dp dv
F m ma

dt dt
   . 

Thus, Schrödinger’s equation, applied to a momentum eigenstate, reproduces Newton’s 2nd law.  Isn’t 

it amazing that Newton could find this 300 years before quantum mechanics was discovered? 

http://physics.ucsd.edu/~emichels


physics.ucsd.edu/~emichels Quirky Quantum Concepts emichels at physics.ucsd.edu 

12/30/2016  15:04 Copyright 2002 - 2012 Eric L. Michelsen.  All rights reserved. 46 of 149 

1.12 Measurement and Loss of Coherence 

We now discuss the important phenomena of measurement and observation.  In theoretical QM, we 

usually focus on perfect systems, and pure states.  We frequently say that a measurement “collapses” the 

quantum state vector to one agreeing with the measurement, and this is often a useful simplification of the 

measurement process.  However, in practice, the measurement process is more complicated than that, 

because most measuring equipment, and all observers, are macroscopic.  The “decohered” state is the 

norm; you must work hard to achieve even an approximately pure entangled state.  We show here that 

elementary QM can explain some of the features of real measurements, however, the full explanation of 

decoherence is beyond our scope.  (The term “decoherence” has a specific meaning: the process of a 

system becoming entangled with its environment in irreversible ways, resulting in the loss of a consistent 

phase relationship between components of the system state.  We therefore use the more general term “loss 

of coherence” for both decoherence and other processes.) 

Most macroscopic measurements do not show quantum interference.  Why not?   One reason is that 

macroscopic bodies suffer unknowable, and unrepeatable energy interactions, i.e. they gain or lose an 

unknowable amount of energy due to uncontrollable interactions with their environments.  In other words, 

they are subject to simple “noise.”  This results in the loss of a consistent phase relationship between 

components of a superposition state.  We discuss below how such a loss of consistent phase leads to 

classical probabilities [e.g., Bay p26-7]. 

Walk-Through of a Real Measurement: Let us walk through a plausible measurement, and consider 

the elementary quantum mechanics involved.  The system of Figure 1.17 is a macroscopic version of 

Figure 1.1, the quantum experiment that demonstrated the need for new concepts of measurement in 

quantum mechanics. 

1

2

1

2



Stern-
Gerlach

1

2

1

2

microscopic macroscopic →

amplifiersdetectors

film

indicator 

lights

slits

 

Figure 1.17  A typical measurement process: is the spin up or down?. 

Suppose we start with a particle which can be in either of two states, |s1> or |s2>, such as polarization 

(horizontal or vertical), or spin (up or down).  A general particle state is then: 

1 2 1 2, complex coefficients, s , basis statesa s b s where a b s     . 

This is called a coherent superposition, because a and b have definite phases.  (This is in contrast to a 

mixed state or incoherent mixture, where a and b have unknown phases.)  All that is required for loss of 

coherence is for the relative phases of a and b to become unknown.  For simplicity, we take |s1> and |s2> to 

be energy eigenstates, and the particle is spread throughout our measurement system. 

According to the Schrödinger equation, every state time-evolves with a complex phase, (t), 

determined by its energy: 

  (0) (phase accumulation of a system according to its energy)
E

t t   . 

Then our 2-state system time evolves according to: 

   1 1 2 2( ) exp / exp /t a iE t s b iE t s     . 

Since the energies E1 and E2 are quantized, the complex phases multiplying |s1> and |s2> maintain a precise 

(aka coherent) relationship, though the relative phase varies with time. 

When we measure the particle state, the state of the measuring device becomes entangled with the 

measured particle.  Let |M1> and |M2> be states of the whole measuring system in which either detector 1 
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detected the particle, or detector 2.  If we look directly at the indicator lights, we will observe only state 1 

or state 2, but never both.  This means |M1> and |M2> are orthogonal.  As the measuring system first detects 

the particle, the combined state of the particle/measuring-device starts out as a coherent superposition: 

1 1 2 2 , complex coefficientsc M s d M s where c d    . 

The combined system time evolves according to its new energies: 

   1 1 1 1 2 2 2 2( ) exp / exp /M Mt c i E E t M s d i E E t M s             . 

If the energies of the two measuring device states fluctuate even a tiny bit, the two components of the 

superposition will rapidly wander into an unknown phase relation.  They will lose coherence.   

Every macroscopic system suffers unrepeatable and unknowable energy fluctuations  

due to its environment. 

We estimate a typical coherence loss rate shortly. 

Let us examine the effects of various kinds of energy transfers between a system and its environment.  

In our two-path experiment, the interference pattern is built up over many trials, by recording detections on 

film.  Now suppose one path suffers an energy transfer to/from its environment before recombining and 

interfering.  There are four possibilities:  

1. The energy transfer is knowable and repeatable.  Then one can predict and see an interference 

pattern in the usual way.   

2. The energy transfer is unknowable, but repeatable.  Then we can record an interference pattern, 

and from it, determine the relative phases of the two paths (mod 2π), and therefore the relative 

energies (mod 2πħ/t) from  /t E t     .   

3. The energy transfer is knowable for each trial, but not repeatable.  Essentially, each trial has its 

own position for the interference pattern.  One can then divide the detection region into intervals 

of probability calculated for each trial, and then show consistency with QM predictions, but 

contrary to classical probability.   

4. The energy transfer is unknowable and unrepeatable.  Then there will be no interference pattern, 

and repeated trials do not allow us to measure any quantum effects, since the phase is unknown on 

each trial.  Therefore, the measurements are equivalent to classical probabilities: it is as if a single 

path was chosen randomly, and we simply don’t know which path it was.   

This fourth condition, of unknowable and unrepeatable energy transfer, causes loss of coherence, the 

randomization of phase of components of a superposition.  Loss of coherence makes measurements look 

like the system behaves according to classical probabilities, with no “wave” effects.  Loss of coherence 

destroys the interference pattern when we try to measure through “which slit” a particle passes.   

Full loss of coherence leads to classical probabilities. 

Our example process leading to loss of coherence follows directly from the Schrödinger equation and 

unknown energy transfers.  There is no need to invoke any “spooky” quantum effects. 

Note that even accounting for loss of coherence, quantum theory still requires the axiom of collapse of 

the wave-function upon observation.  When a particle’s wave splits, then passes through both detector 1 

and detector 2, and then loses coherence because of entanglement with a macroscopic measuring device, 

the system is still left in a superposition of both slits: 

  1 1 2 2aftert f M s g M s   ; 

we just don’t know f or g.  We can’t generate an interference pattern from multiple trials, because each trial 

has a different phase relation between f and g, putting the peaks and valleys of any hoped-for interference 

pattern in a random place on each trial.  These shifts average over many trials to a uniform distribution.  

Nonetheless, each trial evolves in time by the Schrödinger equation, which still leaves the system in a 

http://physics.ucsd.edu/~emichels


physics.ucsd.edu/~emichels Quirky Quantum Concepts emichels at physics.ucsd.edu 

12/30/2016  15:04 Copyright 2002 - 2012 Eric L. Michelsen.  All rights reserved. 48 of 149 

superposition.  Once we “see” the result, however, the unobserved component of the wave-function 

disappears, i.e. the wave-function collapses. 

Collapse of the wave-function is outside the scope of the Schrödinger equation, but within the scope of 

QM, because collapse is a part of QM theory.  It is one of our axioms.  Some references confuse this issue: 

they try to avoid assuming such a collapse as an axiom, but cannot derive it from other axioms.  From this, 

they conclude that QM is “incomplete.”  In fact, what they have shown is that the axiom of collapse 

completes QM. 

Note that once the measuring system fully loses coherence, we could just as well say that the wave-

function has then collapsed, because from then on the system follows classical probabilities (equivalent to a 

collapsed, but unknown, wave-function).  However, we now show that a binary model of “collapse or not” 

cannot explain partial coherence. 

Partial coherence:  What if we start with a microscopic system, such as that in Figure 1.1, but replace 

our microscopic atoms with mesoscopic things: bigger than microscopic, but smaller than macroscopic.  

Mesoscopic things might be a few hundred atoms.  These are big enough to lose coherence much faster 

than single atoms, but still slowly enough that some amount of interference is observed.  However, the 

interference pattern is weaker: the troughs are not as low, and the peaks are not as high.  A superposition 

leading to a weak interference pattern is called partially coherent.  We describe partial coherence in more 

detail in section 8.4.  The simple model that the wave-function either collapsed or didn’t cannot describe 

the phenomenon of partial coherence. 

The larger the mesoscopic system, the more uncontrollable interactions it has with its environment, the 

faster it loses coherence, and the less visible is any resulting interference pattern.  We can estimate the 

time-scale of coherence loss from our example energy fluctuations as follows: a single 10 μm infrared 

photon is often radiated at room temperature.  It has an energy of ~0.1 eV = 1.610–20 J.  This corresponds 

to ω = E/ħ ~ 21014 rad/s.  When the phase of the resulting system has shifted by an unknowable amount > 

~2π, we can say the system has completely lost coherence.  At this ω, that takes ~410–14 s.  In other words, 

thermal radiation of a single IR photon causes complete loss of coherence in about 40 femtoseconds.  In 

practice, other effects cause macroscopic systems to lose coherence in dramatically shorter times. 

Summary:  A measurement entangles a measuring device with the measured system.  The entangled 

state of device and system time evolves according to the SE.  Macroscopic devices lose coherence, due to 

interactions with the environment.  Lack of coherence prevents any interference pattern within the system.  

Therefore, measurement by a macroscopic device produces subsequent results that are classical, as if the 

system collapsed into a definite state upon measurement, but observers only “see” which state when they 

look at the measuring device.  Any observation by a person is necessarily macroscopic, because people are 

big.  Such an observation collapses the (incoherent) device/system/world state to that observed.  Quantum 

interference can only be seen if it occurs before any entanglement with a macroscopic system (and 

therefore before any loss of coherence in the system).   

The model of “collapse of the wave-function” is a binary concept: either the wave-function collapses 

or it doesn’t.  Such a model cannot account for the phenomenon of partial coherence.  Loss of coherence is 

a continuous process, taking a fully coherent state through less and less partially coherent states and 

eventually to incoherent (aka “mixed”) states.  Continuous loss of coherence fully explains partial 

coherence and the varying visibility of interference patterns. 

Some quantum effects, such as the spectrum of atoms, do not rely on interference, and are therefore 

macroscopically observable.  In fact, measurement of such effects led to the development of QM. 

1.13 Why Do Measurements Produce Eigenvalues? 

This section is preparation for the next, which discusses wave-function collapse.  Quantum Mechanics 

is consistent in this way:  

If you make a measurement, and then quickly repeat the same measurement,  

you will get the same result (quickly so the system doesn’t “move” in between).   
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(Similarly, if you make a measurement, then wait and account for the system time evolution, and then make 

another measurement, your second result will be consistent with the first.)  If you believe the postulates of 

QM, specifically that the wave function defines the spectrum (the set) of possible results, and their 

probabilities, then you must conclude that the wave function after a measurement must allow only a single 

result for a re-measurement (the result already measured). 

Since the wave function before a measurement may be a superposition of possibilities, it must be that 

the act of measuring “collapses” the wave-function to a state that can produce only one result.  Recall that a 

spatial wave-function (i.e., a wave-function of position in space) associates a local value for an observable 

with each point of the wave-function.  Assume a wave function, ψ(x), and an observable operator, ô.  ‘ô’ 

has some local value associated with each position in space; call it olocal(x).  After a measurement, the 

particle has a definite value of the observable, so it is reasonable that all points of the wave-function should 

contribute the same local value: that which was already measured.  This means olocal(x) is constant 

throughout space; call it oobs.  Then from the definition of local values, eq. (1.4), we have: 

ˆ( ) ( ) ( ) ( )local obso x x o x o x     

The last equality requires that the wave function after a precise measurement be an eigenfunction of the 

observed operator, and the value measured must be its eigenvalue. 

This phenomenon of a measurement causing a “collapse of the wave function” into an eigenstate is 

directly related to the uncertainty principle.  The collapse is an inevitable part of taking a measurement; it 

derives from the consistency of measuring the same observable twice.  It has nothing to do with clumsy 

photons, or other “probing” particles.  Since non-commuting observables rarely have simultaneous 

eigenstates, a single wave function usually cannot have definite values of non-commuting observables.  

The lack of a common eigenfunction means that a definite value of one observable forces some uncertainty 

in the other.  [See later section on Generalized Uncertainty for more details.] 

Observable Operators Do Not Produce States Resulting From Measurements 

The mathematical result of an observable operator acting on a state is very different  

from the state resulting from actually measuring that observable. 

Many people confuse the result of an observable operator on a state  

with the act of measuring that observable.  These are very different things! 

The action of an observable operator on a state produces a mathematical result, a function of space (a 

“ket” in Dirac notation), which is one step in calculating the statistics of possible measurements of that 

observable on a system in that state.  Such a result is not a quantum state.  As we saw earlier, ˆ ( )x x  yields 

a function of space (not a state) which is part of calculating possible values of the position of a particle in 

state ψ(x), and their probabilities.  This is quite different from the resulting state after an actual 

measurement of the particle’s position.  Recall the example ψ(x) = 1/2 between [0, 4], and 0 elsewhere 

(Figure 1.18, left). 

ψ(x)

0 0

2

ψ(x) = δ(x – 3)

04 4 4

1

2

1

2

1

ˆ ( )x x

 

Figure 1.18  (Left) A normalized wave-function, ψ(x).  (Middle) ˆ ( )x x .    

(Right) ψ(x) after measuring the particle to be at position x = 3. 

Figure 1.18, middle, is the function  ˆ ( )x x , which is a mathematical calculation.  If we actually measure 

such a particle to be at position x = 3, the resulting state of the particle is (essentially) a delta function at x = 

3: 

ψ(x) = δ(x – 3)  (Figure 1.18, right). 

http://physics.ucsd.edu/~emichels


physics.ucsd.edu/~emichels Quirky Quantum Concepts emichels at physics.ucsd.edu 

12/30/2016  15:04 Copyright 2002 - 2012 Eric L. Michelsen.  All rights reserved. 50 of 149 

(This is not square integrable, and so uses “delta-function normalization.” More on this later.)   

Note that the act of measurement is a nonlinear operation on the wave function; it can not be 

represented by a linear operator acting on the wave function.  Recall that the whole point of a linear 

operator is to produce a superposition of results based on the superposition that composes the given 

function (or ket).  In contrast, the consequence of a measurement is to choose one specific state out of a 

superposition of eigenstates.   

A measurement eliminates a superposition, in favor of a more definite state.   

Therefore, a measurement is not a linear operation on the state; it is inherently nonlinear. 

We must be careful in interpreting this statement, because the term “superposition” is relative: it depends 

on the basis in which we write our function.  A state of definite energy is a superposition of position states.  

A state of definite position is a superposition of energy states.  Any spatial function is always a 

superposition in some bases, and a single component in other bases.  However, when we take a 

measurement, one basis is special: the eigenbasis of the operator whose value we are measuring.  If we 

measure energy, then the energy basis is special.  If we measure position, then the position basis is special.  

A better statement of the effect of a measurement is then: 

A measurement of a property eliminates a superposition of eigenstates of that property.  The resulting 

(“collapsed”) state is then an eigenstate of the operator corresponding to the measurement.   

We now describe some ways of thinking about this effect. 

1.14 The Collapse of Quantum Mechanics 

Or, “Shut Up and Calculate.”  [Thanks to Andrew Cooksey for that sympathetic advice.  This section is 

inspired by Sidney Coleman, Heinz R. Pagels, and all the other dedicated physicists trying to make 

Quantum Mechanics seem sensible.]   

What is really going on inside the collapse of the wave-function?  We must be careful with the word 

“really:” science is the ability to predict future observations based on past ones.  Science uses theories 

(detailed quantitative models) to make these predictions.  Theories usually include a conceptual model to 

help us remember the theory, but theories always include a mathematical model to compute predictions.   

Any theory which computes predictions that agree with experiment is a “valid” theory.   

Sometimes, more than one theory is valid.  Because we are simple-minded, between two competing valid 

theories, we choose the simpler one.  (This criterion is known as Occam’s Razor.)  We now compare two 

models, both of which agree with the following facts.  These facts are verified countless times by 

experiment, and are undisputed by serious physicists:  

1. If Alice takes a measurement, and now wants to predict future measurements, she must use, as her 

starting point, the quantum state which is consistent with her first measurement.  No other 

quantum state will work for her.  Calculations starting from any state other than that demanded by 

her first measurement will be wrong.  Absolutely, completely, no “ifs, ands, or buts” wrong. 

2. If Alice measures an observable for which the system is known not to be in an eigenstate, then her 

answer is determined by probability, and Alice cannot predict for certain the result of any single 

such measurement. 

3. Alice prepares a quantum system in state A.  She allows it to time-evolve into a superposition of 

two states, B or C (perhaps, (B) = decayed and (C) = not-decayed), but she does not measure the 

system to determine which state it is in.  She waits further, and finally measures it in state D.  To 

predict the probability of starting in A and ultimately measuring D, Alice must use as the 

intermediate state a coherent superposition of B and C, i.e. she must use the complex amplitudes 

of states B and C, to predict the measurement D.  She cannot use classical probabilities. 

Fact #1 says that quantum mechanics is self-consistent: no measurement will contradict another.  It is 

why measurements always produce eigenvalues as their result (see “Why Do Measurements Produce 

Eigenvalues?” on page 48). 
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Fact #2 says that from the point of view of an observer, quantum mechanics is inescapably 

probabilistic. 

Fact #3 says that probability for an observer only comes into play when that observer actually observes 

something.  Until then, there is deterministic time evolution of the quantum state, including fully complex-

valued amplitudes, and therefore (critically) the possibility of quantum interference.  [However, as noted 

earlier, large systems inevitably suffer from decoherence: uncontrollable interactions with their 

environments.] 

What is the “explanation” of these facts?  There is no single, definitive explanation.  There are many 

competing, valid theories.  Here are two: 

Dr. Xavier E. Rox believes in predictability.  There can be no collapse, no random events.  Physics is 

deterministic, just like the old classical physicist, Dr. Diehard, says.  Dr. Rox observes, “Diehard’s only 

problem is that his math is wrong.  Physics follows the Schrödinger equation.”  Of course, to be consistent 

with experiment, Dr. Rox must assume that at every instant, the quantum state of the entire universe, 

including himself(!), splits into a new superposition of all possible results.  “Better complexity and 

confusion than uncertainty,” he declares, much to the dismay of Werner Heisenberg.  On Sunday, Dr. Rox 

goes to the Church of Duplicity, and worships a rapidly growing list of very similar gods. 

Dr. Ophelia C. Cam retorts, “Stuff and nonsense!  I can only ever perceive one world, so it is 

unscientific to talk about others.  They are, by definition, outside the possibility of observation, and 

therefore, also by definition, outside the realm of science.”  She believes that each observer, with each 

observation, collapses her own wave-function of the universe.  That is, to be consistent with experiment, 

she must assume that each observer has her own wave-function for the universe, which collapses only when 

its owner makes an observation.  This means the quantum state of the universe is different for different 

observers.  How can a wave-function collapse?  How can a wave-function be subjective, and not absolute?  

“I don’t know, and I don’t care,” says Dr. Cam.  “Like it or not, it is what it is.  The measured results 

provide a single reality for all observers, so there is no physical consequence of personalized wave-

functions.”  On Wednesdays, Dr. Cam goes to the Church of One Mind, where she prays to a very lonely 

God. 

Who is right, then, Dr. Rox or Dr. Cam?  This is not a scientific question, since both professors make 

the same experimental predictions.  Whom you believe depends on which church you attend.   

[There are many other conceptual models (“churches”) of QM which agree with the facts, but since 

they have no observable consequences, we maintain that they have no scientific substance.] 
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2 Riding the Wave: More on Wave Mechanics 

2.1 Units of Measure 

Many QM references ignore the units of measure of the components of a calculation.  For example, the 

most common element of QM calculations is the 1-dimensional x-representation wave-function, ψ(x).  

What are its units?  Answer: m–1/2, or per-square-root-meters. Surprised?  So were we.   

In the following, we use square brackets to mean “the units of.”  E.g., [x] means “the units of x.” 

Let’s start with the basics: in the macroscopic universe there are exactly four fundamental quantities: 

distance, mass, time, and charge.  [One can reasonably argue for a fifth: angle.]  In the MKSA system, the 

corresponding units are meters (m), kilograms (kg), seconds (s), and coulombs (C).  We stick mostly with 

MKSA in this text.  As is common, we use the terms “units” and “dimensions” interchangeably in this 

context. 

For the units of ψ(x), recall that the dot product of a normalized wave function with itself is a 

dimensionless 1: 

 *( ) ( ) 1 dimensionlessx x dx 



 . 

Since dx is in meters (m), and the units of ψ* are the same as ψ, then ψ*ψ must be in m–1, and thus ψ is in 

m–1/2. 

Equivalently, if x is in meters, and we compute the average of x: 

*( ) ( )x x x x dx 



  ,  

then the units of ψ must be m–1/2. 

What about the momentum representation, a(p)?  The same normalization process starts with 

 *( ) ( ) 1 dimensionless  is in  
kg m

a p a p dp where p
s






 . 

Then a(p) must be in  
1/ 2

1/ 2
momentum

s

kg m

  
  

 
, or s1/2 kg–1/2 m–1/2, or “inverse square-root 

momentum.” 

Recall that mathematically, exponentials and logarithms are dimensionless, and their arguments must 

be dimensionless.  Also, the unit “radian” is equivalent to dimensionless, because it is defined as arc-

length/radius = m/m = dimensionless. 

What about 3-dimensional wave functions?  Given ψ(x, y, z), its units are m–3/2.  Why?  We refer again 

to the normalization integral, which says that the particle must be somewhere in the universe, i.e. 

   Pr particle is somewhere in the universe 1 * dimensionless
universe

dx dy dz    . 

The units of dx dy dz are m3, so ψ must be in m–3/2.  Often, for spherically symmetric potentials, ψ is a 

function of r, , and θ: ψ(r, θ, ).  Then it must have units of m–3/2 rad–1: 

2 2 3 2* sin 1 and     is in m -rad
universe

r dr d d r dr d d       . 

However, since rad is dimensionless, this is the same as before: m–3/2.  Thus, as expected, the units of ψ are 

independent of the units of its arguments. 

The unit of 2D ψ(x, y) is left as an exercise for the reader. 
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Dimensions of Operators 

Operators also have dimensions. 

Let us consider the momentum operator.  
d

dx
 is like dividing by x, so it has units of (1/m), or m–1.  

Planck’s constant h, or ħ ≡ h/2π, is a quantum of action, (energy)(time), or of angular momentum (distance) 

(momentum); the units are thus joule-seconds (J-s), or in purely fundamental terms, kg-m2/s.  Then: 

2 1
ˆ units of , consistent with .

d kg m kg m
p p mv

i dx s m s

   
        

 

The momentum operator has units of momentum. 

In fact, all observable operators have the units of the observable.  We can see this from the average 

value formula: 

     ˆ ˆ ˆ* , and * dimensionlesso o dx dx o o   


    . 

When composing operators, their units multiply.  Thus we see that 
2

2

d

dx
 has units of m–2, etc. 

Commutators are compositions of other operators, so the units of commutators are the composition of 

the units of the constituent operators.  [More on commutators elsewhere.]  Perhaps the most famous 

quantum commutator is: 

 ˆ ˆ ˆˆ ˆ ˆ,x p xp px i   . 

The units of x̂  are m.  (Note that the units of ˆ ( )x x = m(m–1/2) = m1/2, not m.)  The units of p̂  are kg-m/s.  

The units of ˆˆxp  are simply the product of the units of 
2

ˆ ˆand : (m)(kg-m/s)
kg m

x p
s


 .  This must be, 

because the commutator in this case works out to a constant, iħ, with those units. 

Note that the units of operators don’t change with the representation basis.  For example, x̂  in the 

momentum representation is still meters: 

2kg m

sˆ units of m
kg m

s

d
x i

dp

 
 
   
 
 
 

. 

2.2 The Dirac Delta Function 

The Dirac delta function is used heavily all over physics, engineering, and mathematics.  Thoroughly 

understanding it is essential for anyone in those fields.  Read more about the δ-function in Funky 

Mathematical Physics Concepts (http://physics.ucsd.edu/~emichels/FunkyMathPhysics.pdf).  The δ-

function is also called an “impulse” or “impulse function.” 

The Dirac delta function is really a pseudo-function: it implies taking a limit, but without the bother of 

writing “
0

lim
x 

” all the time.  The Dirac delta function is often formally defined as the limit of a Gaussian 

curve of (a) infinitesimal width, (b) unit integral ( ) 1x dx




 
 

 
 , and thus (c) infinite height.  This is 

somewhat overkill for our purposes, and it may be simpler to think of the delta function as a rectangular 

pulse of (a) infinitesimal width, (b) unit area, and thus (c) infinite height, located at zero (Figure 2.1, left): 
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simplified 

δ(x)
area = 1

0

Δx

Δx

simplified 

even δ(x)
area = 1

0

Δx

Δx/2−Δx/2

x x

 

Figure 2.1  (Left) The δ-function can be written as one-sided in most cases.  However, 

(right) it is usually considered even.  In any case, we take the limit as Δx  0. 

Mathematically, we could write this simplified (asymmetric) delta function as 

0
simplified ( ) ( ) ( ) 0, 0

( ) 1/ , 0

( ) 0, .

lim
x

x f x where f x x

f x x x x

f x x x


 

  

    

  

 

Though the above works for any well-behaved (i.e., continuous) function, the delta function is usually 

considered an even function (symmetric about 0), so it is sometimes better to write (Figure 2.1, right): 

0
simplified ( ) ( ) ( ) 0, / 2

( ) 1/ , / 2 / 2

( ) 0, / 2 .

lim
x

x f x where f x x x

f x x x x x

f x x x


 

   

     

  

 

However, in spherical polar coordinates, the radial delta function at zero requires the asymmetric form, and 

cannot use the symmetric form (see Funky Mathematical Physics Concepts). 

Both of the above simplified versions of the delta function require special handling for more advanced 

applications where we need to take derivatives of δ(x); we will not use such derivatives in this book. 

Units of the delta function: Another surprise: the δ-function is not dimensionless.   

The Dirac delta-function has units!   

Usually, such mathematically abstract functions are dimensionless, but the key property of the delta 

function is that its area is 1 and dimensionless.  This means: 

( ) 1 (dimensionless)x dx



 . 

So if x (and thus dx) is in m, δ(x) must be in m–1.  But we use the delta function for all sorts of measures, 

not just meters: radians, momentum, etc.  So by definition, the delta function assumes units of the inverse 

of its argument.  Given a radian, the units of δ(θ) are inverse radians (rad–1, equivalent to dimensionless);  

given a momentum, the units of δ(p) are 
s

kg m
;  and so on.  Also, δ(3)(r) has units of the inverse cube of 

the units of r (r in m  δ(3)(r) in m–3), and δ(4)(xμ) has units of the inverse 4th power of the units of xμ . 

An important consequence of the definition of δ(x) is that, because δ(x) = 0 except near x = 0, 

( ) 1, 0x dx



 


   . 

Note that δ(x) is not square integrable, because 

 

2
2

200 0 0
0

1 1
( ) lim lim lim

x
x

x x x

x
x dx dx

x xx



 

      

 
 

     
     

  . 
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Interestingly, though the delta function is often given as a Gaussian curve, the precise form doesn’t 

matter, so long as it is analytic (i.e., infinitely differentiable, or has a Taylor series), unit integral, and 

infinitely narrow [P&C p479b].  Other valid forms are: 

2 20

1 1
( ) lim , ( )

2

ikxx x e dk
x


 

 




 

  . 

This latter form is extremely important in QM in the momentum representation, and in quantum field 

theory. 

Integrals of δ-Functions of Functions 

When changing variables, we sometimes need to know what is  ( )dx f x  ? 

   

0 0

'

' 0

Let ( ), '( ) , and define . . ( ) 0.

1 1
Then ( ) .

'( ) '( )

u f x du f x dx x s t f x

dx f x du u
f x f x

 

 
 

 

  

  
 

We must take the magnitude of the derivative, because δ(x) is always positive, and always has a positive 

integral.  The magnitude of the derivative scales the area under the delta function. 

If the interval of integration covers multiple zeros of f(x), then each zero contributes to the integral: 

 
1

Let zeros of , i.e. ( ) 0, 1,.. .

1
Then ( ) .

'( )

i i

n

ii

x f f x i n

dx f x
f x









  


 

3D δ-function in Various Coordinates 

See Funky Mathematical Physics Concepts for a more complete description, but note that δ3(r) has a 

simple form only in rectangular coordinates: 

3( , , ) ( ) ( ) ( )x y z x y z    , 

but: 

3( , , ) ( ) ( ) ( )r r        . (It’s more complicated than this.)  

2.3 Dirac Notation 

Dirac notation is a way to write the algebra of QM bras, kets, and operators.  It is widely used, and 

essential to all current quantum mechanics.  It applies to both wave-mechanics, and discrete-state 

mechanics (discussed in a later chapter).   

You are familiar with the ordinary algebra of arithmetic.  You may be familiar with Boolean algebra.  

There are also algebras of modular arithmetic, finite fields, matrix algebra, vector spaces, and many others.  

All algebras are similar to arithmetic algebra in some ways, but each is also unique in some ways.  In 

general, an algebra is a set of rules for manipulating symbols, to facilitate some kind of calculations.  We 

here describe Dirac notation and its associated Dirac algebra.  Included in Dirac algebra is the algebra of 

operators (covered in a later section).  Dirac algebra also brings us closer to the concept of kets and bras as 

vectors in a vector space (see page 63). 

2.3.1 Kets and Bras 

For wave mechanics, kets and bras are complex-valued functions of space (spatial functions), such as 

quantum states, and the results of operators on states.  In Dirac notation, kets are written as |name>, where 
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‘name’ identifies the ket.  The ket is a short-hand for the spatial wave function, say ψ(r).  The ‘name’ is 

arbitrary, much like the choice of letters for variables in equations.  However, there are some common 

conventions for choosing ket names, again similar to the conventions for using letters in equations.  In this 

section, we discuss only the spatial kets. 

As a ket example, suppose we have a 1D spatial wave function, ψ(x).  Since any wave function can be 

written as a ket, we might write the ket for ψ(x) as |ψ> (assuming some notational license for now): 

|ψ> ≡ ψ(x) = complex-valued function of x . 

Note that the ket |ψ> stands for the whole wave function; it does not represent the value of the wave 

function at any particular point.  One of the key benefits of Dirac notation is that kets, bras, and operators 

are independent of any representation basis.  Since they always represent the entire spatial function, there’s 

no question of “what is the basis for a ket?”  More on representations (decomposition in different bases) 

later. 

Some might object to equating a ket to a function, as we did above: |ψ> = ψ(x).  More specifically, ψ(x) 

is a particular representation of the quantum state |ψ>, so it would perhaps be more explicit to say “|ψ> can 

be represented as ψ(x),” but that seems pedantic.  We all agree that “5 = 4 + 1,” yet the symbol “5” is 

different than the symbol “4 + 1.”  They are two representations of the same mathematical quantity, 5.  

Furthermore, since any function of position, say ψx(x), can be written as a function of momentum, ψp(p), 

our flexible notation would say that ψx(x) = ψp(p), which is OK with us.  This simply means that ψx(x) and 

ψp(p) both represent the same mathematical entity.  I am therefore content to say: 

( ) ( ) any other representation of the ketx px p      . 

Dual to kets are bras.  Bras are written as <name|, where ‘name’ identifies the bra.  Bras are also a 

short-hand for complex-valued functions of space.  The same function of space can be expressed as either a 

ket or a bra.  The difference is the ket is short-hand for the spatial function itself;  the bra is shorthand for 

the complex conjugate of the function.  Thus (continuing our flexible notation): 

 *( ) complex conjugatex  . 

For example, suppose we have two wave-functions over all space, ψ(x) (in one dimension), and φ(x).  (The 

generalization to higher dimensions is straightforward.)  It is frequently useful to determine the dot 

product of two wave functions, which is a single complex number, defined as: 

*( ) ( ) (a complex number)x x dx   



   . 

Notice that the first wave function, ψ, is conjugated.  Now the bra representation of ψ* is just <ψ|, and the 

ket representation of φ is |φ>.  When written next to each other, bra-ket combinations are defined as the dot 

product integral, i.e. 

*( ) ( )x x dx     



    .   (A bra-ket combination is a bra-c-ket, < >.  Get it?) 

When writing a bra-ket combination, use only one vertical bar between them: <ψ|φ>, not <ψ||φ>.   

As a related example, using our new Dirac shorthand, we can write the “squared-magnitude” 

(sometime called “squared-length”) of ψ as the dot product of ψ with itself: 

2 *( ) ( )magnitude x x dx   



  . 

Summary of Kets and Bras 

The ket shorthand for ψ(x) is |ψ>.  The bra shorthand for ψ*(x) is <ψ|.   

Combining a bra with a ket, <ψ|φ>,  invokes the dot product operation. 
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Quite simply, a ket is a function of space; a bra is the complex conjugate of such a function.  A bra-ket is 

the dot product of the bra and ket, yielding a complex number.  Recall that the QM dot product is not 

commutative (discussed elsewhere): 

*( ) ( ) *x x dx     



   (reversing the operands conjugates the dot product). 

We’ve seen that kets and bras can be wave functions which are quantum states, but as noted earlier,  

kets and bras are more general than that.  A ket or a bra can be either a quantum state, or the result of 

operations on a state.  In other words, a ket or bra can be most any function of space.  (Recall that a 

quantum state defines everything there is to know about a particle, including probabilities of finding it 

anywhere in space.  A particle spatial quantum state (i.e., excluding its spin part), can be expressed as a 

complex-valued function of position, say ψ(x, y, z).)  Therefore: 

All states are kets, but not all kets are states. 

For example, a particle can be in a state  , but no particle state can be given by the ket p̂ . 

A note about spin: wave-functions alone may not fully define a quantum state, because they do not 

define the spin of a particle, i.e. its intrinsic angular momentum.  Therefore, a full quantum state, for a 

particle with spin, is a combination of the wave-function (spatial state) and its spin-state.  More on this 

later.   

2.3.2 Operators in Dirac Notation 

I hope this manuscript draft excerpt will encourage you to buy the final book: 

Locally at the UCSD bookstore:  Quirky Quantum Concepts 

From Springer: Quirky Quantum Concepts  

From Amazon: Quirky Quantum Concepts 

2.3.3 Units Revisited 

You can almost think of kets and bras as wave-functions (but kets and bras are independent of any 

representation, such as position or momentum representations).  We can therefore apply our knowledge of 

units of wave-function to Dirac notation.  We cannot ascribe any units to a ket or a bra by itself, since those 

units depend on the representation.  However, we’ve seen that the squared-magnitude is dimensionless in 

any representation, so for a quantum state: 

is dimensionless  .  

We’ve also seen that the dimensions of operators are the same in any representation, so operators in 

Dirac notation have the same units as operators in “function notation:” 

ˆ has units of m,

ˆ has units of m,

ˆ has units of kg-m/s, etc.

x

x

p

 

 

 

2.3.4 And Now, the Confusing Part 

There is a subtle and confusing ambiguity in common Quantum Mechanics notation.  The symbol 

‘ψ(x)’ has two different meanings, in different contexts.  First, ψ(x) means a function of space, the whole 

function.  Second, sometimes ψ(x) means the value of ψ at some specific point x, i.e., one specific point of 

ψ, and not the whole function.  You can only tell from the context which meaning of the symbol ‘ψ(x)’ is 

intended.   

An example of the first meaning is (in our flexible notation): 

ψ(x) = |ψ>, ‘ψ(x)’ means the whole function.  A ket is always a whole function. (2.1) 
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Another way to write “the whole function” is just “ψ”; thus, the following are equivalent: 

 “A particle is in a state, ψ.” (This does not imply any particular basis of ψ.) 

 “A particle is in a state, |ψ>.” (Nor does this.) 

 “A particle is in a state, ψ(x).” (This emphasizes the position representation of ψ.) 

An example of the second meaning is 

ψ(x) = <x|ψ>,   ‘ψ(x)’ means the value at some point x.   (2-2) 

A dot product is a single complex number, and <x|ψ> is the value of ψ at the point x. 

  ‘<x|’ is a variable bra: for each value of x there is a different bra (a different wave-function).  Thus, 

<x| is one of a set of functions of space.  It is variable because there are different spatial functions for each 

value of x.  ‘<x|’ is the (conjugate of the) wave-function of a particle completely localized to the position x, 

specifically, an impulse (Dirac δ-function) at some position ‘x’.  Given x, we can write the wave function 

for <x|, call it η(a), where we use ‘a’ as the position variable (since ‘x’ is already taken), see Figure 2.2. 

<x| = η(a) = δ(a − x)

area = 1

0
x

a (position)

 

Figure 2.2  The bra <x| for one particular value of x. 

Since |x> is real, the conjugation of the bra has no effect: 

<x| ≡ η(a) = δ(a – x) for all a, –∞ < a < ∞, where ‘a’ is the position variable (not x). 

Then: 

( ) ( ) ( ), the value of  at position x da a x a x x    



     [Sak 1.7.5 p52m]. 

Recall that integrating through an impulse function times some function “picks out” that function at the 

impulse position; in this case, we pick out ψ at x, or ψ(x). 

Variable kets and bras are often written with x’ as the position, so that x (instead of a) is the usual 

coordinate axis: 

' ( ') and ' ( ')x x x x x x     . 

In other coordinates, there are other variable bras.  In two dimensions, <x, y| is a wave-function 

localized to a point in the plane: 

<x, y| ≡ η(a, b) = δ(a – x) δ(b – y) . 

In polar coordinates, <r, | is a wave-function localized to a particular angle.  Similarly, <θ, | is a direction 

in 3D space, though the normalization is tricky in non-rectangular coordinates.  In particular, for θ > 0: 

   
1

, ( , ) ( ) ( ), 0
sin

c d c d c d           


        . 

(Some references forget the (1/sin θ) factor.)  See Funky Mathematical Physics for more on multi-

dimensional δ-functions in non-rectangular coordinates.  (We address more issues of normalization on page 

60.)  This concept of multi-dimensional localized states extends directly to multi-particle states. 
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2.4 Covering Your Bases: Decomposition 

Any wave function can be written as the (possibly infinite) sum of basis functions: defined as a set of 

functions which can be linearly combined to construct any function in the system of interest (i.e., in the 

vector-space).  This is a common concept in linear system analysis throughout engineering and physics.  

For example, any (reasonably well-behaved) function can be written as the sum of an infinity of sine waves 

(a Fourier series or transform).  The sine waves are the basis functions, which when weighted with 

coefficients, sum to compose the original function.  In QM, Fourier transforms come up for converting 

between the position-representation and the momentum representation of a wave-function, which is a 

special case of the more-general concept of changing bases.  (Fourier series don’t come up much in QM.) 

2.4.1 Countably Infinite Basis Sets 

I hope this manuscript draft excerpt will encourage you to buy the final book: 

Locally at the UCSD bookstore:  Quirky Quantum Concepts 

From Springer: Quirky Quantum Concepts  

From Amazon: Quirky Quantum Concepts 

 

2.4.2 A Funny Operator 

Any bra or ket (i.e., wave-function or function of space) can be decomposed into basis functions (or 

basis kets): 

, is a ket, , and basis ketsn n n n n n n

n n

c b b b where c b b        . 

We can rewrite the last expression by putting the coefficient of each basis function on the right, and 

applying parentheses: 

n n n n

n n

b b b b  
 
  
 
 

  . 

This is simply decomposing a vector into its components, and then summing all the components, which 

returns the original vector.  Therefore, the parenthesized operator is the identity operator: 

n n op

n

b b  1  (the identity operator, aka the completeness operator) . 

In other words, we can insert a sum over a set of arbitrary basis functions, n n

n

b b , before any ket.  

That might seem pointless, but it’s actually an important tool of Dirac algebra.  It works just as well acting 

to the left on a bra: 

n n n n

n n

b b b b  
 
  
 
 

  . 

This is also evident because the identity operator is hermitian.  The completeness operator is dimensionless. 

This “completeness operator” can also be considered a special case of the prior section on operators 

“mentally decomposing” a vector into the operator’s eigenvectors, multiplying those components by their 

eigenvalues, and summing the results.  Here, the operator is the identity operator; any basis is an eigenbasis 

of the identity operator; and the eigenvalues are all 1. 
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This idea also generalizes to continuous bases in a straightforward way: the sum becomes an integral.  

For example: 

opdx x x



 1 . 

2.4.3 Countable or Uncountable Doesn’t Mean Much 

You may be worried that a countably infinite basis set (say, the energy basis) can compose a function 

of space, with an uncountably infinite position basis.  (If this doesn’t bother you, skip this section.)  But 

uncountable infinities are “bigger” than countable ones, so what is the dimensionality of our vector space?   

Let’s consider states of a simple harmonic oscillator, in both the energy and position bases.  In the 

energy basis, the basis functions are the eigenstates of energy (often labeled |u0>, |u1>, |u2>, ...).  Any 

bound-state wave function can be composed from the countably infinite set of energy eigenstates.  In the 

position representation (basis), the bases (basis functions) are Dirac deltas at all values of x (position).  Any 

wave function can be composed from the uncountably infinite set of position impulses.  In short, the |un> 

are countably infinite, the |x> is uncountably infinite, yet both sets are (complete) basis sets for bound 

states.  In fact, the bound states are a subset of the full vector space spanned by |x>, which explains why the 

dimension of the function space spanned by |x> is “bigger” than the bound state space.  However, any 

bound state function can be represented as the sum of energy bases, or the sum of position bases.  Thus, the 

degree of infinity of the dimension of a basis is not always significant. 

Finally, consider the energy states of a hydrogen atom: for bound states the electron energies are below 

the “lip” of the well [usually the lip is set to E = 0, so this means for negative electron energies].  There are 

a countably infinite set of such energy eigenstates (En = Ry/n2).  But for ionized hydrogen, where the 

electron is unbound and can be anywhere in space, there are an uncountably infinite set of energy 

eigenstates.  Thus, the complete basis of energy eigenstates for a (possibly ionized) hydrogen atom is the 

union of a countably infinite set and an uncountably infinite set (Figure 2.3).  C’est la vie.   

E

E = 0

Unbound electron: 

continuum of energy 

values (E > 0)

Bound electron: 

discrete energy 

values (E < 0)
ground state of hydrogen: 

E0 = −13.6 eV  

Figure 2.3  Allowed electron energies near a proton. 

2.5 Normalize, Schmormalize 

We normalize quantum states to make it easier to compute quantities such as probabilities, averages, 

cross sections, etc.  Usually, we normalize our basis functions so that the probability of a given basis in a 

superposition is given by the squared-magnitude of that basis function’s coefficient: 

2

1 1Given ... ... then Pr(measuring )j j j jc c c       . 

But this guideline has different implications for different circumstances, and sometimes other criteria are 

chosen, so there are at least 6 different normalization methods in common use.  We summarize them first, 

and then describe most of them in more detail.  All normalization methods apply to any number of spatial 

dimensions (not vector-space dimensions); we show some examples as 1D, but they apply just as well to 

2D and 3D.  Recall that |ψ|2 = ψ*ψ.  Common normalizations: 
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1. Bound states usually use wave-function normalization:  

3*( ) ( ) 1, or in 3D: *( ) ( ) 1x x dx d r       


 
     r r .  

 

2. Unbound states (e.g., free particle states) usually use delta-function normalization:  

* * 3 3
' '' ( ) ( ) ( '), or ' ( ) ( ) ( ')x xx x a a da x x d a     



 
       r rr r a a r r . 

3. Box normalization: 3*( ) ( ) 1, or *( ) ( ) 1
Length Volume

x x dx d r         r r . 

4. Radial wave-functions, and the like: |R(r)|2 is the radial part of the 3D probability density function 

pdfvolume(r); it is not the 1D pdfradius(r).  The pdfradius(r) = r2|R(r)|2.  Therefore:  

 2

0
*( ) ( ) 1 Gri 4.31 p138r R r R r dr



 . 

5. For perturbation theory, with orthonormal basis state <n|n> = 1, we normalize the perturbed state 

|n’> such that <n|n’> = 1, which means ' j

j n

n n c j



   [Bay 11-17 p227b] . 

6. In quantum field theory, energy normalization is often used, because it is Lorentz covariant.  E.g.:  

3 2
Volume

d r E     [from P&S 2.36 p23m] . 

We now discuss some of these further. 

2.5.1 Wave-function normalization 

I hope this manuscript draft excerpt will encourage you to buy the final book: 

Locally at the UCSD bookstore:  Quirky Quantum Concepts 

From Springer: Quirky Quantum Concepts  

From Amazon: Quirky Quantum Concepts 

2.5.2 Delta-function normalization 

(excerpted) 

2.5.3 Box normalization 

(excerpted) 

2.5.4 Funny Normalization of Radial Wave Functions (and the Like) 

(excerpted) 

2.6 Adjoints 

The “adjoint” of an operator is another operator.  Adjoints are an essential part of Dirac algebra, being 

used in proofs, and allowing the crucial concept of a self-adjoint operator: an operator which is its own 

adjoint (aka “hermitian” operator).  All quantum operators corresponding to observable properties of 

systems are self-adjoint.  Self-adjoint operators have real eigenvalues, which are required since observable 

properties are real.  If you are comfortable with matrices, you may want to preview the section on finite 

dimensional adjoints in the Matrix Mechanics chapter, since adjoints are easier to understand in finite 

dimensions. 

We usually think of operators as acting to the right on a ket.  However, operators can also be thought 

of as acting to the left on a bra.  [In matrix mechanics, these correspond to (respectively) pre-multiplying a 
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vector (ket) by a matrix, and post-multiplying a row vector (bra) by a matrix.]  Recall that, when acting to 

the right, an operator produces a new ket from a given ket.  Since we can alternatively think of operators as 

acting to the left, we can also say that an operator produces a new bra from a given bra.  However, in 

general, the effect of an operator acting to the left on a bra is different than the effect of the operator acting 

to the right on a ket.  We now show that we can define the left action of an operator to make inner products 

associative.   

I hope this manuscript draft excerpt will encourage you to buy the final book: 

Locally at the UCSD bookstore:  Quirky Quantum Concepts 

From Springer: Quirky Quantum Concepts  

From Amazon: Quirky Quantum Concepts 

2.6.1 Adjoint Summary 

We’ve shown that we can define a left-action of an operator, in terms of its right-action, as that 

required to preserve the value of all inner products regardless of which way we think of the operator acting.  

In other words, we make inner products <a|ô|b> associative.  The left action then defines the “adjoint” 

operator, which acts to the right the way the original operator acts to the left.  With respect to adjoints, there 

are two special classes of operators: “hermitian” operators are self-adjoint: they are their own adjoint 

operator.  “Unitary” operators have an adjoint which is also the operator inverse.  We have much to say 

about these two special classes of operators throughout the rest of this book. 

2.7 The WKB Approximation 

Since few quantum mechanics bound states can be computed exactly, approximation methods are very 

important for computing practical quantities.  In particular, knowing the quantized energy levels for the 

bound states of a given potential is quite important, because it gives us the radiation spectrum.  For bound 

states with moderate to high energies, the WKB approximation provides a good estimate of quantized 

energy levels [Sch p277].  (WKB can also be used to estimate tunneling probabilities, but we do not 

address that here [Sch p278].)  WKB is named for Gregor Wentzel, Hans Kramers, and Léon Brillouin, 

three of many people who described the method early on.  WKB goes by other acronyms, as well. 

The WKB approximation can be used for any 1D problem, including a separated variable from a 2D or 

3D problem, such as the radial equation from a central potential.  The energy spectrum is our concern here; 

we do not focus on approximating the wave-function itself.  WKB also introduces the semi-classical 

approximation for momentum, which is used in many situations. 

For WKB to apply, the potential energy function which binds the particle must be either smooth near 

the classical turning points, or essentially infinite at a hard edge (more later).  We take the following 

approach: 

1. Review of qualitative consideration of high energy wave functions. 

2. Understand the wave-function cycles in the bowl of a bound state. 

3. Understand the wave-function near the edges (turning points). 

4. Match the bowl solution to the edge solutions, to arrive at the quantization condition. 

5. From the quantization condition, we determine the quantized energies for integer n, E(n). 

6. Examine the validity conditions: when is WKB a valid approximation? 

I hope this manuscript draft excerpt will encourage you to buy the final book: 

Locally at the UCSD bookstore:  Quirky Quantum Concepts 

From Springer: Quirky Quantum Concepts  

From Amazon: Quirky Quantum Concepts 
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2.8 Long-Distance Operators 

This section attempts to clarify some subtleties of spatial operators.   

The position and momentum bases (basis functions) are parameterized by continuous observables: 

position and momentum.  Between any two eigenvalues (position or momentum) there are an infinite 

number of basis functions and eigenvalues, i.e. there is a continuum of basis functions.  (In fact, there are 

an uncountably infinite set of basis functions.)  Observable operators in continuous bases are simple 

multiplier or differential operators; e.g., in the position basis:   

2
2 2

2
ˆ ˆ ˆ ˆ ˆ, , (position basis)p p pp x x

i x x

 
    

 
. 

For these simple operators, at any given point, the only contribution to the value of the operation on a 

spatial function comes from that point, or at most, a differentially small neighborhood of that point.  Distant 

points do not contribute, and therefore distant places in the spatial function do not interact.   

Mathematical operators (as opposed to observable operators) do not necessarily have such simple 

differential forms.  We now consider some important operators: space translation, rotation, time evolution, 

and parity.  Later, we will use the concepts of rotations, angular momentum, and generators, developed 

here, to deduce the quantization rules for angular momentum, without the need to solve the Schrödinger 

equation. 

2.8.1 Introduction to Generators 

(excerpted) 

2.9 Vector Spaces and Hilbert Spaces 

Linear vector spaces are used throughout science and engineering.  Quantum Mechanics organizes 

cleanly into vector spaces, so it will make your life much easier if you understand them.  Vector spaces also 

form a foundation for the future study of group theory.  However, for spatial wave functions alone, you 

probably don’t need all of this section, because you can work most of the math without it.  However, it is 

critically important to understand the concept of a “zero vector” (defined later), and its distinction from the 

number 0.  For example, the zero vector is an essential part of how the Dirac algebra derives energy 

quantization in the harmonic oscillator.   

For angular momentum states, and other finite dimensional quantum states, you really need to 

understand vector spaces, including the zero vector.  Similarly to the harmonic oscillator, the zero vector is 

essential to deriving the requirement of half-integer multiples of ħ for all angular momenta.   

Vector spaces derive from the common notion of vectors in elementary physics: such a vector is 2 or 3 

real values, representing a magnitude and direction.  The vectors are drawn in either a 2-dimensional space 

(the space of a plane), or a 3D space (the space of volumes).  The number of real values in such a vector is 

the dimension of the vector: 2D vectors have two real numbers (x, y).  3D vectors have 3 real numbers (x, 

y, z). 

Such physically based vector spaces have some important properties, which we detail below.  But it 

turns out that many types of mathematical elements share important properties with physical vector spaces.  

Thus it becomes very useful to define general vector spaces, called simply vector spaces, which are both 

more general and more abstract than spatial vectors in physical space.  We describe vector spaces as 

follows: 

 Overview: a vector space comprises fields, groups, and more. 

 Fields. 

 Groups. 

 Vector spaces, plus inner products, and operators. 
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2.9.1 Vector Space Overview 

(excerpted) 
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3 Introduction to Scattering 

Scattering is important for several reasons: lots of physics was discovered by scattering one thing off 

another.  Rutherford and his students discovered atomic nuclei by scattering alpha particles off gold foil; 

Davisson and Germer discovered the wave nature of electrons by scattering them off a nickel block, thus 

ushering in the era of quantum mechanics.  Today, the most advanced quantum theories are tested by 

scattering (aka “colliding”) particles off each other, and measuring the angles and energies of particles in 

the shower of debris that results.  (Scattering theory is also called “collision theory.”)  Furthermore, 1D 

scattering essentially includes the topic of tunneling, which is of great practical importance.  Tunneling has 

many experimental applications, such as the scanning tunneling microscope (STM), and everyday practical 

uses, such as high-frequency tunnel diodes. 

 The math for scattering is covered in most books, but the big picture preceding the math is often 

skipped.  We start here with the big picture, before delving into a few selected computations.  Our goal is to 

convey the concepts, so that the presentations in standard texts are more accessible.  ([Gos chapter 23] 

provides an unusually clear introduction to scattering.)   

Recall that a “stationary” state has properties that do not change with time; however, it is not “static.”  

For example, a particle in a pure momentum eigenstate is “stationary,” but it is also moving (it has 

momentum).  A particle in an orbital angular momentum eigenstate is also stationary, but “moving:” it is 

revolving around the center. 

In the following analysis, we use a variant of delta function normalization that is often used in 

scattering with momentum eigenstates.  We drop the prefactor, so: 

/( ) (unit magnitude delta-function normalization)ipx
pp x e  . 

In other words, we are simply choosing our normalization such that the (implicit) prefactor of “1” before 

eipx/ħ represents one particle.  This can also be considered normalizing to one particle per unit volume, but 

scattering is generally analyzed one incident particle at a time.   

We present a 5-step program for scattering, in increasing order of complexity:  

1. 1D scattering: Solving Schrödinger’s equation. 

2. 3D classical scattering: defining cross sections. 

3. 3D quantum scattering: Solving Schrödinger’s equation, and defining quantum cross sections. 

4. Born approximation: good for mild scattering (particle energy >> scattering potential). 

5. Partial wave expansion, including the low-l approximation (good for particle wavelength >> target 

size). 

Alternatively, one can view scattering as a time-dependent perturbation problem, and use Fermi’s 

Golden Rule [Bay p252b], but we do not discuss that development here. 

This whole chapter assumes you are familiar with solving the time-independent Schrödinger equation, 

wave-packets.  The 3D scattering sections assume understanding angular momentum, spherical Bessel 

functions, and solutions to the Schrodinger equation in spherical coordinates. 

3.1 1D Quantum Scattering 

3.1.1 1D Scattering: Finite Width Barrier 

Suppose we have a scattering potential, V(x), which is localized (Figure 3.1, left).  This potential is the 

“target.”  The force between the target and incident particle is short range, as indicated by the potential 

being zero outside a small region.  Therefore, the particle is a free particle outside the range of the target.  

This assumption is also important in 3D scattering. 
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Figure 3.1  Not to scale.  (Left)  The particle wave-packet approaches from the left.  (Middle)  

The particle interacts with the barrier potential, and is partially transmitted and partially reflected.  

(Right)  The wave-function has split into spatially separate transmitted and reflected parts. 

A single particle is incident from the left, with a very well-defined momentum, so it is described by a 

wave-packet that is very wide (narrow Δp  wide Δx).  The particle is “free” until it hits the target.  A 

realistic wave-packet is much wider than the target width, so the diagram is not to scale.  The wave-packet 

comprises waves of a narrow range of momenta (a superposition of momenta), and can be normalized.  

However, since the spread in momentum is very small, we approximate it as a momentum eigenstate, and 

use unit-amplitude δ-function normalization (the wave function is nearly a δ-function in the momentum 

basis). 

The particle energy may be above or below the target height.  Either way,  

some of the wave-function is reflected, and some is transmitted through the target. 

The particle interacts with the target (“collides”, Figure 3.1, middle).  This interaction splits the wave-

packet into two parts: a transmitted part that continues past the target, and a reflected part that moves back 

to the left.   

Classically, we’re used to thinking of scattering as a dynamic process: a particle enters, collides, and 

leaves.  In QM, however, the process can be computed as stationary (steady-state).  Because the wave-

packet is wide, when its center reaches the target, the packet envelope is nearly constant in space and time, 

but the wave-function phase changes with time.  In other words, we have (essentially) a stationary quantum 

state, with the incident part of the wave-function moving to the right.  The leading and trailing edges of the 

wave-packet are far from the barrier.  Therefore, to a good approximation, Schrödinger’s time-independent 

equation applies.  Note that “stationary” does not mean “static.”  The particle is always moving, but during 

the collision, far from the wave-packet edges, the wave-function amplitudes do not significantly change 

with time.  Therefore, the incident particle wave-function is closely approximated by that of a definite 

momentum: 

/ /( , ) , andipx iEt ikx i t
inc t x e e e e where p k E      . 

This is where all the math comes in: we solve Schrödinger’s time-independent equation, and find the 

amplitudes for the transmitted piece and the reflected piece.  We have to match the wave-function value 

and slope at both interfaces (front and back of barrier).  Most standard references do this, so we don’t 

discuss it here (see for example, [Gos chapter 4]). 

After the collision is done, the particle has a probability to be found on the left, and moving left, and 

some probability to be found on the right, and moving right (Figure 3.1, right).  That is, it has a probability 

to be reflected, and a probability to be transmitted. 

Things to note: scattering amplitudes, and therefore the transmission and reflection probabilities, 

depend on p, the incident particle momentum, or equivalently on k, the incident particle spatial frequency 

(wave number).  Furthermore: 

In 1D barrier scattering, the energy (and therefore momentum, spatial frequency, and speed)  

is the same on both sides of the barrier.  Therefore,  

the widths of the incident, transmitted, and reflected wave-packets are all the same. 

If we take the amplitude of the incident wave-packet as unity (unit amplitude δ-function 

normalization), then the probabilities of transmission and reflection are simply: 
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2 2 2
1 Pr(transmission) , and Pr(reflection)inc T R      . 

(excerpted) 

3.2 Introduction to 3D Scattering 

The basic idea of 3D classical and quantum scattering is that we send a uniform spray of particles 

at a target, and they bounce off in all kinds of directions.  However, we consider each incident 

particle individually, assuming no interaction between incident particles. 

By “uniform spray” we mean a fixed number of particles per second per unit area: a uniform flux 

density.  A flux is particles per second (N/s); flux density is particles per second per area (N/s/area).  Flux 

density is also called “luminosity,” especially in experimental physics.  (Many references use the term 

“flux” to mean “flux density.”)  The incident beam is wide, much wider than the target, so its exact width is 

not a factor in the scattering.  In realistic quantum scattering, the incident particles are far enough apart that 

they do not interact. 

Before considering 3D quantum scattering, we start with an overview of classical scattering, which is 

the foundation on which we build.   

3.2.1 3D Hard-Target Classical Scattering 

“Hard target” scattering has rigid, impenetrable particles and a rigid, impenetrable target.  (This 

situation does not exist at the quantum level.)  Therefore, an incident particle either hits or misses the 

target.  We consider the following topics in classical hard-target scattering: 

 Incident particles. 

 Scattered particles. 

 Differential cross-section. 

 Total cross-section. 

 Measuring differential cross-section. 

 Axially symmetric targets. 

 Reduction to one body. 

incident flux 

density (N/s/A)

dσ

arbitrary 
target

dΩ

scattered flux 

density  (N/s/Ω)

incident flux 

density (N/s/A)

dσ axially 
symmetric 

target

dΩ

scattered flux 

density (N/s/Ω)

z
b

z

θ

z

θ



x

y

z

 

Figure 3.2  (Left)  Classical scattering off an arbitrary target.  (Right)  Classical scattering off an 

axially symmetric target.  ‘b’ is the classical impact parameter. 

Incident particles:  Because the incident flux density is constant over the x-y plane, the flux through 

any area normal to the flux is just area times flux density (Figure 3.2): 

  flux particles/s flux_density area or

flux density = particles/s/area .F JA where J

 

 
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A hard-target is a lump of hard stuff which is impenetrable, but has no effect outside the target boundary.  

(We discuss “soft-targets” later.)  The scattering is usually elastic: the target is fixed (heavy) and acquires 

negligible energy; therefore the scattered particles have the same energy as the incident particles.  In 

classical mechanics, the cross-section of a hard-target is literally the cross-sectional area of the target 

perpendicular to the flux, measured in, say, cm2.  By analogy, in quantum scattering, the effective area 

capturing flux is called a cross-section.   

Scattered particles:  The scattered particles are measured differently.  Far from the target, it appears 

to be a point source of scattered particles.  Since particles are conserved, the total outward flux through a 

large sphere centered on the (effectively point-source) target, including particles which “miss” the target 

and continue past it, equals the incident flux.  For a differential solid angle dΩ measured far from the target, 

the flux per steradian is constant along the radius away from the target.  Therefore, for scattered particles, 

the flux density is measured as particles per second per solid angle (particles/s/sr), rather than 

particles/s/area. 

Differential cross section:  Consider Figure 3.2, left.  Each infinitesimal area, dσ, scatters into an 

infinitesimal solid angle, dΩ, in the direction (θ, ).   

particles/s into particles/s out ofd d   . 

For infinitesimal dσ, if we vary its size, the dΩ into which it scatters will vary proportionately: if we double 

dσ, we will double dΩ.  In other words, in an infinitesimal region around any direction (θ, ), the ratio 

dσ/dΩ is constant.  We here call it s(θ, ): 

( , ) (units of area/sr)
d

s
d


  


. (3.1) 

Generally, though, we think in the reverse direction: we can control the size (dΩ) and position (θ, ) of 

particle detectors counting scattered particles.  Then we can ask (and measure): how big a dσ contributes 

particles to the given dΩ.  Since the incident flux density j is uniform, we don’t care where dσ is, we only 

care how big it is.  In general, the size (and position) of the incident cross section, dσ, that fills a given 

small solid angle, dΩ, varies in different scattered directions, i.e. it is a function of  (θ, ). 

flux out of incident flux density (particles/s/area). Then:

flux out of
( , ) .

inc inc

inc

J d d where J

d
d s d

J



  

  


  

. 

The function s(θ, ) is (somewhat inappropriately) called the differential cross-section.  Of course, the 

“differential cross-section” is literally just dσ, and is proportional to dΩ, but this misnomer is universally 

used.  [Gri p395b] notes that s(θ, ) is a derivative, not a differential, which we see from (3.1).  The units of 

differential-cross section are cm2/steradian, or just cm2, because the steradian (like the radian) is equivalent 

to dimensionless. 

Note that more than one location for dσ could scatter into the same solid angle, dΩ; this is only 

possible because far from the target, it appears to be a point source.   

The concept of multiple incident regions scattering into the same solid angle  

is critical for quantum scattering.   

In this case, the  differential cross-section is simply the sum of all small incident areas that scatter into the 

given dΩ. 

The differential cross-section does not care which region of the incident beam the particles come 

from; it tells only how much total incident area scatters into a solid angle in a given direction.  

Total cross-section:  The total cross-section is the cross-sectional area of the incident flux that is 

scattered (in any direction).  Therefore, we can find the total cross-section by integrating dσ: 
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2

sphere 0 0
( , ) sin sin

d
d d d s where d d d

d

 
           

   . 

Measuring differential-cross section:  We measure differential cross-sections exactly the same way 

for all scattering (hard classical, soft classical, and quantum).  Send in a known number of particles/cm2 

toward a target.  Put small detectors around the target in all directions.  Measure the detection rate in each 

direction, knowing the solid angle dΩ covered by each detector.  Then simply divide: 

 2particles/s
in cm , ( , )

solid_angle_of_detectorinc

d d
d s

j d

 
    


. 

Note that the detection rate (particles/s) of any detector is proportional to the incident flux density; 

therefore, the flux density cancels, and the cross-sections dσ are independent of flux density; dσ/dΩ is a 

function solely of a single incident particle (including its energy) and the target. 

Axially symmetric targets:  Many targets are axially symmetric (Figure 3.2, right).  In particular, 

spherically symmetric targets are also axially symmetric.  Because of this symmetry, there is no  

dependence.  Then the differential cross section is a function of θ only: 

( ) (axially symmetric target)
d

s
d





. 

We must still include  when integrating to find total cross-section, but it integrates trivially to 2π:  

2

0 0 0
( ) sin 2 ( ) sin (axially symmetric target)d s d d s

  
            . 

(excerpted) 

3.3 3D Quantum Scattering 

3.3.1 3D Quantum Scattering Overview 

Quantum scattering combines wave scattering concepts with quantum probabilities.  Quantum 

scattering is wave-function scattering, so interference is important.  In QM, each small incident area has a 

probability of scattering into most any solid angle.  Conversely, a given solid angle usually has 

contributions from a large (or infinite) incident area, i.e., a given dΩ has probabilities of coming from a 

large set of dσ’s.  The overall QM dσ for a given dΩ is a weighted sum of every possible infinitesimal 

incident area da, each weighted by its amplitude for scattering into dΩ, and including the interference of all 

such contributors.  Recall that: 

We define (and measure) cross-sections by counting particles. 

z
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Figure 3.3  Quantum scattering: each small incident area scatters in all directions;. the 

contribution to a given solid angle is the incident area times the amplitude for scattering into that 

solid angle. 
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In particle-target quantum scattering, we usually consider the target fixed, and it absorbs negligible 

energy from the incident beam.  (As noted earlier, 2-body collisions can be converted to this form.)  We 

assume the interaction force is short-range (defined soon).  Therefore, outside the range of the scattering 

potential, the outbound waves have (essentially) the same kinetic energy as the inbound waves, and the 

scattering is elastic.  This means the particle is a free particle outside the range of the interaction force.  The 

outbound wave is proportional to the incident wave-function, which is a plane wave, written as: 

( ) normalization factorikz
inc z Be where B   .   

From far away, the target appears to be a point source of scattered waves, so the scattered wave fronts 

must be spherical, i.e. proportional to exp(ikr).  We can deduce the mathematical form by considering 

conservation of particle flux (sometimes called “conservation of probability”).  In steady state, the particle 

flux into any thick (or thin) spherical shell must equal the flow out.  In general, through any area in space, 

flux = flux-density times area, and flux-density equals volume-density times velocity: 

2
mass of particle, spatial frequency,

area,

quantum velocity of particle .

out

k
F Ja va a where m k

m

a

p k
v

m m

     



  

 

Therefore, the scattered wave-function ψout(r) must decrease as 1/r, so that |ψout|2 decreases as 1/r2, and the 

total flux through spheres of any radius is constant: 

 

2
2 2 2

sphere sphere
flux , ,

ikr

sc

e
v r r d v r d const

r
        . 

The outbound wave-function ψsc is thus a spherical wave (but not spherically symmetric).  ψsc is also a 

solution to Schrödinger’s equation with V = 0, since V is zero outside the range of the scattering potential.  

Therefore, placing the origin of our coordinates at the target, we define a scattering amplitude f(θ, ): 

 

 

, , ( , ) , and

( , , ) ( ) , , ( , ) .

ikr

sc

ikr
ikz

inc sc

e
r f B

r

e
x y z z r B e f

r

    

      



 
    

  

 (3.2) 

f(θ, ) is implicitly a function of the incident momentum (or k), as well, but we omit k for brevity, as is 

conventional.  f(θ, ) has units of m–1/2.  B is arbitrary (it will cancel from all calculations), so we take B = 1 

for simplicity (unit amplitude delta-function normalization).  We have written the stationary-state wave-

function ψ(x, y, z) in the conventional manner on the RHS, which mixes both rectangular coordinates (z), 

and spherical (r, θ, ) coordinates. 

We show below that dσ/dΩ = |f(θ, )|2.  Then the total cross-section is found by integrating over all angles, 

just as for classical scattering: 

2 2

sphere 0 0
( , ) sin sin

d
d d f d where d d d

d

 
           

   . 

We can define “hard” quantum scattering as the limit of a potential that is infinite inside its boundary, 

and zero outside.  But: 

Unlike classical scattering, the hard-target quantum scattering cross-section  

is not equal to the physical target cross-sectional area. 
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Scattering calculations may include many conditions on the incident and outbound particles, such as 

their spin, polarization, etc.  The differential cross section dσ/dΩ for a given set of conditions is a statistical 

description of quantum scattering, and defines everything there is to know about such scattering. 

Inelastic scattering:  You sometimes hear about “inelastic” quantum scattering: this refers to 

scattering where the outbound particles are different than the inbound particles, and may have different 

total mass.  For example, photons may be radiated, and carry away energy and momentum.  Similarly, in 

condensed matter, scattering may radiate phonons, which carry away energy and momentum.  Inelastic 

scattering includes the case where particles are “absorbed” into the target, such as photon absorption or 

nuclear capture.  It also includes cases where the target changes state, and may give energy to the incident 

particle, increasing its outbound energy.  Whenever the outbound kinetic energy may be different than the 

inbound kinetic energy, the scattering is inelastic.   

Inelastic scattering can be modeled by a potential V(r) which is complex [Sch sec. 20 p129], much like 

EM wave propagate in an absorbing medium with a complex wave-vector k, but we do not address 

inelastic scattering further. 

3.3.2 3D Scattering Off a Target: Schrödinger’s Equation 

(excerpted) 

3.4 Partial Wave Method 

In contrast to our discussion so far, the method of partial waves requires that the scattering target be 

spherically symmetric, so V(r) = V(r), where r ≡ |r|.  In principle, the method of partial waves gives an 

exact series solution to the spherically symmetric scattering problem [Blo p272b], though in general, 

neither the series, nor any of its terms, can be evaluated analytically.  This section assumes you understand 

orbital (spatial) angular momentum (but not necessarily spin), and how and why the spherical harmonics 

are angular momentum eigenstates of spherically symmetric potentials.  (We discuss orbital angular 

momentum in a later chapter.)  This section is rather long.  We proceed as follows: 

 Angular momentum of a plane wave; inbound and outbound spherical waves. 

 Conservation of angular momentum. 

 Scattering of an angular momentum eigenstate. 

 Calculating δl. 

 Small k approximation. 

Angular momentum of a plane wave:  What is the angular momentum of the incident plane wave?  It 

might seem at first that it is zero, and indeed its average is zero: <Lx> = <Ly> = <Lz> = 0.  But we now 

show that it has nonzero squared magnitude, i.e. <L2> ≠ 0.  This leads to an important method for 

computing scattering for spherically symmetric targets: partial waves.  With partial waves, we decompose 

the incident plane wave into its L2 eigenstate components (with quantum numbers l), and then treat each 

component separately.  A single L2 eigenstate can be easier to analyze than a plane wave, and we get a 

series solution in the quantum numbers l.  Finally, we can estimate the magnitudes of the scattering as a 

function of l, and keep only the significant contributors.  This allows an arbitrarily good approximation in a 

finite sequence of terms. 
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Figure 3.4  (Left) An incident plane wave comprises angular momentum components up to 

arbitrary l.  The momentum, p, is constant everywhere, but there are many component impact 

parameters, e.g. x1, x2.  (Right) Spherical inbound and outbound waves. 

Consider the incident plane wave in Figure 3.4, left.  Recall that ˆ
zL

i 





.  We easily show that <Lz> 

= 0 using cylindrical coordinates: 

ˆ ( , , ) 0 0ikz
z inc z inc z incL r z e L L

i
   




    


. 

The left hand equation says that the local Lz(r) is everywhere 0.  Physically, as we picture the particle 

traveling to the right, it has no momentum in the x or y directions, and therefore has no reason to spiral 

around the z axis as it propagates.  Hence Lz = 0. 

Now consider Ly of the incident wave.  Recall that L = r  p.  Since ˆpp z  is along z, Ly = –xp, i.e. 

the local angular momentum about the target, due to a point r = (x, y, z) on the wave-function ψ(r), is –xp.  

We see from the diagram that each contribution to positive Ly from some x < 0 is canceled by an equal 

contribution to negative Ly from its mirror image with x > 0.  Hence <Ly> = 0.  Similarly, <Lx> = 0. 

What about L2 = Lx
2 + Ly

2 + Lz
2 ?  Our prior result for Lz shows that Lz

2(r) = 0 everywhere.  However, 

Ly
2 is not zero.  The two local components of Ly

2 now add rather than cancel.  Similarly for Lx
2.  

Furthermore, for an infinitely wide plane wave, there are infinitely large values of x contributing, and 

therefore angular momentum components out to infinite magnitude.   

Now recall that the spherical Hankel functions hl(ρ) are spherical radial functions propagating outward 

from the origin, and their complex conjugates hl
*(ρ) are spherical radial functions propagating inward.  [hl 

and hl
* are sometimes written as hl

(1) and hl
(2).]  The angular momentum eigenstates hl(kr)Ylm(θ, ) and 

hl
*(kr)Ylm(θ, ) are free-particle (V = 0) solutions to the Schrödinger equation (l ≡angular momentum 

quantum number), and so form an orthonormal basis.  Therefore, we can write the incident plane wave as a 

sum of these angular momentum eigenstates.  Since Lz  ∂ψ/∂ = 0 everywhere, only the ml = 0 functions 

contribute.  Though it is traditional to write the expansion in terms of Pl rather than Yl0, it is more consistent 

with QM notation to use the spherical harmonics Yl0.  Furthermore, we write it in terms of the Hankel 

functions, because we are interested in the outgoing and ingoing components separately: 

  *
0

0

1
( ) 4 2 1 ( ) ( ) ( ) [Gos 23.34 p500b]

2

ikz l
inc l l l

l out in

e i l h kr h kr Y  




 
    
 
 

r . (3.3) 

This is a superposition of inbound and outbound spherical waves of all angular momenta l.  They interfere 

in just the right way to add up to a plane wave.  Note that while hl and hl
* are both irregular at the origin, 

their sum is the usual spherical Bessel function, and is regular at the origin: 
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 *1
( ) ( ) ( ) spherical Bessel function of order

2
l l lh kr h kr j kr l   . 

This explains why the expansion (3.3) is regular at the origin.  However, we actually do not need regularity 

at the origin, since we will only use the Hankel functions in the vacuum outside the range of the scattering 

potential (r > r0), and therefore excluding the origin. 

(excerpted) 
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Figure 3.5  There are three regions to the solution for ψ = ψinc + ψsc: (1) inside the target, we can 

take ψ(r < r0) to be real.  (2) In vacuum just outside the target, we describe ψ with Hankel 

functions.  (3) At large r, ψsc is closely approximated by eikr/r. 

(excerpted) 

3.5 The Optical Theorem 

The optical theorem is true for any coherent wave scattering, including electromagnetic waves, and a 

quantum particle.  It holds with or without absorption, whenever the scattered wavelength is the same as the 

incident, even for asymmetric targets [Bay p202b].  However, the optical theorem requires that waves, as 

they propagate through the medium, maintain their phase coherence over a long distance.  Therefore the 

medium must be uniform, and the incident particles must have a very narrow bandwidth. 

Many quantum references demonstrate the optical theorem only for one or two limited cases, but it is 

very general.  The theorem illustrates a substantive application of interference, as well as some important 

mathematical methods.  We prove the theorem here by direct calculation of the interference.  The 

derivation is exact, as each step is a rigorous limit as z  ∞, and then as Δθ  0.   

This section relies on the general principles of scattering described earlier, especially the idea of cross-

section.  As always, we distinguish “flux” (particles/time) from “flux density” (particles/area/time).   

Overview:  Essentially, the optical theorem says that the flux scattered from a target exactly equals the 

flux depleted from the incident wave passing the target.  For EM waves, the flux is energy/time or power, 

and the theorem is a statement of conservation of energy (power in = power out).  For quantum mechanical 

scattering, the flux is particles/time, and it is a statement of conservation of particles (sometimes called 

conservation of probability): particles in = particles out.  This simple idea has a surprisingly odd 

mathematical form: 

 
4

Im ( 0) (the optical theorem)total f
k


   . 
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Figure 3.6  The forward scattered wave gets weaker with distance, but the “shadow” rings 

compensate by getting bigger.  (Many wavefronts are omitted here for clarity.)  The beam width is 

actually much bigger than the rings. 

Figure 3.6 depicts the depletion of flux from the incident beam by the target.  While this is sometimes 

called the “shadow” of the target, it bears little resemblance to an everyday macroscopic shadow.   The 

“shadow” consists of circular interference rings across its face (Figure 3.6, though the ring edges are 

actually gradual, not sharp).  The rings are circular even for asymmetric targets, because (as required for 

our previous scattering analysis), any short-range target looks like a point source from large distances, and 

hence scatters spherical waves (but not spherically symmetric waves).  We choose a small angular width 

Δθ so that the scattering amplitude f(θ, ) is essentially constant.  The scattered wave has a wavefront at θ = 

0, called the forward scattered wave.  As the propagating forward scattered wave amplitude weakens with 

distance (~ 1/r), its destructive interference of the incident wave decreases, but the interference area grows 

with distance.  The two effects exactly compensate, creating a decrease in flux that is independent of 

distance.  This missing flux must go somewhere, and it goes into the total scattered flux. 

We consider the intensity across the x-y plane at some large z.  As shown in Figure 3.6, the x and y 

distances covered by some small Δθ increase linearly with z.  However, the radius of the interference rings 

increases more slowly, as z .  The two growth rates are shown in the figure.  For a given Δθ, there are 

more and more rings included as z  ∞.  This is important later, in choosing our limits of integration. 

(excerpted) 
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Figure 3.7  (Left) At moderate z, the “shadow rings” of the target, overlaid with the imaginary 

component of exp(ix2).  (Right) At twice the z, more interference rings are included within Δθ.  

(excerpted) 
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3.6 Identical Particle Scattering 

We mention briefly here some considerations in 2-identical-particle scattering.  Parts of this section 

rely on a knowledge of complete spin-space quantum states.   

The case of identical particles requires more care regarding reduction to 1-body.   As we will see in 

Multi-Particle Quantum Mechanics, identical particles always have a symmetry in the multi-particle wave-

function.  Identical fermions (matter particles such as electrons, muons, protons, quarks, ...) must have 2-

particle wave-functions that are antisymmetric under particle exchange.  If the two spins are in the 

symmetric state of total S = 0: 

12 1 2 2 1( , ) ( , ) (fermions with 0)S  r r r r . 

For example, e–-e– scattering must satisfy this anti-symmetry.  When reducing to 1-body, this anti-

symmetry gets lost.  For correct calculations, we must preserve the symmetry by imposing an equivalent 

one on the 1-body scattering analysis.  In particular, when the one body moves from a point to a 

diametrically opposite point (across the target), that is equivalent to exchanging the two actual electrons, so 

for the 1-body wave-function, we must satisfy: 

( ) ( ) or ( , , ) ( , , )r r               r r . 

This says the 1-body wave-function must be odd parity. 

As an example of the measurable consequence of this antisymmetry, consider e–-e– scattering, where 

the two electrons collide “head on.”  For scattering into the x-y plane, θ = π/2.  In the 1-body picture, we 

have the usual axial symmetry of the incident particle around the z-axis.  This means ψ(π/2, ) = ψ(π/2,  + 

π).  But antisymmetry requires that ψ(θ, ) = –ψ(θ,  + π).  The only way to satisfy both requirements is for 

the outbound wave to be zero along θ = π/2.  In terms of f(θ, ): 

( / 2) 0 (identical fermions with 0)f S    . 

On the other hand, if the two fermions are in an antisymmetric spin state (S = 1), then the 2-particle 

wave-functions must be symmetric under particle exchange: 

1 2 2 1( , ) ( , ) (fermions with 1, or bosons)S  r r r r .  

This is also true of identical bosons with symmetric spin states.  For example, alpha particles are bosons of 

zero spin, and so require symmetric 2-particle wave-functions.  This says the 1-body wave-function must 

be even parity.   

Further discussion is outside our scope. 

3.7 Scattering Conclusion 

Our goal has been to familiarize you with the conceptual background needed to delve into existing 

mathematical developments of quantum scattering.  There are many different approaches to scattering, and 

every book has its own pedagogical methods.  It is probably most beneficial to consult several different 

references, so as to obtain a broad view of various aspects of scattering theory. 
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4 Matrix Mechanics 

We’ve seen how quantum mechanical kets (states and other vectors) can be represented by wave-

functions.  Kets are the vectors of the vector space which encompasses a quantum system.  Kets are either 

states, or the result of operators on states.  Most of the previous chapters deal with wave mechanics, where 

the kets are continuous functions of space, and therefore the vector space has infinite dimension.    

However, kets are often represented as finite-dimensional vectors, sometimes for convenience (e.g. 

orbital angular momentum), and sometimes by necessity (e.g., spin).  Such a ket is called a discrete ket or 

“finite dimensional ket.” It may be written as a column of N complex numbers, where the vector space has 

finite dimension, N.  Most notably:  

All of angular momentum, both orbital and spin,  

can be described by finite dimensional vector spaces.   

In addition, lots of other things can be represented or well-approximated by finite dimensional states, 

including an ammonia atom’s nitrogen position, electron configurations in atoms and molecules, or 

excitations of an oscillator where only a finite number of states are likely. 

Column vectors, row vectors, and matrices are perfect for QM, since they are defined to be the 

elements of linear transformations, and so represent the fundamental axiom of quantum mechanics: systems 

exist in a linear superposition of states.  As such, no description of quantum mechanics is complete without 

matrix mechanics: the quantum mechanics of systems which can be represented by finite dimensional 

vectors and matrices.  Just as wave-functions are vectors in a vector space, finite dimensional vectors are 

also vectors in a vector space.  (Some quantum references call a finite dimensional vector space a “Hilbert 

space,” but mathematicians insist a Hilbert space must be infinite dimensional.  We therefore use the 

generic term “vector space” for finite dimensional cases.) 

Because of the simple representation of discrete kets and operators as finite vectors and matrices, many 

QM concepts are easier to describe in finite dimensional systems, even if they also apply to continuum 

systems.  For example, density matrices are much easier to visualize and understand in finite dimensional 

vector spaces.  

Note that the dimension of the quantum state vector space describing a system has nothing to do with 

the dimension of the physical space of that system.  Most of the systems we will consider exist in ordinary 

3D space, but are described by quantum state spaces of many different dimensions.  For example, particles 

orbit in 3D space, but the state space of orbital angular momentum for l = 0 is 1D, for l = 1 is 3D, for l = 2 

is 5D, and for arbitrary l is (2l + 1)D. 

4.1 Finite Dimensional Kets, Bras, and Inner Products 

There is a strong analogy between continuous state space (wave-function space) and discrete state 

spaces.  When written in Dirac notation, all the formulas of wave mechanics apply equally well to matrix 

mechanics, which illustrates again the utility of Dirac notation.  Most of the wave mechanics algebra of 

kets, bras, and operators have simple analogs in finite dimensions.  We describe those analogies as we go.  

Note that discrete space QM uses the standard mathematics of linear algebra, which is not derived from the 

continuous spaces, but is analogous to continuous spaces. 

Finite dimensional kets have N components and N basis kets, i.e. any ket can be written as a linear 

combination of N basis vectors.  E.g., 

1

2 1 1 2 2 3 3

3

For 3,

a

N a a a a

a

   

 
 

    
 
  

. 

(We often use 3D quantum state spaces as examples, because they are nontrivial and illustrative.  However, 

this has nothing to do with ordinary 3D space.)  In wave mechanics, a ket |ψ> ↔ ψ(x), where given x, ψ(x) 
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is the complex value of the ket |ψ> at position x.  In finite dimensions, |ψ>  ↔ ψj, where given an index j, ψj 

is the complex value of the jth component of |ψ>.  For general N: 

1

2
1 1 2 2

1

..., basis kets, and are complex
:

N

k k k k

k

N

a

a
a a a where a

a

    



 
 
      
 
 
 

 . 

Inner products:  Inner products and bras are analogous to wave mechanics: 

1

2

3

* *

1

Let . Then:

, analogous to ( ) ( ) .

N

j j

j

c

c

c

c a x x dx



     




 
 


 
  

  

 

Therefore, bras are written as row vectors, with conjugated components, so that an inner product is given 

by ordinary matrix multiplication: 

 
1

† * * * * * * * * *
1 2 3 1 2 3 2 1 1 2 2 3 3

3

a

c c c c c c a c a c a c a

a

   

 
          
    
  

. 

Recall that the dagger symbol acting on a ket produces the dual bra: (|χ>)† ≡ <χ| . 

Kets are written as column vectors, and bras are written as row vectors. 

The squared magnitude of a vector is then: 

22 *

1 1

N N

j j j

j j

a a a  

 

    . 

All of these definitions comply with standard mathematical definitions. 

4.2 Finite Dimensional Linear Operators 

Operators acting on kets (vectors):  Matrix multiplication is defined to be the most general linear 

operation possible on a discrete vector.  Therefore: 

Any discrete linear operator can be written as a matrix,  

which operates on a vector by matrix multiplication.   

The matrix elements are, in general, complex.  For example, an operator in a 3D quantum state space (not 

physical 3D space) can be written: 

11 12 13
ˆ

21 22 23

31 32 33

B B B

B B B B

B B B

 
 

  
 
  

. 

It is important to have a good mental image of a matrix multiplying a vector (Figure 4.1). 
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3

13 13

13

23 3 23

2

2

12 12

12

22 2 2 22
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32 32

32

1

11 1 11

11

21 1

3

33 3 33

3

21

21

31

3

31

31

v
B v B

B
B v B

v
B B

v
B B

B
B v B

B
B

B
B v v B

B
B B

B
B B

B B
v B

B

 
 
 
 

   
   

   
   
   

 
 
 

 
 
 
      

 

Figure 4.1  Visualization of a matrix pre-multiplying a vector, yielding a weighted sum of the 

matrix columns. 

Each component of the vector multiplies the corresponding column of the matrix.  These “weighted” 

columns (vectors) are then added (horizontally) to produce the final result.  Thus, when used as a linear 

operator, matrix multiplication of a vector converts each vector component into a whole vector with a full N 

components, and sums those vectors.  Matrix multiplication is linear, which means: 

 ˆ ˆ ˆ for all , ,B a v w aB v B w a v w   . 

(excerpted) 

† † †

11 12 13

† † †

11 12 13

† † † † † †
21 22 23 21 22 23

† † †

31 32 33

† † †

*

3

*

1

*

1

* *

31 32

2

33 3

*

2

[ ]

[ ]

[ ]

B B B

B B B

Bv B B B B B

B B B

v

v

v

v B

v

B B



  
 

     
   


 

Figure 4.2  Visualization of a matrix post-multiplying a row vector, yielding a weighted sum of 

the matrix rows. 

(excerpted) 

4.3 Getting to Second Basis: Change of Bases 

Quantum mechanics is a study of vectors, and vectors are often expressed in terms of components in 

some basis vectors: 

, , are basis vectors, or

, are basis vectors .

x y z x y za b c where

a z b z where z z

  

     

r e e e e e e
 

Our choice of basis vectors (i.e., our basis) is, in principle, arbitrary, since all observable calculations are 

independent of basis.  However, most times one or two particular bases are significantly more convenient 

than others.  Therefore, it is often helpful to change our basis: i.e., we transform our components from one 

basis to another.  Note that such a transformation does not change any of our vectors; it only changes how 

we write the vectors, and how the internals of some calculations are performed, without changing any 

observable results.   

A basis change transforms the components of vectors and operators;  

it does not transform the vectors or operators themselves. 

Angular momentum provides many examples where changing bases is very helpful.  The infamous 

Clebsch-Gordon coefficients are used to change bases. 

Many references refer to the “transformation of basis vectors,” but this is a misnomer.  We don’t 

transform our basis vectors; we choose new ones.  We can write the new basis vectors as a superposition of 
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old basis vectors, and we can even write these relations in matrix form, but this is fundamentally a different 

mathematical process than transforming the components of a vector. 

(excerpted) 

4.4 Density Matrices 

Density matrices and mixed states are important concepts required for many real-world situations.  

Experimentalists frequently require density matrices to describe their results.  Density matrices are the 

quantum analog of the classical concept of ensembles of particles (or systems).  Ensembles are used heavily 

in Statistical Mechanics.   

Up until now, we have described systems of distinct “particles,” where the particles are in definite 

quantum states.  Even in a definite state, though, the measurable (i.e., observable) properties may be 

statistical (and thus not definite).  This latter property, quite different from classical mechanics, gives rise to 

a striking new quantum result for the classical concept of ensembles.  An ensemble is just a bunch of 

identical particles (or systems), possibly each in a different state, but we know the statistics of the 

distribution of states.  For example, a particle drawn from a thermal bath is in an unknown quantum state, 

due to the randomness of thermal systems.  However, if we draw many such particles (an ensemble) from 

the bath, we can predict the statistics of their properties from the bath temperature.  While a known 

quantum state of a particle may be given by a ket, the state of an ensemble, or of a single particle drawn 

from it, is given by a density matrix. 

We consider here ensembles only for finite dimensional (and therefore discrete) quantum systems, 

though the concept extends to more general (continuous) systems.  We use some examples from the 

quantum mechanics of angular momentum, which is a topic discussed later in this book. 

Instead of having a single particle in a definite state, suppose we have an ensemble of particles.  If all 

the particles in the ensemble are in identical quantum states, then we have nothing new.  All our QM so far 

applies to every particle, and extends to the ensemble as a whole.  But suppose the ensemble is a mixture of 

particles in several different quantum states.  What then?  Can we compute average values of measurable 

quantities?  If we know the fractions of all the constituent states in the ensemble, then of course we can 

compute the average value of any observable, and we do it in the straightforward, classical way.  We will 

see that this idea of a classical mixture of quantum particles leads to a “density matrix:” a way of defining 

all the properties of such a mixture.  However, we will also see that quantum ensembles have a highly non-

classical nature. 

The density matrix is essentially the quantum state of an ensemble. 

For example, suppose we have an ensemble of electrons, 3/4 are spin |z+>, and 1/4 are spin |x+>.  If we 

measure spin in the z-direction of many particles from the ensemble, we’ll get an average which is the 

simple weighted average of the two states: 

 

For : , For : 0. Then:
2

3 1 3
.

4 4 4 2

z zz x

z z zz xensemble

z s x s

s s S

 

 

   

   

 

Following [Sak], we use square brackets [B] to explicitly distinguish the ensemble average of an observable 

B̂ , from a “pure” state average ˆB B  , the average of an observable for a particle in a known 

quantum state (which may be a superposition).  This average [B] is a number, distinct from the matrix for 

the operator ˆ ˆB B 
  .  Expanding the average values above into bra-operator-ket inner products, we get: 
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 

ˆ ˆ, 0. Then:
2

3 1 3
ˆ ˆ .

4 4 4 2

z z z zz x

z z zensemble

s z s z s x s x

s z s z x s x

 
       

       

 

So far, this is very simple.   

Now let’s consider a more general case: an ensemble consists of a mix of an arbitrary number of 

quantum states, each with an arbitrary fraction of occurrence (i.e., probability).  Note that even in finite 

dimensional systems, there are an infinite number of quantum states, because the N basis vectors can be 

combined with complex coefficients in infinitely many ways.  Therefore, the number of states in the 

mixture is unrelated to the Hilbert space dimension, N.  Say we have a mix of M states, |ψ(k)>, k = 1, ... M, 

each with a fraction of occurrence in the ensemble (or weight) wk.  As in the spin example, we can simply 

compute the average value of many measurements of particles from the ensemble by taking a weighted 

average of the quantum averages: 

  ( ) ( )

1 1

ˆ are real, and 1. [Sak 3.4.6 p177]

M M
k k

k k k

k k

B w B where w w 

 

    

A mixed state is quite different from a superposition.  For one thing, a mixed state has no phase 

information relating the constituent states |ψk>: the wk are real. 

Everything we’ve done so far is independent of basis: the |ψ(k)> are arbitrary states, and will be 

superpositions in some bases, but not others.  We use the term constituent to mean one of the states, |ψ(k)>, 

of the mixture.  This is distinct from “component,” which refers to the complex coefficient of a basis 

function in a superposition.  The constituents in a mixture are quantum states, independent of basis.   

An ensemble with only one constituent (M = 1) is called a pure state: each particle is in a definite 

quantum state. 

4.4.1 Development of the Density Matrix 

(excerpted) 
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5 Angular Momentum 

Angular momentum is a critical part of quantum mechanics, with applications throughout 

spectroscopy, magnetism, and solid state physics.  This chapter assumes you are somewhat familiar with 

quantum angular momentum, and therefore we focus on the more conceptually challenging aspects. 

5.1 Rotation Notation 

We introduce some notation here, but all of it should become more clear as we use it throughout the 

text.  “Ĵ” is a common symbol for an arbitrary angular momentum operator (orbital, spin, combination, ...).  

To distinguish between operators and unit vectors, we use hats for operators, and bold e for unit vectors: 

 

ˆ is the operator for angular momentum in the  direction.

is the unit vector in the  direction.

L





e
 

A quantum vector operator is a set of three operators, associated with the three basis directions in real 

space.  For angular momentum vector operators we have: 

     
2 2 222

ˆ ˆ ˆ ˆ the angular momentum vector operator,

ˆunit vector in -direction of 3-space ( in non-quantum language), etc.

ˆ ˆ ˆ ˆ ˆ the magnitude-squared operator .

x x y y z z

x

x y z

J J J

where x

J J J J

  



   

J e e e

e x

J

 

The eigenstates (orbital or spin or combination) eigenstates of 
2ˆ ˆand zJ J  are written: 

2ˆ ˆor , is the quantum # for ; is the quantum # for zj m j m where j J m J . 

For spin-1/2 particles in the z-basis, the following seven notations in common use are equivalent: 

11 1
,

02 2

01 1
,

12 2

z z

z z









 
           

 

 
            

 

 

For combining two angular momenta (of arbitrary nature: spin, orbital, ...), the following notations are 

in common use, and use capital letters for total angular momentum, and lower-case letters for the 

constituent angular momenta:  

1 2

1 2

(the vectors in 3-space) total angular momentum,

ˆ ˆˆ (the quantum operators) .

where  

 

J j j J

J j j
 

In the “uncoupled” basis, we write states of the combined system of angular momenta as combinations of 

the two original (uncoupled) angular momenta.  There are several common, equivalent notations: 

1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 2

1 2 1 2

; , ; ,

, , are "understood".

j m j m j m j m j m j m j j m m

m m where j j

   


 

The alternative basis is the “coupled” basis (combined total angular momentum), with quantum numbers J 

and M, and eigenstates: 

2ˆ ˆ, eigenstates of , zJ M J J . 
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Note the distinction between J and J:  J is an angular momentum vector in 3-space;  J is an angular 

momentum quantum number of the combined total angular momentum.  In particular, J is not the 

magnitude of J: 

22ˆ ˆ ˆ ˆ, butJ J  J J J J . 

In all of the above definitions, systems of purely orbital angular momentum might use L, L, l, etc. in 

place of J, J, j, etc.  Systems of purely spin angular momentum might use S, S, s, etc. 

Example:  For spin ½: 

 ˆ ˆ ˆ ˆ, , .
2 2 2 2

Eigenstates: , .

x x y y z z x x y y z zs s s           

 

s e e e

 

5.2 Dissection of Orbital Angular Momentum 

5.2.1 Orbital Angular Momentum as Fluid 

Imagine water circulating in a closed circular loop of frictionless pipe.  The system is stationary (no 

property changes with time), however it has angular momentum.  If we try to tilt the loop, we will 

experience the resistance typical of tilting a gyroscope (bicycle wheel, etc.).  Thus, even though the system 

is stationary, we can measure its angular momentum.  The system is only dynamic if we look on a 

microscopic scale at the individual water molecules. 

An electron in orbit around a nucleus is similar: it is stationary, i.e. no property changes with time.  

However, it has angular momentum.  The electron is like a compressible fluid, distributed in space, with a 

particle-density and momentum-density given by its wave-function.  In contrast to the water example 

above, so far as anyone knows, electrons have no smaller microscopic scale to look at: there are no 

“molecules” composing the electron.  The electron appears to be a sort of “perfect fluid,” no matter how 

closely we look. 

5.2.2 Spherical Harmonics as Motion 

(excerpted)   

m = 8 (top view)

x

y
p1

p2

north 

pole
y

z

north pole



p
y

z
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

p

Lθ

r

 

Figure 5.1  (Left) Linear momenta in the -direction at two points for m = 8: ei8.  

(Middle) Linear momentum in the θ-direction.  (Right) Angular momentum in the –θ direction. 

(excerpted) 

5.3 Generating Station: A Different Spin on Angular Momentum 

Particle “spin” is a kind of angular momentum with extremely important observable effects across a 

wide range of phenomena, but it has no classical analog.  The magnitude of a particle’s spin can never be 

changed, but its direction can.  For charged particles, angular momentum comes with a magnetic dipole 
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moment, which is a critical element of a chemical compound’s radiation spectrum.  (Even neutrons have a 

magnetic dipole moment, due to the charged quarks inside them.)  Spin-related spectroscopy is an essential 

tool for understanding chemical structure, as well as many other microscopic phenomena.  Also, spin 

magnetic moment is the essence of MRI (Magnetic Resonance Imaging), an important medical diagnostic.  

And someday, spintronics, based on recording information in electron spins, may improve our electronic 

devices. 

To facilitate understanding spin, and to illustrate its close association with rotations, as well as with 

orbital angular momentum, we demonstrate here some of the mathematical tools that are universally used 

for analyzing spin.  Motivated by our discussion of generators (section 2.8.1), we follow this course: 

 Orbital angular momentum, and its commutation relations. 

 Rotations in real space, and the commutators of rotation operators. 

 Quantum rotations, which must have the same commutators as classical. 

 Quantum generators of rotation. 

 Commutation relations of quantum generators of rotation, derived from rotation commutators. 

We follow a similar approach to [S&W p257-60]. 

Orbital angular momentum:  We review here the commutation relations of orbital angular 

momentum, as derived from the commutation relations of position and momentum, [x, px] = iħ.  

Classically, angular momentum is L ≡ r  p.  Quantum mechanically, ˆ ˆandr p  are observable operators, 

which means they are local (they depend only on a point, or an infinitesimal neighborhood around a point).  

New local operators can be derived from old local operators using the classical relationships.  Thus: 

ˆ ˆˆ ˆˆz y xL xp yp  . 

Since there is nothing special about our choice of labeling the axes x, y, and z, the same relation must hold 

for any right-handed set of axes, such as a circular permutation of coordinate labels: 

ˆ ˆ ˆˆˆ ˆˆ ˆˆ ˆ ˆ ˆˆˆ ˆ, andz y x x z y y x zL xp yp L yp zp L zp xp       . 

From these definitions, and 

   

       

ˆ ˆ ˆ ˆ ˆˆ, , , , and

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ, , , , , , 0 ,

x y z

z z y y x x

x p y p z p i

x p y p x p z p y p z p

    

           

 

we find the well-known commutators of angular momentum: 

     ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ ˆ ˆˆˆ

x y z y x z x z z y

z x z z

L L yp zp zp xp zp xp yp zp

yp zp yp xp

       
 

  ˆ ˆˆ ˆy xzp zp ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆy z x z x yzp xp zp yp zp zp   ˆˆ ˆ ˆz zxp yp 

       

     

ˆˆ ˆˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆˆ ˆˆ ˆ ˆ .

z y

z x x z y z z y z z x z z y

x y y x z

xp zp

yp zp zp yp zp xp xp zp p z zp yp zp p z xp

i yp i xp i xp yp i L



       

     

 

Again, the labeling of axes is arbitrary, so any circular permutation of indexes must also follow: 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , and ,x y z y z x z x yL L i L L L i L L L i L        
      . (5.1) 

These angular momentum commutation relations turn out to be extremely important,  

and they describe more than just orbital angular momentum.   
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To expand on their significance, we now derive these relations in a more general way, from the 

mathematics of physical objects rotated in real space. 

Rotations in real space:  Before considering quantum rotations, we first consider classical rotations of 

a macroscopic body, such as a soccer ball.  We imagine a point on the ball (perhaps where the inflation 

hole is), at coordinates (x, y, z).  We then rotate the ball (about its center), and find the point has moved to a 

new position, (x’, y’, z’).  More generally, we can replace the inflation hole by an arbitrary position vector, 

from the origin to the point (x, y, z).   We consider “lab frame” rotations, where the x, y, z axes are fixed in 

the “lab,” and do not rotate with the body. 

Rotations are linear operators: (1) if I double the size of a vector, and then rotate it, that’s the same as 

rotating first, then doubling its size; and (2) if I add two vectors, and rotate the sum, that’s the same as 

rotating both vectors, and then adding them.  All linear operators (in finite dimensional vector spaces) can 

be written as matrices.  From elementary trigonometry, we find for any angle  (the right hand rule defines 

positive ): 

1 0 0 cos 0 sin cos sin 0

( ) 0 cos sin , ( ) 0 1 0 , ( ) sin cos 0

0 sin cos sin 0 cos 0 0 1

[S&W 12.45 p258] .

x y zR R R

   

      

   

     
     

        
          

 (5.2) 

From our prior quantum experience, we know that commutators are important things (we also know it 

from Group Theory).  Since even quantum systems can be rotated like classical systems (e.g., angular 

momentum can be made to have a definite value in any chosen direction), the commutators of quantum 

rotation operators must be the same as the commutators of classical rotation operators.   

We first illustrate the commutator of rotations by an infinitesimal angle ε (Figure 5.2, left).  Consider 

the effect of rotating a unit vector by Ry(ε) first, then Rx(ε), compared to rotating by Rx(ε) first, then Ry(ε).  

The difference is a small vector of order ε2 . 



θ

Rx

Ry

Rx

[Rx , Ry]



θ

Rx

Ry
−1

Rx
−1

[Rx , Ry]

Small patch on the 

surface of a sphere. 

Tip of vector is initially 

here at (x, y, z):

Ry Ry

 

Figure 5.2  (Left) [Rx, Ry] acting on a vector produces a small, 2nd order displacement (green).  

(Right) 1op+[Rx, Ry] displaces the original vector by the amount of [Rx, Ry] acting on it (black). 

(excerpted) 

5.4 Spin ½ 

We reserve the term “wave-function” for spatial quantum states.  We use the term spin-state to refer to 

the intrinsic spin of a particle (or particles).  The combination of a wave-function and a spin-state is a 

complete quantum description of a particle, a “quantum state.” 

5.4.1 Spin Kets, Bras, and Inner Products 

Spatial kets and bras can be thought of as shorthand for functions of space (e.g., wave-functions).  Spin 

states cannot.  Spin basis kets are abstract, formless things that obey simple rules.  They cannot be 

represented as functions of space, or anything else.  Spin inner products are defined using the presumed (or 

defined) orthonormality of spin basis kets. 
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In particular, suppose we measure a fermion (spin-1/2 particle) spin along some axis (perhaps using a 

Stern-Gerlach device).  Experiment shows that only two values are possible; thus we assume that any spin 

state along this axis is a general superposition of exactly two spin eigenstates.  Let’s call them |z+> and 

|z->.  Subsequent measurements along the same axis always produce the same value of spin, i.e. there is 

100% chance of measuring the same spin again, and 0% chance of measuring the opposite spin.  This 

behavior defines the inner product of spin states.  If we believe that spin states behave similarly to spatial 

states, we must then say: 

1, 1, and 0z z z z z z         . 

Therefore, |z+> and |z–> form a complete, orthonormal basis for spin states along this axis.  Furthermore, 

subsequent experiments performing measurements along different axes confirm that: 

|z+> and |z–> form a complete, orthonormal basis for a 

spin state that defines a particle’s spin behavior along all axes. 

Note that for spatial wave-functions, the kets and bras can be thought of as just “notation,” in that we 

know that the ket |ψ> is “really” a complex valued function of space.  In other words, the ket notation is 

shorthand for a Hilbert space vector which has a known internal structure: a complex function of space.  

This “internal structure” does not exist for spin kets.   

The spin kets are abstract vectors with no further structure.   

All we know about |z+> is what we’ve described above, and we know it from experiment.  End of story. 

5.4.2 Spinors For Spin ½ Particles 

Spinors are kets (and bras) that represent the spin-state of particles with intrinsic angular momentum.  

We discuss here spin-½ particles (fermions).  When measured, spin ½ particles produce a component of 

angular momentum along the measurement axis that is always either +ħ/2 (“up”), or –ħ/2 (“down”).  Since 

a particle’s spin can be in a superposition of these two states, a spinor is a 2D vector of complex numbers. 

(a spinor)
a

b


 
  
 

. 

Every spin-½ spinor is an eigenspinor of some direction, so loosely, every spinor “points” in some 

direction.  Be careful, though, that this is absolutely not the classical view of angular momentum having a 

definite direction in space.  Spinors, like wave functions, describe the two probabilities of measuring the 

two possible values of angular momentum along any axis.  A spinor is a 2D vector of complex numbers, 

which represents a direction in 3D physical space.  From it, you can compute the probability of measuring 

the spin being up or down along any axis. 

At first blush, a spinor might seem to have 4 degrees of freedom: 2 real numbers in each of 2 complex 

components.  However, every quantum system of states has an arbitrary overall phase, i.e. you can multiply 

every ket in your system, at any time, by any unit-magnitude complex number, and you still have exactly 

the same quantum system.  This accounts for one real-number degree of freedom out of the spinor’s 4.  

Secondly, the spinor (like all quantum state kets) must be normalized: the sum of the squares of the 

component magnitudes must be one.  This constraint removes another degree of freedom from the spinor, 

leaving just two degrees of freedom.  It takes two degrees of freedom to represent any direction in 3D 

physical space (such as with 2 coordinates: θ, ). 

A common basis for spinors is the z-basis: i.e., we choose our z-axis to be along the measurement axis 

(sometimes called the “quantization axis”).  The spinor can be written as the sum of |z+> and |z–> basis 

kets: 

 component is always on top
,

 component is always on bottom .

za
a z b z where

zb


 
      

 
 (5.3) 

The |z+> ket is the eigenket for pointing in the +z direction.  A particle in the |z+> state, when measured 

along the z axis, will always measure spin “up,” i.e. positive.  Thus, Pr(z+) = 1, and Pr(z–) = 0.  A particle 
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in the |z–> state, when measured along the z axis, will always measure spin “down,” i.e. negative.  Thus, 

Pr(z+) = 0, and Pr(z−) = 1.   

It might seem odd that a spinor can point in any direction in 3-space with only the two “z-component” 

basis kets.  But recall that each z-component is a complex number; they are interpreted as follows: 

The magnitudes of the two spinor components define the z-axis spin properties of the particle.  

The relative phase angle between the two components  

defines the spin properties in the x-y directions.   

We can illustrate how spinors map to 3D directions by drawing a spinor map on a hemisphere.  The 

hemisphere is a surface (Figure 5.3) in the ket space of spinor components a and b, eq. (5.3), which has 4 

real dimensions.  We reduce the original 4D spinor space to 3D by choosing a phase convention that makes 

a, the |z+> component, real and non-negative.  We further reduce spinor space to 2D because we map only 

normalized spinors, so |a|2 + |b|2 = 1.  Then the 2D surface of the “northern” hemisphere is a map of all 

normalized spinors (Figure 5.3, left and middle). 

|z+> 1

Map of Spinor Space

|z-> 
real

|z-> imaginary

 |x+>

|z->

|x-> 

|y+>


|y->

Spinor Probability Ball

0.9
0.8

0.2
0.1

0.7

0.3
0.4

0.6
0.5 0.5

0
Top View of 

Map of Spinor Space

|z->

|z+>
|x+>  |x->

|y->

|y+>
|z->

|z-> 
real

|z-> imaginary

|z+>

|z->



ŝ
n̂

δ

 

Figure 5.3  (Left and middle) Spinor space mapped onto a hemisphere.    

(Right) Probabilities of measuring spin in various directions, given a particle in the state |z+>. 

[This is similar to a Bloch sphere; any two-component discrete quantum state can be similarly mapped.] 

Every possible spinor maps to exactly one point on the hemisphere, except the |z–> eigenspinor.   

The north pole is the |z+> eigenspinor a = 1, b = 0: 

1

0
z

 
   

 
. 

The whole equator is the |z–> eigenspinor a = 0, |b| = 1.  Because the |z+> component is zero at the equator, 

it no longer fixes the phase of the spinor; suddenly the arbitrary complex phase for quantum states is 

allowed again for |z–>.  The line of 45 latitude is the set of spinors perpendicular to the z-axis in the x-y 

plane.  Being midway between |z+> and |z–>, their z-axis measurements have 50% probability of |z+>, and 

thus also 50% probability of |z–>.   

Consider the complex phase of b (the |z–> component).  As the phase of b rotates around the complex 

plane, the spinor direction in 3-space rotates around the z-axis by the same angle (Figure 5.3 middle).  

Recall that the x and y eigenspinors are [Sak 1.4.17 p28]: 

1/ 2 1/ 2 1/ 2 1/ 2
, ; ,

1/ 2 1/ 2 / 2 / 2
x x y y

i i

       
              

               

. 

I.e. (for a real-valued |z+> component), the |x+> eigenspinor has a |z–> component phase of 0; |y+> has a 

|z–> phase of 90, |x–> has a |z–> phase of 180, |y–> has a |z–> phase of 270.  This is a choice of 

convenience [Sak p27].  (Note that some references use a different convention, at least in some places.)  

This equality between the complex phase of the |z–> component and the real-space angle  is true for all  
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(not just the axes).  In general, the eigenspinor for a direction in space given by the spherical angles (θ, ), 

is: 

 

 

cos / 2
, [Sak prob1.9 p61]

sin / 2 ie 


 



 
   

  

, 

where the equality of the real-space  and the |z–> component complex angle  is explicit.  Be aware of 

other phases for the same spinor, such as: 

 

 

/ 2

/ 2

cos / 2
, [Sak 3.2.52 p168]

sin / 2

i

i

e

e






 



 
  
  

, 

which is the same as above, but multiplied by the unit-magnitude complex number e−i / 2.  In this latter 

spinor, the phase difference between the |z+> component and the |z–> component is still the real-space 

spherical angle . 

Be careful to distinguish orthogonality (perpendicularity) in real space from orthogonality in spinor 

space.  For example, in real space, the x-axis is perpendicular to the z-axis: 

, i.e. 0x z x z  e e e e , 

but in spinor space, the kets 

x  
1 1

, i.e. 1/ 2 1/ 2 0
0 2

z x z
 

        
 

. 

Notice that rotation by a polar angle θ in real space corresponds to rotation by a polar angle θ/2 in 

spinor space.  That means that rotating a |z+> eigenstate by π radians in real space takes the north pole to 

the equator in spinor space: 

 

  00

cos / 2cos0 1 0
ˆ, ( )

sin / 2sin 0 0 1
y ii

z R z z
ee






      
             

      
. 

Spin ½ Particles Are Really Spin √3/2:  The spin of any one component (sx, sy, or sz) of a spin-½ 

particle is ½ ħ, but |s| = 
3

2
.  Recall that  

2 2 2
x y zs s s  s , 

and if each component is ± ½ ħ, the total magnitude is 
3

2
.  This implies that s2 = (¾) ħ2.  So they’re 

called “spin-½” particles, but the magnitude of their spin bigger than that.  We can also see this from the 

well known eigenvalue of ŝ2: 

 2 2 1 3 3
ˆ 1 .

2 2 2

a a
s s s

b b

   
       

   
s . 

Spinor Probabilities:  Given a spinor, and a measurement direction along the unit vector n, what is 

the probability that the particle measures in that direction?  We now show it is: 

2 11 cos
Pr( ) cos ,

2 2 2

angle between spinor direction, (in 3-space), and measurement direction, .where

 



 
   



s

s

n e
n

e n

 (5.4) 

The spinor probability ball shows this relationship (Figure 5.3, right).  Graphically, the probability equals 

the height of the tip of n projected onto the spin axis, as a fraction of the circle’s diameter. When 
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measuring “in-line” with the spinor, the probability of measuring “+” is 1 (certainty).  When measured 

perpendicular to the spinor,  

Pr( ) 0.5 (perpendicular measurement) n . 

We derive Pr(n+) in two ways: conceptually, and then from the eigenspinors. 

(excerpted) 

5.5 Coupling Spin and Position 

So far, we have considered wave-functions (spatial states), and separately, spin states.  An electron is a 

spin-1/2 particle, and so has both kinds of states simultaneously.  The complete quantum state of an 

electron, or any spin-1/2 particle, must specify both parts: space and spin.  In the simplest case, the space 

and spin parts are independent of each other.  The full quantum state is simply the concatenation of space 

and spin states.  There are no consistent standards for notation.  If the spin state has a definite value of “up” 

or “down”, we may write it as: 

, or   . 

More general spin state can also be written many ways, such as: 

( ) , , ,
a

x
b

    
 
 
 

. 

Note that when the spin is independent of the wave-function, we just “tack on” the spinor to the wave-

function to get the complete quantum state.  This is a simple “tensor product,” or “product state.” 

However, in many cases, the spin and wave-function depend on each other.  E.g., in a Stern-Gerlach 

experiment (Figure 5.4), the particle approaching the device might be a simple superposition (or even 

mixture) of up and down.  Then after the device, the wave-function would be large for the upper path and 

spin-up, and also large for the lower path and spin-down.  However, the probability of finding the particle 

spin down in the upper path is (ideally) zero, as is the chance of finding it spin up in the lower path. 

ψ = ψ+|z+> + ψ−|z−>

ψ+|z+>

ψ−|z−>
diverging 

B-field

( ,

(
,

)
)

, )
(

t

t
t








 
  







x
x

x

time evolution →

x

z

 

Figure 5.4  Time evolution of a spin-1/2 particle moving through a Stern-Gerlach device.  The up 

and down spatial wave-functions are the same for t before the device, but different for t after. 

(excerpted) 

5.6 Angular Momentum for Arbitrary j 

Angular momentum, which may be a combination of orbit and spin, is quantized by a quantum number 

j, which is allowed values of 0, ½, 1, 3/2, ... .  For such a j, in an angular momentum eigenstate: 

 1J j j  J . 

As 
1

,
2

j J j
 

   
 

, because: 

  2 1 1 1
1 1 1

2 2
j j j j j j j

j j

 
         

 
 (from the binomial theorem). 
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j=1/2

J=0.866

j=3/2

J=1.936

j=5/2
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j=7/2

J=3.968

j=1

J=1.414

j=2
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j=3
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j=4

J=4.472

0 1 2 3 4 5

 

Figure 5.5  The magnitude of angular momentum, J, vs. the quantum number, j, in units of  ħ . 

(excerpted) 

5.7 Addition of Angular Momentum 

Terminology:  Given a particle of angular momentum quantum number j, its actual angular 

momentum magnitude is ( 1)J j j  .  For brevity, we sometimes colloquially refer to the “angular 

momentum quantum number” as the “angular momentum,”  i.e., we may say “a particle of angular 

momentum j,” when we really mean “a particle with angular momentum quantum number j.”   

Consider two subsystems (or particles) of angular momentum quantum numbers j1 and j2.  Together, 

their total angular momentum quantum number lies somewhere between the sum j1 + j2 and the difference 

| j1 – j2 |, because angular momentum is a vector, and the two angular momenta can add constructively, 

destructively, or somewhere in between, depending on the angle between the two vector angular momenta.   

j=1

0 1 2 3 4 5

j=2
j=3 j=4 j=5

|2, 0>

|3, 0>
xy

j=1

0 1 2

j=3/2
j=1/2

|1, 0>

|1/2, 1/2>

xy

 

Figure 5.6  (Left) Addition of |1, 0> and |1/2, 1/2>.  (Right) Addition of |3, 0> and |2, 0>. 

Let’s restate the above in terms of actual angular momentum, instead of angular momentum quantum 

numbers: Consider two particles of angular momentum 1 1( 1)j j   and 2 2( 1)j j  .  Together, their 

total angular momentum lies somewhere between 1 2 1 2 1 2 1 2( )( 1) and ( )( 1)j j j j j j j j      . 

For example, suppose j1 = ½ and j2 = 1 (Figure 5.6, left).  Then |J1| = √3/2 ħ = 0.866 ħ, and |J2| = √2 ħ = 

1.414 ħ.  At most, the total jt = j1 + j2 = 3/2, and the total angular momentum is √15/2 ħ = 1.936 ħ, which is 

somewhat less than √3/2 ħ + √2 ħ = 2.280 ħ.  At the least, jt = j2 – j1 = ½, and the total angular momentum 

is √3/2 ħ = 0.866 ħ, which is more than √2 ħ – √3/2 ħ = 0.548 ħ.  We see that with j1 ≠ j2, the two angular 

momenta can never fully reinforce, nor fully oppose, each other.  This is because total angular momentum 

Jt is quantized by the same rules as individual particles, and that quantization does not allow for simply 

adding or subtracting the individual angular momenta.  C’est la vie.  Figure 5.6, right, shows a similar 

addition for |3 0> and |2 0>. 

In Figure 5.6, notice that the addition of two angular momentum eigenstates does not (in general) add 

to a single total angular momentum eigenstate (however, they do add to a Jz eigenstate).  Because the x-y 

components are not definite, the sum has some chance of being in several different total angular momentum 

states.  In other words: 
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The sum of two definite angular momentum states may or may not be an eigenstate of total 

angular momentum, i.e., it may be a superposition of several total angular momentum states.   

For example: 

1 2

5 4 3 2 1

1, 0 1/ 2,1/ 2 3/ 2,1/ 2 1/ 2,1/ 2 ,

3, 0 2, 0 5, 0 4,0 3,0 2,0 1,0 .

c c

c c c c c

 

    
 (5.5) 

where the c’s could potentially be complex.  In fact, the c’s are the famous Clebsch-Gordon coefficients, 

and will turn out to be real (described later). 

5.7.1 Two Indefinites Can Make a Definite 

Quantization of angular momentum leads to some curious consequences.  We now show that two 

completely indefinite vectors can have a definite (real space) dot-product.   

Recall that a |j m> eigenstate has definite angular momentum, J2, or equivalently |J|, and definite 

z-component of angular momentum, Jz.  Therefore the magnitude of its x-y components in the x-y plane is 

definite (Figure 5.7): 

 2 2 2 2 2 2 2 2 21x y z xy x y zJ J J J J J J J J j j m           . 

j=1

1 2 3 4

j=2

j=3

|2, −1>

|3, 0>
Jxy

0 1 2

j=3/2,    |J| = ħ √15/2

Jxy

Jz

−ħ /2

3ħ /2

−3ħ /2

ħ /2

|3/2, 3/2>

|3/2, 1/2>

|3/2, −1/2>

|3/2, −3/2>

Jz

−ħ

0

ħ

2ħ

|1, 0>

Jxy

|1, 1>

|2, 0>

|1, −1>
|2, 1>

Jxy

Jxy

Jz

 

Figure 5.7  (Left)  “Side view” of angular momentum states, and (right) perspective view of 

addition of |1 m1> and |2 m2> to make |3 0>.  These vectors can all be rotated around the z-axis. 

(excerpted) 
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Jx
Jx

Jy

J1xy

Jz

Jy

2
1 1 1( 1)j j m 

2
2 2 2( 1)j j m 

1 1( 1)j j 

2 2( 1)j j 

Jx

Top view of  

3 possible orientations

J2xy

J2xy

J1xy

J1xy

J2xy

Perspective view of

1 possible orientation

Jtotal-xy

Jtotal-xy

Jtotal-xy

 

Figure 5.8  (Left)  Two angular momentum vectors, j1 and j2, with one possible orientation of 

their x-y components.  (Right)  Three possible orientations of the x-y components, with a fixed 

angle between J1xy and J2xy.  

Thus the x-y orientations of j1 and j2 are individually completely uncertain, but the relative orientation is 

known. 

The vector space of angular momentum states for the total (combined) system is different from the 

vector spaces of either system 1 or system 2.  What, then, is this new, combined vector space?  For that, we 

must understand tensor products. 

5.7.2 Tensor Products 

Oddly, you don’t need to know anything about tensors to understand the tensor product of 2 vectors 

(kets).  We’ll start by describing a tensor product informally, then get more precise.  Each of the two 

vectors exists in a vector space.  (Vector spaces are described in 2.4.2 p59.)  We’ll assume the two original 

vector spaces are finite dimensional, though the results generalize straightforwardly to infinite dimensions.  

The two vector spaces are often structurally different, e.g., different dimensions. 

We return to the earlier example of two subsystems of angular momentum, where j1 = ½ and j2 = 1.  

Considered separately, each subsystem has its own vector space of angular momentum: 

System 1: dimension 2, |j, m> basis vectors:  |½, +½>  |½, –½ >. 

System 2: dimension 3, |j, m> basis vectors: |1, +1>  |1, 0>  |1, –1> . 

The tensor product space of these 2 vector spaces, P = V1  V2, has 2 x 3 = 6 dimensions, and its basis 

vectors are all 6 combinations of one basis vector from each of System 1 and System 2.  In QM, we often 

write these pairs as just two kets, side by side: 

 |½, +½>|1, +1>  |½, +½>|1, 0>  |½, +½>|1, –1> 

 |½, –½>|1, +1>  |½, –½>|1, 0>  |½, –½>|1, –1> . 

The scalar fields of V1, V2, and P are the complex numbers. 

Generalizing:  The tensor product space of 2 vector spaces, V1 and V2, is another vector space.  The 

new vector space has dimension equal to the product of the dimensions of the 2 original vector spaces.  The 

2 original vector spaces must be over the same field of scalars, typically the complex numbers.  The basis 

vectors of the new vector space are all the pairs of basis vectors you can form by taking one basis vector 

from V1 and the other from V2.   

The tensor product of two vectors is the product of their scalar parts, and the juxtaposition of their 

vector parts.  Sometimes, we write a tensor product explicitly with the  symbol.  Some examples: 
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 

   

1/ 2, 1/ 2 1,0 1/ 2, 1/ 2 1,0

1/ 2, 1/ 2 1/ 2, 1/ 2 1,0 1/ 2, 1/ 2 1,0 1/ 2, 1/ 2 1,0

1/ 2, 1/ 2 1/ 2, 1/ 2 1,0 1,1

1/ 2, 1/ 2 1,0 1/ 2, 1/ 2 1,0 1/ 2, 1/ 2 1,1 1/ 2, 1/ 2 1,1 .

a b ab

a c b ab cb

a c b d

ab cb ad cd

   

       

    

       

 

The tensor-product kets represent possible results of measuring the state of each constituent subsystem 

separately.  Thus: 

The tensor product of two vectors gives a single complex-amplitude  

for each possible set of experimental results.   

You can see that the scalar fields of the two vector spaces must be the same, because we multiply the 

scalar coefficients together.  However, the vector parts may be completely unrelated, coming from 

unrelated vector spaces.  Unlike the scalar parts, they cannot be “multiplied” or otherwise combined in any 

way, so we simply write the basis vector parts of each factor next to each other:  |b1>|b2>, or |b1, b2>. 

There are many notations for tensor products.  Often, for example, the j1 and j2 are well known and 

understood.  Then it is cumbersome to write them in all the kets and bras (as you can see above).  So 

references frequently omit them, and keep only the m values.  Thus we define: 

1/ 2, 1/ 2 1/ 2 , 1/ 2, 1/ 2 1/ 2

1,1 1 , 1, 0 0 , 1, 1 1 .

     

    
 

Then: 

1 2 1 2 1 21/ 2 1 1/ 2 1 1/ 2,1 i.e., ,m m m m m m         . 

Space and spin:  We’ve already seen another common example of a tensor product:  the combination 

of the space and spin parts of a particle.  For example, an electron has a spatial wave function, ψ, and a 

spinor, .  Their tensor product space spans the complete quantum state space which describes all 

properties of the electron.  If the space part is independent of spin, then we can write the complete 

description as the tensor product of a spatial state and a spin state (ψ(x) and  = [a  b]T ).  Then: 

 ( ) ( ) ( )
a

electron x x a z b z x
b

   
 

         
 

. 

If the space part depends on spin, as in a Stern-Gerlach experiment where the spin determines the path 

in space, then there are two wave functions: one for spin up (ψ+), and another for spin down (ψ–).  The 

resulting state cannot be written as a tensor product of two vectors.  It can only be written as a sum of such 

tensor products: 

( )
( ) ( )

( )

x
electron x z x z

x


 




 



 
        

 
. 

5.7.3 Operators on Tensor Products 

(excerpted) 

5.8 Just a Moment: the Landé g-Factor 

The Landé g-factor is essential for understanding atomic spectra, and clarifies LSJ angular momentum 

coupling, which is essential for atomic electron structure.  It is well known that both orbital and spin 

angular momentum of a charged particle contribute magnetic dipole moments to a system.  (The spin-

related magnetic moment is sometimes called the “intrinsic” magnetic moment.)  However, there is a 

quantitative difference between orbit and spin in the ratio of magnetic dipole moment to angular 
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momentum (sometimes called the g-factor).  For a |l ml> orbital state, and a |s ms> spin state, experiment 

shows the magnetic moment is (in gaussian units): 

, ,,

magneton
2( )

particle charge

orbital -factor ( 1 for electron)

spin -factor ( 2 for electron) .

z L L l z s s s

L

s

g m g m

e
where

mass c

e

g g

g g

   



 

 



  

  

 

These results are well understood theoretically, as well [Sak2 p79].  The magneton is a function of the 

particle’s mass and charge, and is therefore different for different particles.  We follow the US National 

Institute of Standards and Technology (NIST) terminology and sign conventions, which defines the Bohr 

magneton as the magneton for an electron, and the nuclear magneton as the magneton for a proton.  Both 

magnetons are defined positive.  The magnetic moment vector for an electron is opposite its spin and 

orbital angular momentum, because it is negatively charged, so its g-factors are negative.  The intrinsic 

magnetic moment for the neutron is also opposite its spin (for no good reason), so its g-factor is also 

negative.  Furthermore, the neutron g-factor is calculated using the proton mass and charge, i.e. the afore-

mentioned nuclear magneton. 

(Note that some references call the nuclear magneton a “Bohr” magneton.  Some references define all 

g-factors as positive, and put minus signs in “by hand,” relying on the “understanding” of the correct sign, 

but that makes the neutron g-factor confusing.)   

Because the particle mass appears in the denominator of the magneton formula, the nuclear magneton 

is about 3 orders of magnitude smaller than the Bohr (electron) magneton.  This is why we usually ignore 

the magnetic moment of atomic nuclei: the mass is so large that μ is negligible.   

Since the g-factor for spin is different than that for orbit, we must ask: what if our angular momentum 

eigenstate is a combination of spin and orbit?  There are two important cases to consider: L-s eigenstates, 

and LSJ eigenstates. 

L-s eigenstates:  Consider two angular momenta which add, say L and s.  In the uncoupled basis, the 

system is in the state |l, ml; s, ms>, which is an eigenstate of 2 2ˆ ˆ ˆ ˆ, , ,z zL L s s , and Ĵz, but not Ĵ2 (as we learned 

from our study of Clebsch-Gordon coefficients: j1  l, j2  s).  (Note that mj = ml + ms, so is not an 

independent quantum number.)  Figure 5.9 (left) shows these angular momenta, and their uncertainties.  

The magnitudes of the L and s momenta are definite (no uncertainty), as are the z-components.  The x-y 

components are (1) uncertain, (2) uniformly distributed in the x-y plane, and (3) average to zero. 

J

s

L

Jz = ħmj

z

Lz

sz

z

sJ

L
<Lz>

<sz>

z

s

LJ

s

L, S eigenstates LSJ eigenstates
LSJ eigenstates, w/ 

L, S uncertainties

x
x

x

yL

perspective 

view

views in 

x-z plane eJ

 

Figure 5.9  (Left)  L-s angular momenta eigenstates, with definite z-components.  (Middle)  LSJ 

angular momenta eigenstates, with definite components parallel to J.  (Right)  Uncertainties and 

averages for middle diagram. 

(excerpted) 
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6 Multi-Particle Quantum Mechanics 

Quantum mechanics covers not just single particles, but systems of particles.  Systems of particles 

exhibit further unexpected behaviors which explain atoms and molecules, enable new technologies (e.g. 

quantum cryptography), and require dedicated study.  This chapter requires understanding single particle 

QM of waves and spins.  We proceed along these topics: 

1. Multi-particle wave-functions: distinct particles. 

2. Multi-particle wave-functions: identical particles. 

3. Multi-particle Schrödinger equation. 

4. Multi-particle states with spin. 

5. Symmetry of multi-particle wave-functions: fermions and bosons. 

6. Atoms: Hund’s rules. 

7. Multi-particle entanglement 

Many new phenomena arise in multi-particle systems.  We will examine some of these, such as 

entanglement creating nonlocal behavior. 

6.1.1 Multi-Particle Wave-Functions: Distinct Particles 

Suppose we have a system of one proton and one electron.  It is described by a multi-particle wave-

function, ψ(rp, re), which defines the joint probability density of finding a proton at rp, and an electron at 

re: 

2 3 3Pr(proton around and electron around ) ( , )p e p e p ed r d rr r r r . 

Because the proton and electron may interact, their positions depend on each other.  Therefore, ψ is a 

single wave-function which takes account of their interaction, and covers all possible combinations of 

positions of both the proton and electron.  If we take a measurement, we must find the two particles 

somewhere, so our normalization is 

2 3 3( , ) 1 (a 6 dimensional integral)p e p ed r d r


 r r . 

If we have two particles that don’t interact, then their joint wave-function can be written simply as the 

product of the two individual wave-functions: 

1 2 1 1 2 2( , ) ( ) ( )  r r r r . 

This is a kind of tensor product.  The wave-functions are normalized separately according to: 

2 23 3
1 2( ) 1, and ( ) 1d r d r 

 
  r r , 

so that: 

2 2 23 3 3 3
1 2 1 2 1 2( , ) ( ) ( ) 1d r d r d r d r  

  
   r r r r . 

In other words, when the 2-particle wave-function separates,  the individual normalizations insure the joint 

wave-function is normalized. 

6.1.2 Multi-Particle Wave-Functions: Identical Particles 

We may have a system of two identical particles, such as two electrons.  Like the proton-electron 

system, this system is also described by a 2-particle wave-function, ψ(r1, r2).  This is the joint amplitude for 

finding an electron at r1 and another electron at r2.  It is a crucial point that: 
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Identical particles cannot be distinguished from each other.  There is no  

concept of particle #1 and particle #2.  There is only the concept of  

a particle at r1 and an identical one at r2. 

Since the two particles are identical (indistinguishable), it must be the case that: 

1 2 2 1

1 2 2 1

Pr(particle at and another at ) Pr(particle at and another at )

( , ) ( , ) . 



 

r r r r

r r r r
 

This is a symmetry requirement on the wave-function, and requires that the wave-function can differ by at 

most a phase under an r1 ↔ r2 interchange.  Furthermore, if we swap particles 1 and 2 a second time, we 

must get the original 2-particle wave-function back.  We can write particle exchange as a linear operator, 

defined by: 

12 1 2 2 1
ˆ ( , ) ( , )P  r r r r . 

By definition, it follows that: 

 
2

12 1 2 1 2
ˆ ( , ) ( , )P  r r r r . 

This implies that any eigenvalue of 12P̂ , call it λ, must satisfy λ2 = 1.  Therefore, the only eigenvalues are λ 

= ±1.  A function is symmetric iff ψ(r1, r2) = ψ(r2, r1).  It is an eigenstate of 12P̂  with eigenvalue +1.  A 

function is antisymmetric iff ψ(r1, r2) = –ψ(r2, r1).  It is an eigenstate of 12P̂  with eigenvalue –1.  Some 

functions are neither symmetric nor antisymmetric. 

12P̂  also operates on spin states, in a similar way: it swaps the states for the particles: 

12 12 21 12
ˆ ˆ, e.g.,P P     . 

We define here the notation where χ21 is the spin-state χ12 with the particle spins exchanged.  E.g.,  

12 1 2 21 1 2        . 

Putting space and spin together, we have: 

 12 1 2 12 2 1 21 12 1 2 2 1
ˆ ˆ( , ) ( , ) , e.g., ( , ) ( , )P f f P      r r r r r r r r . 

Note that 12P̂  operates on both the spatial state and the spin state.   

6.1.3 Multi-Particle Schrödinger Equation 

We extend the Schrödinger equation to multiple-particles in a simple way: just add up the energies of 

all the particles: 
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2 2
2

1 2 1 2 1 2 1 2

1 potential energy,
total energy including particle interactions

total kinetic energy

2-particle ( , , ) ( , , ) ( , ) ( , , ) ,
2

-particle

j
jj

t t V t
i t m

n
i t

  





 
  







r r r r r r r r

2
2

1 2 1 2 1 2 1 2

1 potential energy,
total energy including particle interactions

total kinetic energy

( , ,... , ) ( , ,... , ) ( , ,... ) ( , ,... , )
2

n

n j n n n
jj

t t V t
m

 




  r r r r r r r r r r r r

2 2 2
2

2 2 2

( , , ),

.

j j j j

j j j x y z x y z
j j j j j j j j j

where x y z

x y z x y z x y z



           
               

              

r

e e e e e e

  

6.1.4 Multi-Particle States With Spin 

Recall that particles with spin have a state which comprises both a spatial wave-function and a spin 

state.  Electrons are spin ½, and can therefore be either spin-up or spin-down (conventionally along the z-

axis): 

1 0

0 1
z z

   
          

   
. 

The total quantum state is a combination (tensor product) of wave-function and spin-state, written as: 

( ) , is any superposition of andwhere    r , 

or a superposition of such states.  For example, an excited hydrogen electron in a 2p state, with n = 2, l = 1, 

m = 1, spin up, is in the state 

211 21 11( ) ( ) ( , )R r Y    r . 

Two-particle states with spin have two-particle wave-functions, and two-particle spin-states, e.g. 

1 2 12 12( , ) , is , , ,where      r r , 

or a superposition of such states.  It is easy to show that any quantum state can be written as a sum of a 

symmetric state and an antisymmetric state. 

6.1.5 Symmetry Of Multi-Particle Wave-Functions: Fermions and Bosons 

As mentioned above, multi-particle wave-functions are subject to symmetry restrictions.  

Experimentally, there are two kinds of particles: fermions and bosons.  Fermions are half-odd-integer spin, 

and bosons are integer spin.  It turns out that:  

Multi-particle fermion states must be antisymmetric under interchange of any two identical 

fermions, and boson states must be symmetric under interchange of any two identical bosons.   

[These symmetry requirements are proven by the spin-statistics theorem in QFT.]  Non-identical fermions, 

such as an electron and a muon, are distinguishable and therefore have no symmetry requirement: the 

probability of finding the electron at r1 and the muon at r2 may be different than that of finding the muon at 

r1 and the electron at r2. 

However, the symmetry requirement includes both the wave-function (i.e., spatial state) and the spin 

states: it is the entire state, wave-function with spin-state, that must be antisymmetric for fermions.  If both 

particles have the same spin states (say |↑↑>), or if the spin-states are otherwise symmetric (say |↑↓> + 

|↓↑>), the symmetry requirement falls only to the wave-function, as follows: 
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1 2 1 2

1 2 1 2

Fermions: ( , ) ( , )
(symmetric spin-states)

Bosons: ( , ) ( , )

 

 

  


 

r r r r

r r r r
. 

Fermions:  The antisymmetry of fermion states includes the Pauli exclusion principle.  Two 

electrons cannot be in the same single-particle quantum state, because then (for symmetric spin): 

1 2 1 2 2 1 1 2 2 1( , ) ( ) ( ) ( , ) in violation of ( , ) ( , )       r r r r r r r r r r . 

In fact, for r1 = r2 = r and symmetric spins, an antisymmetric state must have: 

( , ) ( , ) ( , ) 0,      r r r r r r r . 

This means that there is zero probability of measuring two identical fermions at the same place.  For n-

particle systems, with fully symmetric spin states, there is zero probability of measuring any two identical 

fermions at the same place. 

In contrast to the above case of identical spins, if spin- and space- states separate, this antisymmetry 

can be either: 

1 2 2 1 12 21

1 2 2 1 12 21

( , ) ( , ) and , or

( , ) ( , ) and .

   

   

  

  

r r r r

r r r r
 

In words, to make the total fermion state antisymmetric (for separable spin/space states), we must have 

either the wave-function antisymmetric and the spin-state symmetric, or the wave-function symmetric and 

the spin-states antisymmetric.   

But how can a spin-state be antisymmetric under particle exchange, when it is not a function of 

position?  There is no r1 and r2.  A spin-state can only be antisymmetric by being an antisymmetric 

superposition of two spin-states, e.g. (ignoring normalization): 

 12 12 21, i.e.                     , 

where on the right-hand-side we have interchanged particles 1 and 2, which interchanges their spins. 

Symmetric spin states can be either z eigenstates, or symmetric superpositions, such as: 

12 12 12 12, , ,               . 

Note that any superposition of symmetric states is symmetric,  

even if some of the coefficients are negative or complex. 

In the most general case, the spin-states are entangled with the wave-function, and the antisymmetric 

requirement for fermions requires swapping both spatial positions (r1 and r2) and spin state labels.  In other 

words, the total antisymmetric state may be any superposition of antisymmetric states. 

The requirement for antisymmetric multi-particle fermion states can make calculating such states 

difficult.  Sometimes, you may have a solution to the multi-particle Schrödinger equation, but which does 

not have the proper symmetry for the multiple particles.  In such a case, you can “symmetrize” or 

“antisymmetrize” the solution to construct a valid solution with the proper symmetry.  Using our particle 

exchange operator, and given a solution of arbitrary symmetry f(r1, r2)χ12, we can symmetrize and 

antisymmetrize that solution as follows: 

 

 

1 2 12 1 2 12 12 1 2 12 1 2 12 2 1 21

1 2 12 1 2 12 12 1 2 12 1 2 12 2 1 21

ˆantisymmetric: ( , ) ( , ) ( , ) ( , ) ( , )

ˆsymmetric: ( , ) ( , ) ( , ) ( , ) ( , ) .

f P f f f

f P f f f

     

     

   

   

r r r r r r r r r r

r r r r r r r r r r

 

Note that 12P̂  operates on both the spatial state and the spin state.  For example, suppose f(r1, r2) and χ12 are 

neither symmetric nor antisymmetric, e.g., χ12 = |↑↑> + |↑↓>.  Then antisymmetrizing the wave-function 

gives: 
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 

1 2 12 1 2 1 2 2 1 2 1

1 2 2 1 1 2 2 1

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) .

f f f f

f f f f

         

       
 

r r r r r r r r r r

r r r r r r r r
 

The first term is spatially antisymmetric and spin symmetric.  The 2nd term does not separate into space and 

spin, but it is still antisymmetric: 

?

1 2 2 1 2 1 1 2

!

1 2 2 1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) .

f f f f

f f

        
 

   

r r r r r r r r

r r r r

 (6.1) 

Thus we see that superpositions of antisymmetric states are also antisymmetric, regardless of whether space 

and spin parts separate.  Because antisymmetrization removes any symmetric part of a function, 

antisymmetrized wave-functions generally must be normalized after antisymmetrization. 

Any number of fermions can have a fully symmetric spin state, but it is impossible to form a fully 

antisymmetric spin-state for 3 or more fermions [Bay p457]. 

Bosons:  Bosons have multi-particle states that are symmetric under interchange of any two particles, 

and therefore do not have Pauli exclusion restrictions.  Two bosons can be in the same quantum state.  In 

fact, n bosons can all be in the same quantum state.  This is a critical property with many implications, from 

stimulated radiation (lasers) to superfluids. 

We return to anti/symmetrization in the discussion of atoms below, and also extend it to 3 or more 

identical particles. 

6.2 Atoms 

Atoms are multi-particle systems comprising a nucleus, and one or more electrons.  Understanding the 

electronic structure of atoms is both practical, and pedagogically important.  Many of the concepts involved 

in atoms are readily applicable to other situations.  Also, there is much confusion and many inaccurate 

statements about atoms in non-peer-reviewed sources; it is important to set the record straight.   

This section requires that you understand spherical harmonics, the hydrogen atom, its electronic 

orbitals, and the n, l, and m quantum numbers.  It also requires understanding that electrons can have two 

different spin states.   

Note that the quantum number l is often called the “azimuthal” quantum number, even though m, not l, 

actually describes the electron’s azimuthal motion.  This term for l seems to be an anachronism from a time 

before atomic structure was understood [E&R p115].  However, [Bay p156m] uses “azimuthal quantum 

number” for m, the z-component of angular momentum, which is consistent with the term “azimuthal,” 

which means “along the horizon.”  Because of this confusion, we do not use the term “azimuthal quantum 

number.” 

6.2.1 Forget the Bohr Model 

Bohr was a great physicist, and did well with the information available to him.  However, the Bohr 

model of the atom is completely wrong, and probably shouldn’t be taught any more.  It does manage to 

compute the coarse electron energies for hydrogen, but for the wrong reasons.  The idea of the electron 

wave-function of a 3D atom wrapping around in a flat 2D circle is unphysical (though for l ≥ 1, this idea 

captures the  dependence of the wave-function).  The Bohr model predicts the wrong values for angular 

momentum, because it excludes l = 0.  It therefore calls the ground state l = 1, instead of l = 0.  The fact 

that the coarse energies of hydrogen work out is just (bad) luck. 

6.2.2 Why Spherical Harmonics Are Not Spherically Symmetric 

As prelude to atoms, we consider the hydrogen-like orbitals.  Why are spherical harmonics not 

spherically symmetric?  Short answer: Because we’re also in an ˆ
zL  eigenstate, and choosing the z-axis 

breaks the spherical symmetry.  But let’s clarify. 
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Electron orbital shapes are frequently drawn in physics and chemistry books: the familiar sphere for s-

orbitals, the infamous dumb-bell for p-orbitals, the mysterious dumb-bell through a donut for d-orbitals, etc 

(Figure 6.1). 

 

Figure 6.1  The chemist’s views of atomic orbitals are linear combinations of the spherical 

harmonics.  [http://upload.wikimedia.org/wikipedia/commons/4/4a/Single_electron_orbitals.jpg] 

(excerpted) 

6.3 Ground States of Small Atoms, and Hund’s Rules 

Understanding the electronic structure of small to medium atoms requires understanding antisymmetry 

of electron (fermion) states, and understanding Hund’s rules.  These concepts provide good insight into 

quantum mechanical principles, making atoms worth study for such insight alone.  Hund’s rules are 

frequently misunderstood and misapplied, so it is also helpful to review some common invalid reasoning, 

and why it’s wrong.  Antisymmetry and Hund’s rules are sometimes presented as simple, and glossed over.  

In fact, they are somewhat involved, but manageable.  [Bay] and [E&R] are good references.  [Bay p452] 

has a complete periodic table with both electron configurations and their spectral term ground states.  [Gos 

p426] and [Gas p307] have the same information in list form.  We here discuss the ground states of atoms.   

In addition to the prerequisites for the previous section (the hydrogen atom, spherical harmonics), this 

section requires you understand quantum addition of angular momentum, combined space/spin states, 

antisymmetry of multi-electron states, and that you have been introduced to the fine structure and spin-orbit 

energy.  We follow these topics: 

1. Review of shell structure of atomic electrons, Hartree and Hartree-Fock approximations. 

2. Angular momentum coupling of atomic electrons: S, L, and J. 

3. Fermion antisymmetry. 

4. Hund’s rules, by rote. 

5. Examples of Hund’s rules for interesting atoms. 

6. Why do Hund’s rules work? 
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Our entire discussion is done within the Hartree-Fock approximation and perturbation theory.  

Sometimes, we speak loosely and say something like “The total angular momentum is J,” by which we 

mean “The total angular momentum quantum number is J.”  Bold symbols indicate the actual angular 

momentum vector, such as L, S, or J.  Squared vectors are defined as magnitude squared, e.g. L2 ≡L·L = 

|L|2. 

In math and physics, the terms “symmetric” and “antisymmetric” have many meanings.  In general, a 

symmetry is some invariant property under a given transformation.  You are familiar with a function of one 

variable being symmetric under reflection about zero (aka an “even” function), or antisymmetric about zero 

(an “odd” function).  In multi-particle wave-functions, we refer to anti/symmetry under particle 

interchange: 

6.3.1 Introduction to Atomic Electron Structure 

There are three major factors that determine the coarse and fine structure of atoms (energies and 

number of Zeeman splittings).  They are, in order of significance: 

1. The Coulomb energy binding the electron to the nucleus, giving a hydrogen-like shell structure.  

We take these states as our unperturbed basis. 

2. The Coulomb energy between electrons in the outermost subshell, which drives toward 

antisymmetric spatial states of multi-electron quantum states. 

3. The electron spin-orbit coupling to the nuclear charge (responsible for the fine-structure of atoms). 

The energy separation of subshells is typically a few eV; that of different multi-electron states within a 

subshell is of order 0.1 eV, and the spin-orbit energies are roughly 1-10 meV [Bay p455].  The observable 

properties are determined primarily by the electrons in unfilled subshells, and the nuclear charge.  (We do 

not consider the hyperfine structure, which involves nuclear spin interactions.)  The following 

shell/subshell/orbital structure of atoms is evident in the hydrogen atom, but applies to heavier atoms, as 

well: 

shell principal quantum number n, can hold 2n2 electrons. 

subshell a principal and orbital angular momentum quantum number pair, nl, can hold 2(2l + 1) 

electrons. 

orbital spatial state with principal, orbital angular momentum, and orbital z-component angular 

momentum (aka magnetic) quantum numbers nlm; can hold 2 electrons. 

orbital orbitalorbital orbital orbital
2 20 1 1
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Figure 6.2  Example shells, subshells, and orbitals. The notation “↕↕” is shorthand for “|↑↓> – 

|↓↑>”. 

(Note that [Gos] uses the term “orbital” where most use the term “subshell.”  [Bay] and [C&S] use the term 

“shell” where most use “subshell,” and [Bay] uses “wave-function” where we use “state.”  We use wave-

function to mean the spatial part of a state.) 

Shells, subshells, and orbitals appear in the hydrogen atom,  

but larger multi-electron atoms also have approximately the same structure.   
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This shell structure approximation is the Hartree approximation, and results from assuming that the 

electrons in small to medium-sized atoms (Z ≤ ~23) behave almost like independent electrons in a 

spherically-symmetric net potential [Bay p451].  This allows us to consider the electrons separately, and 

since the potential is approximately spherically symmetric, the Schrödinger solutions are products of radial 

functions and spherical harmonics (i.e., shells, subshells, and orbitals).  In multi-electron atoms, only the 

radial functions differ substantially from hydrogen [E&R p323].  The Hartree approximation ignores 

electron antisymmetry, which makes it very inaccurate.  The Hartree-Fock approximation adds the most 

important electron antisymmetry, which is an essential aspect of atomic structure. 

The electron configuration of an atom specifies the n and l quantum numbers of all electrons, but not 

their m quantum numbers (Lz components), or spins.  Neither does the configuration specify how the spins 

and orbital angular momenta combine.  It is the purpose of Hund’s rules to predict such properties of the 

atom that depend on these other quantum numbers.  While Hund’s rules were first determined empirically, 

we present here the quantum mechanical explanation of them. 

Our analysis uses stationary-state degenerate perturbation theory.  Our unperturbed basis for each 

electron is a set of eigenstates of the screened-nucleus Coulomb energy: 

2

0 0
ˆ ˆ ˆ ˆ ; effective central charge; proton charge;

ˆ spin-orbit energy .

eff
so eff

so

Z e
H H H where H Z e

r

H

     

 L S

. 

The effective central charge is the nuclear charge, minus one unit for each electron in a full inner shell, 

because full electron shells are approximately spherically symmetric, and the negative electron charge 

cancels some of the true nuclear charge.  This makes the effective central charge one positive unit for each 

valence electron, i.e. for each electron in the outermost shell. 

The hamiltonian above allows our unperturbed basis (for each electron) to be either (l, ml, s, ms), or (l, 

s, j, mj), since they all have the same energy.  For our analysis, it is simpler to choose the (l, ml, s, ms) basis. 

In this basis, each electron has well-defined quantum numbers for n, l, ml, and ms. (s = ½ always for an 

electron).  Because these base states are degenerate in energy, we cannot use the simple (non-degnerate) 

perturbation energy 
(1)

soE H   .   

Here is a summary of the symbols we use, which are explained in more detail as we go.  In general, 

lowercase letters refer to a single electron, and capitals to the total over all the subshell electrons: 

k # of electrons in the subshell, k ≤ 2(2l + 1). 

u is a summation index. 

l orbital angular momentum quantum # of the subshell we’re “filling” with electrons. 

m generic z-component orbital angular momentum quantum #. 

m1, m2, ... the z-component orbital angular momentum quantum # of electron 1, 2, ... . 

S the total spin angular momentum quantum # of all the electrons in the subshell. 

L the total orbital angular momentum quantum # of all the electrons in the subshell. 

ML the total z-component orbital L quantum # of all the electrons in the subshell. 

MS the total z-component spin S quantum # of all the electrons in the subshell. 

J the total (spin + orbital) angular momentum quantum # of the subshell. 

MJ the total z-component (spin + orbital) angular momentum quantum # of the subshell. 

Z atomic number. 

Bold letters refer to the actual vectors, still following the lower/upper-case notation for individual/total 

quantities, e.g. l, s for individual orbit and spin angular momentum vectors, and L, S, J, etc. for total 

subshell vectors. 

6.3.1.1 Angular momentum coupling of atomic electrons: S, L, and J. 

(excerpted) 
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Figure 6.3  Areal particle density for l = 1 Plm states (darker is more dense). 

When m = 0, |P10|2 ~ cos2 θ, density is concentrated at the z-axis poles (Figure 6.3, right).  So two electrons 

are farthest apart if they are in m1 = 1 or –1, and m2 = 0 states.  If they were in m1 = 1 and m2 = –1 states, 

they’d be nearly “on top of each other” at the equator.  Even though antisymmetrization would keep them 

from being exactly on top of each other, they’d be much closer than in the m1 = ±1 and m2 = 0 states.  

Closer electrons means more Coulomb energy;  farther means less energy, and hence the ground state has 

distinct orbital m values of m1 = –1 and m2 = 0.  Furthermore, taking the spin as “up,” m1 = –1 is lower 

energy than m1 = 1 because spin-orbit coupling has lower energy when spin opposes orbital angular 

momentum. 

For l = 2 (d-subshell):  When m = ±2, |P2,±2|2 ~ sin4 θ, the density is tightly concentrated at the 

“equator” (Figure 6.4, left):   

z

density for P2,±2

 = 0

 = π/2

 = π

z

density for P2,±1

 = 0

 = π/2

 = π

z

density for P2,0

 = 0

 = π/2

 = π

 

Figure 6.4  Areal particle density for l = 2 Plm states (darker is more dense). 

(excerpted) 

6.4 Multi-Particle Entanglement 

We have seen multi-particle states that are simple tensor products of single-particle states, e.g. two 

particles where particle 1 is spin up, and particle 2 is spin down: 

12 1 2 1 2 1 2             . 

Each particle is in a definite state, and measuring either (or both) particles produces the only possible 

result: particle 1 measures up, and particle 2 measures down. 

However, we have also seen that a general 2-particle state need not be a simple (tensor) product of 1-

particle states.  It could be a superposition of such product states, e.g.: 
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12 12

1 1 1 1
, or

2 2 2 2
         . (6.2) 

Neither of the above states can be written as a tensor product of single particle states.  Neither particle has a 

definite direction of spin.  What happens when we measure individual particles in such states?  Such states, 

where neither particle has a definite value of some property, but the values of the two particles are 

interdependent, are called entangled states, and such particles are said to be entangled.  This means a 

measurement of one system provides information about the other.  [Entangled particles are sometimes 

called “correlated,” but we avoid this term because it conflicts with the statistical term “correlated.”] 

6.4.1 Partial Measurements 

As always, we use here the term “collapse” of the quantum state as a shortcut to the more complicated 

process of making a measurement, described in section 1.12.  Consider the entanglement of two spin-1/2 

particles (in the usual z-basis): 

12 1 2 1 2

1 1

2 2
       .   

What if we measure a property of only one of those particles?  How does the state then collapse?  Answer:  

Partial measurement leads to partial collapse.   

In the above state, we easily suppose that there is a 50% chance of measuring particle 1 to be up, but that 

either way, if we then measure particle 2, it will be opposite to that of particle 1.  This is correct, but other 

superpositions are not so obvious (as shown shortly), so we must develop a mathematical formalism to 

unambiguously compute the results of measurement on any 2-particle state. 

To find the probability of measuring a property of only one particle of a two-particle system, we use a 

“partial inner product” .  Recall that in a 1-particle system, an inner product is a scalar.  We now extend this 

idea to a partial inner product: Given a ket in the tensor-product space (i.e. a 2-particle ket such as 

|↑1>|↑2>), we form a partial inner product with a particle 1 bra; the result is a particle 2 ket, i.e. a ket in the 

particle 2 ket space.  We have: 

1

1 12 1 1 2 1 1 2

0

2

1 1 1

2 2 2
           . 

In other words, the bra from particle one forms an inner product with the particle 1 piece of the 2-particle 

ket, leaving the particle 2 ket alone.  As with our “standard” inner product, the partial inner product is 

linear in the ket (and anti-linear in the bra), so the partial inner product distributes across the superposition 

of the ket.  (If our quantum states were continuous, our inner product would be an integral, and we would 

say we “integrate out” particle 1.)  With this definition of a partial inner product, we find that the 

probability of obtaining a given measurement follows essentially the same well-known rule as for a single 

particle: 

 
2

2

1 1 12 2

1 1
Pr

22
      . 

The only difference from the single particle case is that for a single particle, the inner product is a scalar, 

and the probability is its squared magnitude, but in the 2-particle case, the inner product is a vector (a 

particle 2 ket), and the probability is the squared magnitude of this vector. 

We now consider a more complicated example.  Recall that for a single particle, a state of definite spin 

pointing in the x+ direction is: 

 
1

2
x     . 

Suppose our 2-particle state is: 
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12 1 2 1 2

1 1

2 2
       .   

By inspection, you might think that measuring either particle 1 or particle 2 along the x-axis will give a 

definite value of |x+> (probability = 1).  Let’s test this by computing the probability for measuring particle 

1 in |x+>: 

 

   

2

1 1 12

1 12 1 1 1 2 1 2

1 1 2 1 1 2 1 1 2 1 1 2

1 0 0 1

2 2 2

Pr

1 1

2 2

1

2

1 1
.

2 2

x x

x

x





  

         

 
                
 
 

      
 

 (6.3) 

As expected, the inner product is a particle 2 ket.  The probability of |x+1> is the squared magnitude of this 

ket, which is only ½!  Therefore, despite its look, the state  1 2 1 2

1

2
      is not a state of definite 

particle 1 spin in the x+ direction.  Looks can be deceiving.  By symmetry, it is also not a state of definite 

particle 2 spin. 

We are now ready to address partial collapse.  We know that measurements collapse quantum states, so 

if we measure particle 1 to be  |x+1>, what is our resulting system state?  The particle 1 state is that 

consistent with our measurement, i.e. 1 1x    (just as with single-particle collapse).  The particle 2 

state is simply that of the inner product above, except that being a quantum state, we must normalize it to 

unit magnitude: 

2 2 2

1

2
normalize x x

 
    

 
. 

Therefore, our 2-particle state after measuring particle 1 is: 

12, 1 2 1 2or , (after measurement)after x x x x      . 

Note that the initial state is entangled, and in this case, measuring particle 1 determines also the state of 

particle 2.   

The probability of measuring |x+1, x+2> was only ½.  What else might we have measured?  And with 

what probabilities?  We can compute these by subtracting this known component state from our initial 

state: 

12 1 2 1 2 1 2

1 2 1 2 1 2

1 1 1
,

2 2 2

1 1 1
, .

2 2 2

x x others

others x x

           

        

   (6.4) 

Now we expand the entangled state |x+1, x+2> in our z basis: 

     

1 2

1 2 1 1 2 2 1 2 1 2 1 2 1 2

1 1 1
,

22 2

x x

x x

 

                      . (6.5) 

Then: 
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 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 1 1 1

22 2 2

1
.

2 2

others                  

            
 

 

The ket in square brackets factors into a tensor product of single-particle states: 

   
1 2

1 1 2 2 1 2

2 2

1 1
,

2 2 2
x x

others x x

 

 
 

           
 
 

. 

Plugging in to (6.4) we see that our initial state is a superposition of two simple product states: 

12 1 2 1 2 1 2 1 2

1 1 1 1
, ,

2 2 2 2
x x x x             . 

It is interesting that |χ12> has the same form in both the z basis and the x basis.  We see this by rewriting our 

shorthand for the z basis in the notation we used for the x basis: 

12 1 2 1 2 1 2 1 2

1 1 1 1
, ,

2 2 2 2
z z z z             . 

In contrast to this superposition of product states, let’s consider a simple tensor product state, |x+1>  

|x+2>, which we worked out in (6.5).  By construction, it is a state of definite particle 1 spin in the x+ 

direction, and separately definite particle 2 spin.  In expanded form, as on the RHS of (6.5), it is hard to see 

by inspection that this state has definite spin for both particles. 

These principles of partial measurements, partial inner products, probabilities of partial measurements, 

and partial collapse apply to any tensor product state, including space  spin.  Recall the space  spin 

example of the Stern-Gerlach device we considered in section 0: position is entangled with spin, so position 

is a proxy for spin.  Measuring the position tells us also the spin, and collapses the state to one of definite 

position and definite spin. 

6.4.2 The EPR Paradox (Not) 

Multi-particle QM provides a way to decide whether nature is truly probabilistic, or QM is incomplete.  

The effect we examine is called the “EPR paradox,” after Einstein, Podolski, and Rosen, who first brought 

attention to it with a thought experiment.  We show that, though the result may be unexpected and 

counterintuitive, there is no contradiction in the physics, and nature is indeed probabilistic.  This result is 

quite important: you can now buy commercial quantum encryption systems that use this principle.  Such 

systems are essentially unbreakable (so long as QM is correct).  Our development uses only the simple QM 

we’ve already developed, and also shows that the axioms of quantization, entanglement, and the 

correspondence principle together imply that QM must be nonlocal (i.e., must have effects that span 

distances in a time faster than light can traverse them).  Our analysis is inspired by a section of Heinz R. 

Pagels’ book In Search of Schrödinger’s Cat. 
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spin up

spin down
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z detector axis
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Figure 6.5  Schematic of the EPR experiment.  Alice’s detector axis is off by θ. 

Is QM is incomplete?  Are there “hidden variables” which quantum theory is neglecting, that would 

eliminate the uncertainty of QM?  In the EPR experiment, a spin-0 source emits a pair of particles, A and 

B, in opposite directions.  The total spin of the pair is zero, but they are emitted in the entangled state |↑↓> 
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+ |↓↑> (the first arrow refers to particle A, the 2nd to particle B).  The experiment measures the spins of both 

particles, and is repeated over many pairs, with varying directions of measurement.  (In principle, the 

experiment can use any of a variety of 2-state properties, such as polarization of photons, etc.) 

(excerpted) 
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7 Quantum Electromagnetic Radiation 

Electromagnetic interactions are probably the most fundamental and important in our lives.  Most of 

our everyday experience is dominated by EM interactions (and gravity).  Quantum electromagnetism is the 

first Quantum Field Theory, on which all following QFTs are built.  Thus quantum electromagnetism not 

only explains much of the world around us, but is a prerequisite for the QFTs that explain the rest. 

We present here an overview of quantized radiation, and matter-radiation interaction.  This is a huge 

field, and an active area of research.  [GAF] provides an accessible, but fairly thorough, tutorial on the 

subject.   

In many cases, one can reasonably approximate some features of quantized matter interactions with 

radiation by using the “semi-classical approximation:” one treats the charged particles as quantized, but the 

radiation field as a classical potential in which the particle acts.  Such an approximation describes EM 

absorption by matter, and stimulated emission.  This can also be thought of as a semi-classical EM field: 

the photon has a definite energy, and a simple wave-function, just like ordinary quantum mechanics.  For a 

semi-classical EM field, the vector potential A(t, r) is essentially the wave-function of the photon.  |A(t, r)|2 

is proportional to the particle density of the photon at (t, r).  We do not address this semi-classical 

approximation here.  We also do not address spin interactions. 

However, many phenomena cannot be described by a semi-classical approximation, the most important 

being spontaneous emission.  It requires a fully quantized EM field, which allows for the creation of a 

photon even in the absence of any prior EM excitation, i.e. even into the vacuum.  The quantized EM field 

is the main topic of this chapter.  It also quantitatively describes the Lamb shift of atomic spectra, the 

gyromagnetic ratio of the electron, the Casimir force, and multiple photon detections.   

In general, a quantized field allows for particle creation and annihilation, and is the essence on which 

all QFTs are built. 

We discuss the following aspects of quantum electromagnetic radiation: 

1. Quantized EM field: A failed attempt at photons. 

2. Quantized EM field: the simple harmonic oscillator (SHO) analogy. 

3. Quantized EM fields conceptually introduce a new kind of wave-function (the quantized field), 

but we find that we never need to explicitly use it. 

4. Differences between a 1D harmonic oscillator and the EM field. 

5. Combining matter states and photon (radiation) states. 

6. Example of a simplified matter-photon operator in action, evaluating an inner product. 

7. Example of the complete Â operator (vector potential) in action, evaluating an inner product. 

8. Spontaneous radiation. 

9. Photons have all phases. 

10. Photons in other bases (other modes). 

11. The wave-function of a photon. 

12. Quasi-classical states, average E-field is not quantized, and interference (number operators). 

On a first reading, one can skip the more advanced photon and quasi-classical theory. 

This section requires a thorough understanding of classical EM propagation, including phasors (the 

complex representation of sinusoids), wave-vectors, elementary polarization, and the 3-vector potential, 

A(t, r). You must also understand Dirac notation, the quantum simple harmonic oscillator (SHO), ladder 

operators, multi-particle QM, and tensor product states and their inner products. 

Before going further, we again caution against stating what is “really” happening at the microscopic, 

quantum scale.  None of quantum mechanics is directly observable.  Therefore, we present here the 
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generally accepted model, as simply as we can.  The model is based on now-familiar QM principles, and it 

quantitatively predicts the outcomes of experiments. 

7.1 Quantized EM field: A Failed Attempt at Photons 

Imagine an essentially classical EM wave of frequency ω in a volume of space, but quantized in 

amplitude such that its energy is E = ħω.  Then: 

  

 

0 0

23 2
0

( , ) Re complex vector;

1
( , ) .

2

i t
t e where

E d t Vol









 

  

k r
A r A A

r A r A

. 

We might propose this as a crude model for a “photon,” a quantized EM field (though we will see it is not a 

very good model).  We usually separate out the overall magnitude and phase of the wave from its 

polarization, using a phasor, A0 (a complex number representing a sinusoid) [GAF p354], such that: 

0 0AA ε . 

.  Then: 

  

 

0 0

22
0

( , ) Re phasor; complex polarization vector .

1
1 .

2

i t
t A e where A

E Vol A






  

   

k r
A r ε ε

ε

 

This simple model of a photon explains the well-known photoelectric effect: it takes radiation of a 

certain frequency or higher to ionize a substance.  No amount of light of lower frequency, no matter how 

intense, will ionize the substance.  We explain this frequency cutoff by noting that for ionization, our 

incident radiation must provide enough energy to unbind an electron.  Since we have supposed that 

radiation is quantized into bundles of energy called photons, ionization requires a photon of sufficient 

energy.  Finally, since E = ħω, sufficient energy for ionization requires sufficient frequency ω. 

However, this simple model does not explain several phenomena, such as spontaneous emission, the 

Lamb shift of atomic spectra, the gyromagnetic ratio of the electron, and the Casimir force. 

7.2 Photon Number States 

Despite the failure of our simple model, it does suggest a useful concept for the quantum state of an 

EM field.  We know that some kind of quantized EM field exists, since photons of energy E = ħω are seen 

experimentally.  Furthermore, the existence of coherent classical EM fields suggests that multiple photons 

of a single mode (single frequency, phase, and polarization) can exist.  Also, multiple modes of excitation 

can simultaneously exist.  We therefore suppose that the quantum state of an EM field can be given by a list 

of each mode, and the number of photons in that mode.  For example, given modes characterized by wave-

vectors kj, and polarization vectors ε1(kj) and ε2(kj), we might have EM states such as: 

1 1 2 1 1 2( ) ; ( ) ; ( ) ; ... ( ) ,

1,2; 0,1, ... ; 1,2, ... .

nN N N N

N n



     

k k k k
 

Note that the subscript on N and ε refers to one of two polarization states, whereas the subscript on k refers 

to one of an infinite number of wave-vectors. 

In the momentum basis, a photon is described by its wave-vector, k (aka propagation vector), and its 

polarization vector, ε.  Therefore, a photon state is a (polarization-vector, wave-vector) pair, written as ε(k).  

The wave-vector tells you the state’s EM propagation direction and spatial frequency |k| = 2/λ rad/m, and 

therefore also temporal frequency ω = c|k|.  The polarization vector tells you how the photon state is 

polarized.  For each k, two independent polarizations exist, ε1(k) and ε2(k).  A general photon state is then 

written ελ(k), where λ = 1 or 2.  [Many references use the alternate notation εkλ.]   

http://physics.ucsd.edu/~emichels


physics.ucsd.edu/~emichels Quirky Quantum Concepts emichels at physics.ucsd.edu 

12/30/2016  15:04 Copyright 2002 - 2012 Eric L. Michelsen.  All rights reserved. 109 of 149 

For every wave-vector k (aka propagation vector),  

there are two independent polarizations that can propagate with that wave-vector.   

Here, we do not need to know the details of a polarization vector; we need only that for any given 

propagation vector k, there are two independent polarization modes, say horizontal and vertical, or right-

hand circular (RHC) and LHC.  Each polarization mode is described by the presence of a distinct photon.  

Either photon or both may exist in space. 

Photons are bosons, so a single state can be occupied by any number of photons, from 0 on up.  A 

complete photon state therefore includes a photon count (aka occupation number) for each (k, ε) pair, 

written in general as Nλ(kj). 

We write an EM state of multiple mode excitations (multiple photons) as a single ket, e.g.: 

2 1 1 2 1 3( ) 3, ( ) 2, ( ) 1 (multi-mode quantum EM state)N N N  k k k . (7.1) 

Of course there are an infinite number of possible modes, and most of them are unoccupied (Nλ(k) = 0), so 

we omit those from the notation: any modes not listed in the ket are defined to be unoccupied.  Such a state 

is said to be written in the number basis. 

A two-photon state is not the vector sum of two one-photon states. 

For example: 

1 1 1 2 1 1 1 2( ) 1, ( ) 1 ( ) 1 ( ) 1N N N N     k k k k . 

For one thing, the RHS is not normalized.  Even if we normalized it, though, it would be a superposition of 

two one-photon states.  We might detect either one of the component photons (thus collapsing the wave-

function), but not both.  In contrast, a two-photon state of the EM field has two whole photons in it, and 

both can be detected. 

The state with no photons at all is called the vacuum state, and written: 

0 vacuum state. Note: 0  v0 . 

NB: the vacuum state is not the zero-vector, 0v (which is also known as the “null ket”). 

For brevity, we may write modes of a single excitation (N = 1) as: 

1 1( ) ( ) 1 , or more generally, ( ) ( ) 1N N    ε k k ε k k . 

Since the occupation number is 1, we don’t write it explicitly. 

In a state of multiple modes, the order doesn’t matter.  E.g., a state with two photons, one of wave-

vector k1, and polarization ε1(k1), and another of ε1(k2), can be written: |ε1(k1), ε1(k2)>, or |ε1(k2), ε1(k1)>.  

Again, since the occupation numbers are 1, we don’t write them explicitly. 

Note that higher excitations, N ≥ 2, describe independent photons, each with completely indeterminate 

phase [Lou p253b]. 

Aside On Polarization Vectors 

The polarization vector completely describes the polarization of the state, given as the polarization of 

its vector-potential, A.  Classically, the polarization vector is a vector of three phasors: one for each 

component of the A-field: Ax, Ay, and Az.  In QM, for a single photon, the polarization vector is a complex 

valued vector in ordinary 3-space: 

( , , ) , ,  are complex componentsx y z x y zwhere     ε , 

giving the QM amplitude for the x, y, and z components of A.  Polarization vectors are dimensionless, and 

normalized to unit magnitude: 
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222 2* * * * 1x y z x x y y z z                ε ε ε ε ε . 

 [It is not necessary here to understand the details of what a polarization vector means, however Funky 

Electromagnetic Concepts explains them completely for E fields; the transition to A fields is 

straightforward.]  All that matters right now is that for every wave-vector k, there are two independent 

polarizations that can propagate with that wave-vector.   

As with all quantum states, the polarization state can be a superposition of ε1 and ε2.  Therefore, for a 

given propagation direction, /ke k k , any polarization vector (aka polarization “state”) can be written as 

a linear combination of two basis polarization vectors, ε1 and ε2.  The most common basis polarization 

vectors are RHC (right hand circular) and LHC (left hand circular), which we could write as εR(k) and 

εL(k).  (These are handy because they are angular momentum eigenstates.)  However, for most of our 

calculations, the basis is irrelevant.  Note that the polarization vector εR(k) is a function of the direction of  

k, so εR(z-direction) is a different vector than εR(x-direction).  [In fact, ( ) (1, ,0) / 2R z iε e , and 

( ) (0,1, ) / 2R x iε e , but we don’t need to know that here.] 

7.3 Quantized EM Field: The Simple Harmonic Oscillator Analogy 

When we describe the interaction of radiation and matter, we must talk about photons being created 

(radiated), and destroyed (absorbed).  Thus we introduce a new concept to quantum mechanics: particle 

creation and destruction (aka annihilation).  It is this concept that demands Quantum Field Theory (aka 

“second quantization”).  In this section, we take an approach known as “canonical quantization,” where the 

classical vector-potential (A-field) becomes an operator Â, acting on photon states.   

[A different approach uses Feynman Path Integrals (FPIs), where the A-field remains a complex number 

function of space (as in classical E&M when working in Fourier space).  FPI have some advantages over 

canonical quantization, but we do not address that further here.] 

In classical EM, we define a plane wave with a definite vector potential A(t, r): 

  0 0( , ) Re is a phasor; is the polarization vector
i t

t A e where A
 


k r

A r ε ε , 

with no uncertainty.  Note that the classical A-field oscillate in both space and time. 

However, when we quantize the EM field, i.e. when we consider photons as quantum particles, the 

vector-potential, A, is no longer definite.  A state of definite photon count, say |Nλ(k) = 1>, has uncertain A.  

A is a probabilistic function of the photon state |Nλ(k) = 1>.  This is analogous to a 1D harmonic oscillator: 

a particle in a state of definite energy, say |n> ≡ ψn(x), has uncertain position.  The position x is a 

probabilistic function of the state. 

Why should the EM field behave like a simple harmonic oscillator (SHO)?  The SHO for a particle 

has a potential energy proportional to x2.  For EM waves, both the E- and B-fields contain energy 

proportional to E2 (and B2).  In the SHO, to move a particle to position x takes energy proportional to x2; in 

EM waves, to create an E-field with magnitude E takes energy proportional to E2.  Thus it is reasonable that 

EM fields quantize similarly to the SHO.  Furthermore, the analogy between harmonic oscillator and 

vector-potential continues.  For a given k and λ (which selects ελ(k)): 

 

 

        ††

ˆˆ

ˆˆ ˆ ˆ ˆ ˆ~ ~

energy level photon count ( )

x

x a a a a

n N



  





  



A k

A k k k

k

 

Note that like the SHO quantum number n, the photon count, Nλ(k), for a plane-wave mode is also a 

measure of the energy level of the EM field for that mode (i.e., for that value of k and ελ). 
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x

ψ0(x) A

0(A)

(t, r)

0
 

Figure 7.1  Analogy between (left) particle wave-function ψ0(x) and (right) photon vector-

potential wave-function 0(A) at a spacetime point (t, r). 

(excerpted) 

x
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Figure 7.2  Probability densities of values of A at a point. (Left) For vacuum, N = 0.   

(Right) For one photon, N = 1.  (A) oscillates in space. 

(excerpted) 

7.4 Quantum Interaction of Radiation and Matter 

We now develop the QM of spontaneous radiation, e.g., an excited atom radiates (creates) a photon, 

and thus decays to a lower energy state.  To compute radiation probabilities, and metastable state lifetimes 

(or equivalently, decay rates), we must evaluate a matrix element of the form: 

ˆ ˆ, ( ) ,0 ,0 is the initial matter state with no photons;

, ( ) is the final matter state plus one photon .

f i i

f

where  



ε k A p

ε k

 

In other words, we evaluate the complex amplitude to go from an initial matter state with no photons, to a 

final matter state and one photon.  The probability of such a transition is the squared-magnitude of the 

amplitude, as usual.  We now describe the meaning of all the pieces of this inner product, and how to 

evaluate it, in general. 

7.4.1 Multi-particle Matter and Photon States 

Quantum states for a system of interacting matter and radiation are combination states (tensor product 

states): they include a matter piece, and an EM field piece.  The matter states are the usual wave-functions 

(plus spin-states), that we already know and love.  For example, the combined matter-EM state: 
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, ( ) ( ) has

matter state of a charged particle;

( ) photon state with wave-vector , polarization ( ), and ( ) photons present .

N N

N N

 

  

 









k k

k k ε k k

 

A hydrogen atom in the |100> state with a photon in the ε1(k) state can be written: 

1 1100, ( ) or 100 ( ) (combined matter/photon state)ε k ε k . 

[Both of these are shorthand for |100>|ε1(k)>, which is the tensor-product (aka direct-product) of the 

two states.]  Note that the matter-states exist in one Hilbert space, and the photon states exist in a different 

Hilbert space.  Therefore, some operators act on the matter-state alone, some on the photon-state alone, and 

some act on both the matter state and the photon state. 

Because we have chosen that k has a definite value for the photons, they are plane-wave eigenstates of 

momentum.  Later, we write them in the position basis, so we can take inner products with ψ(r), the matter 

state in the position basis.   

In this section, our photon counts Nλ(k) are always 1 or 0. 

7.4.2 Â In Action 

(excerpted)   

7.5 Photons Have All Phases, Semi-classical Approximation 

An individual photon is a superposition of all possible EM field phases [Lou p186-7].  This is 

completely analogous to a stationary state of a quantum particle harmonic oscillator, which is in a 

superposition of all possible positions (or “phases” of its oscillation).  Therefore, the photon number states 

we’ve been discussing, e.g. |N1(k1), N1(k2), ... >,  are called incoherent states, since the different modes 

have no particular phase relationship to each other.  (We discuss coherent states later). 

The matrix elements we’ve been computing cannot distinguish between a superposition and a mix of 

all phases, so based on experimental results, we could equally well say a single photon state is a mixed state 

of all possible phases [GAL p359t].  However, our model of an A-space “wave-function” (section 7.3) for 

the A-field is more consistent with a superposition than a mixed state. 

A single-photon state is a superposition of all possible phases, and therefore has no definite phase. 

The fact that single-photons have all phases leads to an important distinction between the effective A-

field of a photon, a complex function of space given by Error! Reference source not found.: 

 
0

ˆ0 ( ) ( ) ( ) ( , ) effective A-field of photon
i t

effA e t
  

 
k r

A ε k k ε k A r , 

and the classical EM “analytic” (or phasor) A-field, also a complex function of space, that looks very 

similar: 

0( ) classical analytic (phasor) A-fieldi
analytic A e  k r

A r ε . 

The classical true A-field is a real-valued function of space, defined by the classical phasor A-field as: 

      0 0( , ) 2 Re ( ) 2 Re 2 cos
i i ti t

true analytict e A e A t
 

     
k r

A r A r ε ε k r . 

(Other normalizations are often used, as well.)  The distinction is that the classical true A-field amplitude 

varies in space: it has positive peaks, negative troughs, and is zero in places.  Where it is zero, there is no 

chance it interacts with a particle there.  In contrast, the effective A-field of the photon is complex, and 

equal magnitude everywhere.  It is equally likely to interact at all points.  It has no “zeros.”  This reflects 

the fact that the photon is a superposition of all phases, and is equally likely to have any given amplitude at 

all points. 
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Note that the factor of 21/2 in the formula for Atrue gives the semi-classical “photon” the same energy as 

a true photon, by making their squared magnitudes, summed over space, equal at every point in time: 

 

   

2 3 2 2 3 2
0 0

2
22 3 2 3 2

0 0

2 cos ( ) , and

( ) .

true

i
eff

d r A d r A Vol

d r A e d r A Vol

 



 

 

 

 

 
k r

A r

A r ε

 

7.6 Realistic Photons: Multi-Mode Single Photon States 

We have taken our basis states for the EM field to be integer excitations of all possible plane-wave EM 

modes, which for simplicity we take here to be discrete (indexed by l for εlkl): 

1 1 1

2 2 2

0 , 1 , 2 , 3 , ...

1 , 2 , 3 , ...

( ) .l l

n n n

n n n

where l

  

  

 ε k

 

However, we know from experiment that atoms radiate single photons, and also that they have some 

uncertainty in their energy (and therefore in k).  We must concludes that the EM state for single-photon 

radiation is a (normalized) superposition of single-photon states of different modes: 

( ) 1 mode of the plane-wave stateEM l l l l l

l l

c c N where l     ε k . (7.2) 

When all the kl are “nearby,” this is a wave-packet.  Compared to an infinite plane-wave mode, it is a more 

realistic single-photon state.  This is the EM state after an atom has radiated a photon.  It has an envelope of 

essentially finite size in space. 

Such a state is not an eigenstate of any single-mode number operator, †
' ''

ˆ ˆ ˆl llN a a , but is an eigenstate 

of the total number operator, with eigenvalue 1: 

' '

' 1 ' 1 1 1

ˆ ˆ ˆ ˆ 1 1 1 1

n n

tot l tot EM l l l l l EM

l l l l

N N N N c N c N 
 

   

          . 

In the double sum, we used the fact that only terms with l’ = l contribute.  Since the total photon number 

observable is 1, it is a single-photon state, even though it is a superposition of many modes.  It can be 

called a “multi-mode single-photon state.”  Such states could be propagating wave-packets, localized in 

space, and moving in time.   

The inner product for detecting a photon of mode l’ will be of the form: 

' ' ' '

0

ˆ ˆ0 0 1 0 0l EM l l l l l

l

a c a N c c




    , 

where we have used: 

' ' '

' ' 0 0 ' 1 1 ' 2 2 ' ' '

' '

ˆ ˆ1 0 , and 1 ( ' ), and therefore:

ˆ ˆ ˆ ˆ ˆ1 1 1 ... 1 ...

... 0 ... 0 .

l l l l v

l EM l l l l l l

l l

a N a N l l

a a c N a c N a c N a c N

c c



    

        

     v v v

0

0 0 0

 

The multi-mode single-photon state is the EM state most like a single matter particle. 
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Note that the probability of detecting two photons from such a state is zero, because such a detection 

requires two lowering operators, one for each photon detected [GAF p376].  As just shown, any one 

lowering operator produces a ket proportional to the vacuum state |0>.  Therefore any second lowering 

operator returns the zero vector 0v.  Thus: 

' ''ˆ ˆ0 0 , 'l l EMa a l l   , 

and the probability of any such double detection is 0. 

7.7 Photons in Other Bases 

So far, we have chosen plane waves of a given (ε, k) mode as our basis states.  Such states are 

eigenstate of energy and momentum, and are single excitations of the number operator in the plane-wave 

basis.  For simplicity, we now describe our plane-wave basis as a discrete basis labeled by modes l, where 

each l defines an (εl, kl) pair.  Then a single photon in mode l is written: 

1 ( ) (single-photon plane-wave state)l l lN   ε k . 

This is appropriate for a resonant cavity, where there exist only discrete modes.  However, the same 

principles apply to both continuous and discrete bases [Lou ch. 6].  We follow the notation of [GAF], and a 

similar method. 

All of the properties of the quantized EM field derive from three facts: (1) the commutator of the 

annihilation and creation operators for a single mode is the identity operator: 

†ˆ ,l opla a  
 

1 ; 

(2) different modes don’t interact, so: 

  † †
' '

ˆ ˆ ˆ ˆ, ,l l opl la a a a  
 

0 ;  (7.3) 

and (3) photons are bosons, which means the quantized EM field can have from 0 to ∞ photons in a single 

mode (i.e., in any given single-particle state).   

These facts have been used for plane-wave modes, however, we saw above that a photon can exist as a 

single-photon wave-packet: a superposition of many modes.  How would we “create” such a state with 

creation operators?  We simply superpose the plane-wave component creation operators to create the wave-

packet state (7.2).  Define the single-photon wave-packet state as |b>.  Then: 

† † †

0

ˆˆ ˆ1 0l l l ll l

l l l

b c N c a c a b





 
     
 
 

   , 

where †b̂  is a creation operator for the wave-packet.  More generally, we can construct an entire basis of 

orthogonal wave-packet states, |bm>, where m denotes the wave-packet “mode.”  Each mode has its own set 

of coefficients cl, so we replace the cl with a notation for a unique set of coefficients for each m: 

† † †ˆˆ ˆ1 0m ml l ml ml ml l

l l l

b U N U a U a b
 
     
 
 

   . 

Uml is a unitary matrix, because it transforms from the a to b basis: given a column vector of a-mode 

coefficients, multiplying by Uml gives the coefficients in the b basis.  Similarly, we create b-mode 

annihilation operators: 

 
†

† *ˆ ˆ ˆm m ml l

l

b b U a  . 
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Now what are the commutation relations of the b-mode creation and annihilation operators?  Using the 

fact that different a-modes commute (7.3), that the commutator is linear in both arguments (1.8), and that 

every row of Uml is a unit-magnitude vector: 

† † †† * * *
' '

'

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , ,m m ml l ml ml l ml ml ml l opl l l

l l l l

b b U a U a U a U a U U a a
    

            
             

    1 . 

Similarly, because the rows of Uml are orthogonal, if m ≠ m’: 

† †*
''

ˆ ˆ ˆ ˆ, ,m ml m l l opm l

l

b b U U a a    
    0 . 

Thus the b-modes, the non-plane-wave modes, satisfy the same commutation relations as the plane-wave a-

modes.  Since all the number-basis properties derive from this commutation relation, there are then 

excitations in the b-number-basis with all the same number-basis properties.  These excitations are 

eigenstates of the b-basis number operator †ˆ ˆb b , and are therefore deserving of the name “photons.”  In 

fact, the b-mode number states are the multi-mode photon states. 

When an atom radiates, we usually take the a-mode basis states as infinite spherical waves of definite 

k.  However, the radiation is in fact a spherical wave-packet (a shell of radiation of finite thickness) 

radiating outward.  Therefore, it may be considered a wave-packet superposition of infinite spherical 

waves.  Equivalently, it may be considered a single excitation in a spherical wave-packet basis.  In either 

basis, it is an eigenstate of the total photon operator, with eigenvalue 1; in other words, in either basis, it is 

a single photon. 

7.8 The Wave-Function of a Photon? 

If a photon is a particle, does it have a traditional wave-function?  (Not the A-space “wave-function” of 

section 7.3)  This is a very important question, because it provides the link between nonrelativistic quantum 

mechanics, and the more complete, relativistic quantum field theory (QFT).  Because photons are massless, 

they are easily created and absorbed, unlike (say) electrons, which are more durable throughout 

interactions.  It is the creation and absorption of photons, and their bosonic nature, that demands we use a 

quantum field theory, rather than ordinary QM.  Another complication is that photons, being massless, 

cannot be at rest; they are always moving.  And finally, photons are vector particles, somewhat more 

complicated than our nonrelativistic view of quantum particles with a scalar wave-function.  Nonetheless, it 

is possible to define a useful “wave-function” for a single photon state, though “with some reservations” 

[GAF p384t].  Such a photon wave-function is useful in our later discussion of the quantum eraser. 

We define our photon wave-function, ψEM(r), to have the usual properties for a quantum particle, 

namely that the probability of detecting a photon is proportional to ψEM
2, therefore it is normalized, and it is 

complex-valued so that it produces the required interference: 

2 2 3pdf ( ) ( ) , ( ) 1, ( ) complexEM EM EMd r   


 r r r r . 

In fact, if normalized, the classical analytic (phasor) A-field has these properties.  So our wave-function can 

be the effective A-field of the photon, but normalized. 

 A single photon state in a single mode is written |ε(k)>.  One might think that we can simply find the 

average value of the A-field due to this photon in the usual QM way: 

ˆ( ) ( )A ε k A ε k , 

but we’ve already seen that this average is zero.  The photon is a superposition of all phases, and each 

component of A is equally positive and negative.  Instead, we already know the effective A-field, from 

Error! Reference source not found.: 
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 
0

ˆ0 ( ) ( ) ( )
i t

A e
  


k r

A ε k k ε k . 

It is the coupling of the EM state by Â to the vacuum that gives the effective A-field.  We define our wave-

function by simply replacing the amplitude A0(k) and polarization ε(k) with a normalization constant: 

 
( )

i t
EM Ne




  


k r
r  

Since this is an infinite plane-wave state, we have the same options for normalizing it as we did for incident 

plane waves in scattering (section 2.5).  

A more realistic single photon state is the multi-mode state, (7.2).  We construct our wave-function the 

same way as for a single-mode photon, by coupling the EM state to the vacuum (and assuming all the εl are 

the same, and dropping them): 

 

   

2 3
EM

ˆ ˆ( ) 0 0 1

is chosen such that ( ) 1.

l l l li t i t
EM l EM l l l

l

N e a N c e a N

where N d r

 
 



     



  







k r k r
r

r

 

Because the wave-packet is finite in extent, we have used ordinary wave-function normalization. 

The effective A-field of a photon, as defined by its “wave-function,” follows Maxwell’s equations. 

So all the classical laws of radiation (e.g., reflection, diffraction) apply, even to a single photon. 

Like any quantum particle, a single photon can be spread out over an arbitrarily large area.  In my 

graduate research, a single photon (loosely speaking) returning from the moon is spread over many square 

kilometers.  Our telescope’s ~10 m2 cross section then has only a small probability of detecting such a 

photon, because ultimately the photon detection is a quantized event: either we detect it, or we don’t.  A 

detailed consideration of “detection” leads us to the interaction of photons (and radiation in general) with 

matter. 

This method of defining a wave-function from a field excitation by coupling it to the vacuum is fairly 

general, and can be used (with similar reservations) for many other kinds of particles [Sak2 3.376 p147b], 

[Bay p422], [Wei 2013 p. xvi top], [P&S p24b]. 

7.9 Quasi-Classical States 

The closest quantum analog of a classical field is called a quasi-classical state, or a “coherent state,” 

or a “Glauber state,” after Nobel laureate Roy J. Glauber who first described them in detail [Phys. Rev. 

130, 2529–2539 (1963)].  The average field of a quasi-classical state is a classical EM field.  For example, 

the long-time limit of a classical oscillating current produces an EM field that is a quasi-classical state, as 

does a strong-beam laser  [Lou p190m]. 

Let us construct a quasi-classical state.  Consider a single-mode classical wave that is essentially 

infinite in space.  In the usual complex notation, the wave is given by: 

 

 0 0

2
( , ) 2Re

i t c
t A e where A

Vol

 


   
  

k r
A r ε

k
, 

where we have written the phasor for the wave as A0 for later convenience, with  a complex number and 

A0 taken as real.  We seek a normalized quantum state <| which reproduces the above classical wave as 

closely as possible.  Therefore, its average A-field equals the classical wave: 

 
0

ˆ( , ) 2Re
i t

t A e


  
   

  

k r
A r A ε . (7.4) 
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Â is hermitian, consisting of two terms proportional to â and â†.  If we make the average of the â term 

equal to the complex-valued signal (the bracketed quantity above), then the hermiticity of Â guarantees the 

classical correspondence (7.4).  Thus: 

   
0 0ˆ ˆ ˆ ( )

i t i t
A e a A e where a a

 
  

   
 

k r k r
εε ε k . (7.5) 

(We used the fact that only one mode is present to eliminate from Â the sum over λ, and the integral over 

k.)  Now recall that â acts only on the number part of |>, and not on the spacetime part.  Therefore (7.5) 

becomes: 

     
0 0 0ˆ ˆ ˆ

i t i t i t
A e a A e a A e a

  
       

     
   

k r k r k r
ε ε ε . (7.6) 

The simplest way to satisfy the last equality is: 

ˆ (quasi-classical state)a    . 

In fact, if different modes ε(k) are to remain independent (not intermix in <|Â|>), then this eigenvalue 

equation is the only one allowed.  Thus we have the general form for a quasi-classical state: |> is an 

eigenstate of the lowering operator â.   

We write |> in the number basis, with as-yet undetermined coefficients, bN: 

0

for a given mode, andN

N

b N




 ε k . 

The eigenvalue  is a given, but arbitrary, complex number, and is used to label the state |>.  We now 

show that  alone determines the state.  Recall that  is proportional to the phasor for the average value of 

the EM field in the quasi-classical state |>.   

First, we find a recurrence relation for the coefficients in the superposition, bN, using the fact that |> 

is an eigenstate of â: 

1
1ˆ 1 1 N

N N N N

b
ab N Nb N b N b

N


 

      . 

Thus |> is a superposition of all photon occupation numbers of a quantum state, from 0 to ∞.  By 

induction, the entire state is determined by no more than b0, the first coefficient, and the eigenvalue , since 

(by induction): 

0
!

N

Nb b
N


 . 

However, this general form determines the normalization, and |> is normalized.  Then: 

   
2

2 2 22 2
0 0 0

0 0

exp 1 exp / 2
!

N

N

N N

b b b b
N


 

 

 

       . 

Therefore, choosing our phase such that b0 is real, the entire state is defined by the complex eigenvalue  : 

 2

0

exp / 2 (quasi-classical state)
!

N

N

N
N


 





   . 

As a check on our derivation, we compute the average A-field for |> in the usual way, with an inner 

product of Â, using â     and its adjoint, † *â   : 
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   

   

     

* †
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* †
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* *
0 0 0

ˆ ˆ ˆ( , )

ˆ ˆ

2Re .

i t i t

i t i t

i t i t i t

t A e a A e a

A e a A e a

A e A e A e

 

 

  

   

   

  

   

   

     

   
  

 

   
  

k r k r

k r k r

k r k r k r

A r A ε ε

ε ε

ε ε ε

. 

As expected, this reproduces the classical correspondence (7.4) above. 

Further properties of the quasi-classical state:  The eigenvalue  is arbitrary, so the average A-field 

amplitude is any one of a continuum of amplitudes, i.e. it is not quantized.  Also, |> is not an eigenstate of 

the photon number operator N̂ .  Therefore, the number of photons in a quasi-classical state is uncertain.  

This may be surprising, since it is often incorrectly assumed that a general EM state must comprise an 

integer number of photons. 

A general quantum EM state may have an uncertain number of photons in it,  

and the average number of photons in a state can be fractional. 

The average A-field amplitude is A0, where A0 ≡ A0(k) is the average A-field amplitude of a single-

photon state |ε(k)>.  Therefore,  is dimensionless.  A quasi-classical state is not an eigenstate of the 

hamiltonian, and therefore has uncertain energy.  The energy of a single photon is ħω, and the average 

energy of the EM state |> is (relative to the vacuum energy):  

2† †ˆ ˆ ˆ ˆ ˆH a a E a a         . 

So ||2 can be thought of as the average number of photons in the state |>, which need not be an integer. 

Quasi-classical states are also states of minimum uncertainty: the EM field amplitude is as precisely 

defined as quantum mechanics allows. 

Possibly the most widespread misunderstanding about quantized EM fields is  

the belief that they must comprise an integer number of photons. 

7.10 Classical EM Superposition vs. Quantum Superposition: Interference 
of Distinct Photons? 

Classical superposition of EM fields is a somewhat different concept than quantum superposition of 

states and kets.  Classical superposition (aka interference) simply says that if two (or more) sources create 

EM fields at the same point in spacetime, the total field is the vector sum of the component fields: 

1 2( , ) ( , ) ( , )tot t t t A r A r A r , and similar for E(t, r) and B(t, r). 

Since independent classical EM fields interfere, and because all classical results are explained by quantum 

mechanics, it must be true that independent quantized EM fields also interfere.   

Dirac made a famous, though widely misunderstood, statement that “... each photon only interferes 

with itself.  Interference between different photons never occurs” [Dir p9].  We show here the mechanism 

by which independent quantum EM fields do interfere.  (If we say, loosely, that a quantum EM field 

comprises “photons”, then classical EM interference forces us to accept that distinct photons do, in fact, 

interfere.  However, see the earlier discussion on the uncertainty of photon count in a quantum EM state, 

sec 7.8.) 

To study independent photon interference, Pfleegor and Mandel performed a famous experiment in 

1967 [P&M] where two independent lasers were attenuated to such a low intensity that the probability of 

detecting two photons at the same time was negligible.  Nonetheless, the two lasers produce a distinct 

interference pattern, thus confirming that two “photons” that can reasonably be considered independent do, 

in fact, interfere.   

http://physics.ucsd.edu/~emichels


physics.ucsd.edu/~emichels Quirky Quantum Concepts emichels at physics.ucsd.edu 

12/30/2016  15:04 Copyright 2002 - 2012 Eric L. Michelsen.  All rights reserved. 119 of 149 

The quantum explanation for both classical superposition, and the Fleegor-Mandel results, is found in 

the full Â operator already developed Error! Reference source not found.: 

   

spacetime photon spacet

2

ime p

†3 *
0

1 hoton

ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) ( )
i t i t

t d A e a e a
 

   




     




 
  
 
 


k r k r

A r k k ε k k ε k k . 

The effective A-field is the coherent sum of all the modes.  The resulting A-field becomes part of an inner 

product, whose magnitude is squared to produce a measurable result.  Thus the A-field follows the usual 

quantum rule: first sum coherently, then square the magnitude. 

We see, then, that the Fleegor-Mandel interference is essentially classical interference.  As noted in the 

section on quasi-classical states, the average amplitude of the field is not quantized, and is therefore 

essentially classical.  It is the interaction of the EM field with matter that is quantized (through the raising 

and lowering operators in Â).  In the experiment, even though the probability of detecting a given photon is 

low, the EM field is still excited to some level, and interference occurs.   

We can now consider Dirac’s statement in a new light.  Recall that a single photon is incoherent (a 

superposition of all phases), i.e. it has no definite phase.  Therefore, two such photons have no definite 

phase relationship, and cannot interfere.  However, a single photon (even though incoherent) can interfere 

with itself, because each component of the superposition has a definite phase.  In the two-slit experiment, 

each component reinforces and cancels in the same way, so the complete wave-function (which is the sum 

of its components) exhibits interference.  In contrast: 

Quasi-classical states describe fields with a well-defined sinusoidal phase of small uncertainty, 

and therefore, independent sources can interfere in essentially the classical way. 

This is in contrast to single-photon states, which are a superposition of all phases, so independent single-

photon sources cannot interfere. 

In summary: A significant point of confusion about Dirac’s statement concerns the meaning of the 

word “photon.”  The naive view that EM fields comprise a definite number of “photons” is incorrect.  EM 

fields are not quantized like electrons, or marbles.  Any single photon state is incoherent, meaning a 

superposition of all phases.  The more complete theory of the quantized EM field defines quasi-classical 

states, which interfere in an essentially classical way, through the summation over modes in the Â operator.  

However, even in such quasi-classical states, the EM field interactions with matter are quantized in units 

we call “photons.”  (We note in passing that the general results of our development apply to all boson 

fields, not just photons [GAF p384b].) 

7.11 Don’t Be Dense 

Density of states is a very important concept for radiation, and other particle creation/annihilation 

operations.  Density of states is often used, and much abused.  The term “density of states” comes in many 

forms, but in quantum mechanics, “density of states” always refers to number density of stationary 

quantum states per unit of some parameter space.  Recall that stationary quantum states are energy 

eigenstates.  We consider these common densities of states: 

 1D harmonic oscillator 

 1D particle in a box 

 1D free particle 

 3D free particle 

We consider only the density of spatial states (wave-functions).  Fermions, e.g. electrons, would have 

twice as many states, because each spatial state has 2 spin-states.  Similarly, photon states are twice as 

dense, because each spatial state has 2 polarization states. 
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Our analysis refers to 3 different “spaces”: real physical space (1D, 2D, or 3D), k-space, and phase-

space.  Since p = ħk, we take momentum-space to be essentially equivalent to k-space.  Phase-space is a 

“tensor product” of real-space and momentum-space:  

3 3
phase-space momentum-space phase-space( )( )  V Vol V dV d r d p   . 

1D harmonic oscillator:  Perhaps the simplest density of states is that for a 1D harmonic oscillator.  

We write the number of states per unit energy as ρ(E).  Since the energy spacing is constant, ħω, the 

number of states per unit energy is (Figure 7.3, left): 

1
( ) (1D harmonic oscillator)E


 . 

The units are [E]–1, i.e. inverse energy.  The momentum (and therefore wave vector, k) of the particle in any 

stationary state is uncertain, and does not figure into the density of states. 

k
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Figure 7.3  Densities of states. 

1D particle in a box:  Another simple density of states is 1D particle in a box.  We will see that the 

result per unit energy is the same as for a free particle, and use this as a warm up for 3D.  Each state has a 

purely real wave-function, which must be 0 at the boundaries.  This leads to quantized wave-functions 

(ignoring normalization): 

 1
( ) sin( ) / , length of box, quantum number

2

ikx ikxx kx e e where k n L L n
i

       . 

Each energy eigenstate is a superposition of + and – momentum eigenstates.  Because k is easily quantized 

(an integer number of ½ wavelengths: kL = n), we can write the density of states parameterized by k.  At 

first, we let k take only positive values, knowing that each positive value of k describes a state which is a 

standing-wave superposition of both +k and –k momenta.  We wrote k as a function of n above, but for a 

density of states, we must invert this relation to get number density per unit of positive k: 

1( ) ( ) , in units of [rad/m]  = [m]
kL dn L

n k k
dk


 


     . (7.7) 

But taking into account that each state consumes a +k and –k value, the final (two-sided) density per unit k 

(of either sign) is only half the above: 

1
( )    (1D particle in box)

2 2

dn L
k

dk



  . (7.8) 

Thus, for a given size box, the density of energy eigenstates per unit k is constant.  Note that there is no 

upper bound to k (or E).   
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Figure 7.4  Density of states, ρ(k), for particle-in-a-box is proportional to the box size. 

(excerpted) 

7.12 Perturb Unto Others: Fermi’s Golden Rule 

Fermi’s Golden Rule often first comes up when considering interaction of matter with EM fields.  This 

section assumes you’ve been through the derivation in a standard text [Sak p327+] [Bay p248+], and want 

clarification.   

For an electromagnetic transition, Fermi’s Golden rule allows us to compute the transition rate, in 

transitions/s.  The rule is often confusingly written with a δ-function, such as (for absorption): 

2

int

int

2 ˆ ( ) (not rigorous)

initial state; final state,

ˆ is the perturbing interaction hamiltonian,

final energy of matter, initial energy of matter,

energy of incident photon .

f i

f i

R f H i E E

where i f

H

E E


 



  

 

 



 

This is clearly requires further description: a “rate” is a number, and cannot have a delta function in it.  In 

fact, the above formula only becomes a rate when it is integrated over a density of states, which removes 

the δ-function (“...in all practical applications, the δ-function will get integrated over....” [Sha p483b];  

“...to get actual numbers from this formula we must sum over a continuous group of ... states...” [Bay 

p251m] ).  What the δ-function above means is that the probability is very high that the final state will lie in 

a narrow range of energies.  This narrow range insures energy conservation, and so the δ-function is 

sometimes called an energy-conserving δ-function.  Therefore, we should rewrite Fermi’s Golden Rule 

as: 

   

 

2

int

2

int

2 ˆ

2 ˆ ,

f iR f H i E E something dE

f H i something


  




  




 

but we must be careful to describe what is ρ(something).  In fact, this density of states can appear due to 

any one of the 3 entities in the matrix element int
ˆf H i : the density of initial states, ρi; density of final 

states, ρf ; and in the interaction Hamiltonian, Hint.  Figure 7.5 gives examples of all three cases.  The left 

case is probably the most common: photoionizing an atom moves an electron from a discrete energy state 

to a continuum of states.  The middle case excites one electron from a continuous band of electrons (e.g. in 

a valence band) into a single state above the band (e.g. due to an impurity atom).  The right case excites an 

electron from a lower to a higher energy state, with radiation having a photon density ρ(E). 
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Figure 7.5  (Left) Density of final state.  (Middle) Density of initial states.  (Right) Density of Ĥint. 

(excerpted)  
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8 Desultory Topics in Quantum Mechanics 

8.1.1 Parity 

A parity transformation of a system reflects each point through the origin.  It is equivalent to 3 

reflections in 3 mirrors: x  –x, y  –y, z  –z, or r  –r.  You might think that you could achieve that 

effect with one mirror, if you held it at the proper angle.  We see that is not true by supposing such a mirror 

placement exists, and considering what happens to a vector nearly parallel to the plane of the mirror.  Its 

reflection is barely different than the original vector, and clearly not reflected through the origin.  You must 

use 3 mirrors.   

All the laws of physics, except the weak force,  

are invariant under a parity transformation of the system. 

8.1.2 Massive Particle Frequency 

Unlike a photon, a massive or charged particle frequency has an arbitrary reference point.  Therefore, 

absolute frequency of a massive particle has no physical meaning.  Only differences in frequency are 

meaningful.  Recall that particle frequency is proportional to total energy, kinetic (T) + potential (V): 

  E = T + V = ћω,  

but V has an arbitrary reference point.  In particular, E and therefore ω, can be negative.  Negative 

frequency arises in many areas of physics, engineering, and mathematics, especially when the zero-point of 

a frequency is arbitrary.  Negative frequency is essential to quantum mechanics and QFT, but what is 

negative frequency?   

An ordinary frequency counts oscillations of something, per unit time, which is necessarily non-

negative.  The oscillating parameter is some one-dimensional quantity.  As described in section 1.6.2, to 

allow for negative frequency, we imagine something rotating about an axis (rather than just oscillating).  If 

it rotates clockwise, physicists call it positive frequency.  In this way, energy differences are proportional to 

frequency differences. 

Note that phase velocity vp = ω/k, and thus vp also has no physically meaningful absolute zero point.  In 

contrast, the group velocity, vg = dω/dk, is independent of an arbitrary frequency (or energy) offset.  This is 

consistent with its interpretation as the physically measurable particle velocity. 

The above frequency considerations are in direct contrast to a photon, or other possible massless-

chargeless particles, where ω has an absolute value, and E = ћω is an absolute equation for the total energy 

of the particle.  vp then also has an absolute value.   

Note also that massive particles do have an absolute wavelength, which can be measured by 

diffraction.  The absolute wavelength is given by the kinetic momentum, and is gauge invariant.  However, 

the spatial frequency k that appears in the wave-function is gauge dependent.  In other words, the wave-

function itself is gauge dependent, but all observables are, as in all of physics, gauge invariant. 

8.1.3 Uncertainty Isn’t From Measurement Clumsiness 

The uncertainty principle is often misleadingly described as: “You can’t simultaneously know the 

position and momentum of an object, because when you measure its position, you disturb its momentum, 

and when you measure its momentum, you disturb its position.”  This description belies the quantum 

theory, because it implies that a particle has a well-defined position and momentum, but you just can’t 

know what they both are.  In fact, a particle has a wave function, which gives probability densities for all 

possible values of position and momentum.  Due to the nature of the position and momentum operators, 

which act on the wave function to produce the probability density functions (position PDF and momentum 

PDF), it is impossible to construct a wave function which yields arbitrarily narrow ranges for both position 

and momentum.  Therefore: 

Uncertainty arises not because you can’t know both position and momentum,  

but because a particle cannot have precise values of both position and momentum. 
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One significant consequence of this more accurate statement of uncertainty is this: don’t bother 

looking for “gentler” measurement methods, which disturb the particle less than existing measurements, in 

the hopes of beating Heisenberg.  The “disturbance” of a previously known value is not some measurement 

side effect; it is fundamental to the nature of wave functions and measurements. 

Now the measurement postulate does say that when you measure position, you “disturb” momentum, 

because you collapse the wave function to one of a precise position.  But if you make a precise position 

measurement, you don’t change the momentum to some precise, but unknown, value.  When you make a 

precise position measurement, you change the wave function, making the position PDF narrow, and the 

momentum PDF wide.  The problem is not that now you don’t know the new momentum; the problem is 

that now the particle does not have a definite momentum.  The particle is in a superposition of many 

different momenta. 

8.1.4 Generalized Uncertainty 

In general, the uncertainty product of two observables depends on the state of the system.  Many 

people are confused by this, because in the special case of position-momentum uncertainty, the uncertainty 

product happens to be a constant for any state.  However: 

In the general case, the uncertainty product depends on the state of the system.   

Consider a set of systems in identical quantum states, each of which is the same superposition of 

eigenstates of an observable.  Recall that if we measure this observable for every system, then we will get a 

variety of measurements, and they will have some standard deviation, .  It is easy to show that, if ˆ ˆandA B  

are two non-commuting observables, then in the state |ψ>: 

 

     

22
2 2

ˆ ˆUsing:

1 1ˆ ˆˆ ˆ, , [Sak 1.4.63, p 36]
4 4

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ; , .

A B A B A B

where A B AB BA A B AB BA

 

     



  
 

     
 

 

Since the 2nd term in the inequality is  0, the inequality still holds without it, so sometimes people 

abbreviate: 

2
2 2 1 ˆ ˆ, [Sak 1.4.53, p 35]

4
A B A B    

 
,  

or by simply taking square roots: 

1 ˆ ˆ,
2

A B A B    
 

. 

For example, the uncertainty product of the x and y components of angular momentum is zero in the 

state where the total angular momentum is zero, |J = 0, M = 0>.  However, the same uncertainty product is 

non-zero for states with M  0.  Recalling that [Ĵx, Ĵy] = iħĴz: 

2 42 2 22 2 2 21 1ˆ ˆ ˆ, , , , , , ,
4 4 4 4

x y x y zJ M J J J M J M i J J M M J M J M M      
 

. 

The uncertainty product increases as the z component of angular momentum increases.  The uncertainty in 

measurements of the system depends on the state of the system. 

Back to position-momentum uncertainty: it happens that the commutator of ˆ ˆandx p  is a constant for 

all states, hence the uncertainty product is a constant for any state |ψ>: 

1

2 2 2
x p i        . 
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Finally, there is often talk of “energy-time” uncertainty.  However, though energy is an observable, 

time is not an observable.  Time is a parameter; time marches on; we know what time it is, but we don’t 

measure the “time” of a system (as we do its energy); time has no corresponding hermitian operator.  

Therefore: 

 The energy-time “uncertainty relation” is fundamentally a  

different phenomenon than the uncertainty product of two observables.   

According to [Sak p80], “this time-energy uncertainty relation is of a very different nature from the 

uncertainty relation between two incompatible observables.” 

8.1.5 Is 2 The Square Or Composition Of Anything? 

“2” denotes the Laplacian operator, sometimes called “grad squared.”  Usually, the superscript 2 

notation means either the square of a number, or the composition of an operator on itself.  For example, x2 

means simply the square of the number ‘x’.  
2p̂  means ˆ ˆpp .  However, contrary to such uses of the 

superscript 2 notation, 2 is neither the square of a number, nor the composition of some  operator on 

itself.  2 is actually the composition of two different “” operators.  We consider those operators now. 

First, “” is the gradient operator.  It operates on a scalar field, and produces a vector field.  For 

example, if Φ(x, y, z) is the electric potential (a scalar field), E = –Φ(x, y, z) is the electric (vector) field.  

Recall that the gradient Φ (pronounced “grad fie” or “del fie”) tells how Φ varies when moving in any 

direction from a point: 

ΔΦ(in direction s) ≈ Φ · s (to first order). 

The gradient operator is often written in bold, “”, indicating its result is a vector. 

Second, “·” is the divergence operator (pronounced “del dot”).  It operates on a vector field, and 

produces a scalar field.  The divergence operator is never written in bold, because its result is a scalar field. 

The divergence of the gradient is a composition of operators that arises very frequently.  It can be 

written “·”, e.g. 

·Φ = the divergence of the gradient of the scalar field Φ, whose result is another scalar field. 

This composition arises so frequently that we use the special notation “2” as shorthand for “·”.  But 

the two “dels” in “·” are two different things: the right (bold)  is the gradient operator, and the left 

“·” is the divergence operator.  So: 

2 is not the composition of any operator on itself.   

It’s inconsistent notation, but universally used. 

Note that (in simple non-tensor mathematics) it is meaningless to square either the gradient or the 

divergence operators: 

(φ) has the left gradient operator acting on a vector field, which is undefined. 

·(·v) has the left divergence operator acting on a scalar field, which is undefined. 

All that said, there is a sense in which 2 is roughly the square of something.  It is common to write the 

square of a vector p as p2 ≡ p·p.  Following this idea, we write the definition of the gradient operator  as: 

2 2 2
2

2 2 2
.

x y z

x y z x y z x y z

   
     

   

           
             

           

i j k

i j k i j k

 

In this loose interpretation, 2 could be called the square of the gradient operator, but it is not the 

composition of the gradient operator with itself (which can only be defined as a rank-2 tensor). 
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All of these comments on 2 apply directly to the 3D momentum operator: 

2 2 2ˆ ˆ ˆ ˆ
i

      p p p p , 

which is a scalar operator. 

8.1.6 The Only Stationary States Are Eigenstates of Energy 

The only stationary states are eigenstates of energy, because every state evolves in time by the 

operation of exp(iĤt/ħ), and the only states of fixed energy are eigenstates of Ĥ.  That is, for Ĥ independent 

of time: 

    0 0
ˆ ˆ, exp /U t t iH t t  . 

For a stationary state, time evolution must introduce only a (time-dependent) complex phase factor to the 

wave-function, which means Ĥ must produce a constant.  This is the definition of an energy eigenstate: 

Ĥ E  . 

Thus the only stationary states are energy eigenstates. 

8.1.7 g Whiz 

The letter “g” has at least 3 different meanings in quantum mechanics, the first two of which are 

especially confusing.   

First, when counting quantum states in statistical mechanics, the multiplicity of an energy level, or 

multiplicity of a spatial state, is called “g”.  For an electron, or any other fermion, its spin is ½, and 

therefore, in the absence of spin-dependent energy (e.g., no magnetic field), each spatial state has 

multiplicity g = 2 exactly: one state spin up, the other spin down. 

A second (completely different) use of “g” refers to the gyromagnetic ratio: the ratio of the electron’s 

spin-related magnetic dipole moment to its Bohr magneton.  [Other disciplines use the term “gyromagnetic 

ratio” differently.]  Recall the Bohr magneton is the magnetic dipole moment created by an electron in an 

orbit of angular momentum ħ.  One can easily show that the Bohr magneton is: 

(gaussian) or (SI) particle charge, particle mass
2 2

B B

e e
where e m

mc m
     . 

For an electron, g ≈ –2, but not exactly.  In fact, ge = –2.002 319 304 362 2(15) [Nis].  And therefore, the 

actual spin-related dipole moment for an electron is 2.002e B   .  For a general particle, 

magnetong  . 

When referring to the spin-multiplicity of a spatial state, g = 2 exactly. 

When referring to gyromagnetic ratio, g ≈ –2. 

The third use of g extends the gyromagnetic ratio to the total angular momentum, J = L + S, which is a 

combination of orbital and spin angular momentum.  This is called the Landé g-factor (described in detail 

in sec. 5.8).  Part of J is due to L, and part due to S.  Therefore, part of the magnetic dipole moment is due 

to L (with weight 1), and part due to S (with weight approximately 2).  Thus g is a weighted average  such 

that: 

is the quantum numberj B j zgm where m J  . 

8.1.8 Why Are Photons Said To Be Massless? 

Photons have energy, and m = E/c2, so why are photons said to be massless?  In the old days, to try to 

retain F = ma, physicists said that a moving particle’s mass increased by a factor: 
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 
2

1

1 /v c

 



. 

This “variable mass” turned out to be a bad idea, because the “mass” parallel to the direction of motion is 

then different than the “mass” perpendicular to the motion.  To avoid this, and have only one kind of mass, 

modern relativity defines mass as a scalar (all observers measure the same mass): “mass” is always the 

“rest mass” of the particle.  These section assumes you understand 4-vectors. 

Instead of changing the mass with motion, we use the relativistic laws of motion, which include the γ 

factor.  They are written in 3-vector and 4-vector form as: 

   

(3 ) : , .

(4 ) : / , , , , proper time .

d
vector m

dt

dp
vector p E c mc F where

d


 



 


  

    

p
p v F

p p

 

From this, we can write an invariant equation for a particle’s mass from its energy-momentum 4-vector: 

2
2 2 2 2 2 2 2 2 2 2 2

2 2
1

p pv
p p m c m v m c m c m

c c




   
 

        
 

. 

For a photon, 

 
2 2

2 2
, 0

p p
E c p m

c c


 

      
p p

p p p . 

Particles that move at the speed of light must be massless (to have finite energy), and therefore must satisfy 

E = |p|c. 

8.1.9 The Terrible Electromagnetic Hamiltonian 

Some references use a confusing notation for the interaction of an electron with a magnetic field.  

Before we describe this, recall the general description of a charged particle, with charge q, in a magnetic 

field.  Here, q is the charge of the particle (not a universal physical constant), and is negative for electrons, 

and positive for positrons and protons: 

2

2 ˆ ( )
ˆˆ, ( ) ( )
2 2

canonical momentum .

kin
kin kin

q

pq c
m H V V

c m m

where

 
 

 
       



p A r

p v p p A r r

p

 (8.1) 

Note that p is pkin plus (q/c)A, and therefore the kinetic energy in the hamiltonian subtracts (q/c)A to get 

pkin.   

Some references specialize to the particle being an electron, and call its charge “–e”, where e is a 

physical constant (the charge of a proton).  This reverses the plus and minus signs in the formulas for the 

canonical momentum and the hamiltonian.  This notation is both less general (since it only works for 

negative particles), and it conflicts with standard notation in classical mechanics (which is not obsessed 

with electrons).   

Don’t do it.  Just let charge be charge: q takes the sign of the particle in question, and (8.1) holds. 

8.2 Current Events: Probability Current and Electric Current 

Many QM references discuss a concept called “probability current,” more accurately called probability 

current density, measured in particles/s/m2.  This is a mathematical construction, that has limited physical 
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meaning and application.  However, comparing it to true particle current illuminates the fundamental 

postulates and workings of quantum mechanics.  Nearly all references give an incomplete equation for 

probability current.  Note that a single-particle probability density is actually a particle density, for all 

practical purposes (see “The Meaning of the Wave-Function,” section 1.9).  However, probability current 

is different from the classical currents which generate things like magnetic fields.  We proceed as follows: 

 the meaning of a general continuity equation 

 the quantum continuity equation 

 an example of the failure of the “standard” equation 

 correcting the failure 

 the physical meaning of probability current and other currents, such as electric current and its 

coupling to magnetics. 

This section assumes you are familiar with basic quantum mechanics, such as operators and the 

Schrödinger equation, with the vector calculus of divergence, and 1D tunneling. 

Some popular texts incorrectly say, or suggest, that the EM field  

couples to the probability current.  This is wrong, as described below. 

8.2.1 General Continuity 

(excerpted) 

8.2.2 Failure of the “Standard” Formula 

We now demonstrate the need for C with an elementary example of 1D quantum tunneling.  When an 

incident particle impinges on a potential barrier higher than its energy, some of the particle is reflected, and 

some is transmitted (tunneled), as in Figure 8.1. 

x

incident wave
transmitted wave

reflected wave

ψinc(x)

potential barrier, V(x)

 

Figure 8.1  1D tunneling:  The particle approaches from the left, and interacts with the barrier.  

The wave-function splits into transmitted and reflected parts.  Inside the barrier, ψ(x) varies 

exponentially. 

(excerpted) 

8.3 Simple Harmonic Oscillator 

8.3.1 Harmonic Oscillator Position PDF: Classical and Quantum 

The PDF for a classical harmonic oscillator can be found by noting that the probability of being in an 

interval dx equals the time spent there divided by the period, where the time in dx is the distance divided by 

the speed: 

time in 1
Pr(being in ) (in each direction)

( )

dx dx
dx

T T v x
  . (8.2) 

Therefore, taking a unit amplitude oscillation (without loss of generality): 

1

Let ( ) cos(2 / )

2
( ) sin(2 / ), and ( ) ( ( )), ( ) cos ( ) .

2

x t t T

T
v t t T v x v t x t x x

T










 

   
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Each interval dx occurs twice in a cycle (once when the particle moves left, and again when moving right), 

so Pr(being in dx) for one cycle is double (8.2).  Therefore: 

 1 2

2Pr(being in ) 2 1 1 1 1 1
pdf ( )

sin(2 / ) sin cos 1
x

dx dx
x

dx T v dx t T x x   
    



. (8.3) 

(excerpted)   

8.3.2 Raising and Lowering: How Did Dirac Do It? 

The “operator method” of harmonic oscillator analysis is fundamental to all advanced quantum 

mechanics.  It foreshadows a very similar method used for angular momentum, and is the basis of a major 

part of quantum field theory (including quantum EM radiation), which starts with the fields as an infinite 

set of quantized harmonic oscillators.  The method is far from obvious, so the big question on everybody’s 

mind is “How did Dirac do it?”  How did he know how to create the creation and annihilation operators?  

Most  references give them as “Lo! And behold!” (much like they present the Schrödinger equation out of 

thin air).  Here’s one way to do it logically, and (who knows?) perhaps is similar to how Dirac figured it 

out.  Our goal here is not to provide the simplest derivation, but to show how such an idea might come 

about in the first place.  In addition, this section further ties together the meaning of operators and Dirac 

notation, which makes this topic worth understanding.  This section assumes you understand how the 

operator method works, but not how to motivate its development. 

(excerpted) 

8.4 Make No Mistake With a Quantum Eraser 

The quantum eraser is an experimentally confirmed consequence of QM.  The name derives from the 

fact that you can “erase” an interference pattern with a seemingly innocuous change that does not directly 

affect the particles creating the interference.  This result is not obvious, and actually highly counter-

intuitive.  As such, understanding it provides significant insight into quantum physics, which can then be 

used to help understand more common phenomena.  In particular, this effect provides a clear, precise 

description of what is sometimes called “wave-particle duality” (which is greatly misunderstood, and 

sometimes discussed in almost mystical terms).  However, we show here that the prevention of interference 

obeys the already-given mathematical rules of QM, and there is no need to invoke duplicities of Nature or 

other exotic ideas. 

Much is often made of so-called “wave-particle duality.”  It is claimed that a particle behaves like a 

wave or a particle, but not both.  In the double-slit experiment, if we observe the particle going through a 

slit, it prevents any interference.  The explanation is not Nature’s defiance, but standard, multi-particle 

quantum mechanics.  It is the entanglement of the measuring device, and not our knowledge of information, 

which prevents the interference.  This same concept applies to the quantum eraser. 

In the literature, there are at least 3 different phenomena called a “quantum eraser.”  However, we 

believe that one of them is simply a dressed up version of the EPR effect, and not any kind of “eraser.”  We 

describe here a recent experiment [Man], which we feel well illustrates the principle.  Again, there is no 

new physics in this experiment, just a surprising consequence of existing multi-particle QM.  The result 

could have been predicted in the 1930s, though parametric down-converters did not then exist. 

We proceed as follows: 

 Reminder of behavior of 2-particle states. 

 The classical and single-photon Mach-Zehnder interferometer. 

 The “parametric down-converter.” 

 The Hong-Ou-Mandel interferometer. 

 Preventing (“erasing”) the interference pattern. 

 Some variations of the experiment, and how they would behave. 
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 Attempt to debunk some “mystical” interpretations of these QM results. 

 What’s not a quantum eraser. 

This section assumes you are familiar with superpositions, interference, simple multi-particle states, and 

entanglement. 

Reminder About 2-Particle States 

Imagine a system with two distinguishable particles, A and B, each of which can be in one of two 

states, say |x> and |y>.  Because of entanglement, a general state of the system can be described using 4 

orthonormal basis vectors: 

, , , , , , , are complexa Ax Bx b Ax By c Ay Bx d Ay By where a b c d     . 

The probability of measuring particle A to be in state |Ax> is |a|2 + |b|2.  Recall that there is no possibility of 

interference between the a and b coefficients, because the basis vectors |Ax, Bx> and |Ax, By> are 

orthogonal, even though both vectors describe the state of A as |Ax>, i.e. , , 0Ax Bx Ax By  . 

Interference for one particle can only occur between two quantum state components with a non-

zero overlap of the other particle, i.e., a non-zero inner product. 

The classical and Single-Photon Mach-Zehnder Interferometer 

A Mach-Zehnder interferometer, like all interferometers, starts by splitting a beam of light into two 

beams (Figure 8.2).  (We omit the label t2 for later consistency with the time-stamps of the Hong-Ou-

Mandel interferometer.) 

detector

t0

|1in>

t1 t3 t4time →

so
ur

ce

|1out>
x

|u>

|d>
|d>

|u>

mirror

beam 
splitter

recombiner

 
Figure 8.2  The Mach-Zehnder interferometer: Even a single photon at a time through the system 

produces interference. 

(excerpted) 

s1

i1

t1 t2

|s1i1>

source

time →

|1uv>

 
Figure 8.3  A parametric down-converter (PDC) takes a single UV photon (~351 nm) and turns it 

into two entangled red photons (~702 nm), called “signal” and “idler.” 
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One of the output photons is arbitrarily called the “signal” photon, and the other is the “idler” photon.  

(These names have a historical origin which is not relevant to our application.) 

The quantum mechanical state of the system evolves in time from a single UV photon at time t1, to two 

red photons at time t2.  We denote these spatial states respectively by the kets |1uv>, and |s1i1>.  Note that 

|1uv> is a single-particle state, and |s1i1> is an entangled two-particle state.  It means that if the output 

photon s1 is present, then the photon i1 must also be present.  We cannot have one without the other (yet). 

Before the PDC, the photon state is time evolving through a series of spatial states, and moving to the 

right.  Similarly, after the PDC, both photons are time evolving through a series of spatial states, and 

moving in different directions from each other.  We have chosen the states |1uv> and |s1i1> as two 

representative spatial states at the representative times t1 and t2. 

The conversion efficiency of a PDC is horrible, on the order of one converted photon out of a million, 

or worse.  The vast majority of the incident UV photons go straight through the PDC.  Those cases are of 

no interest to us here, so we ignore them, and consider only the occurrences where down-conversion takes 

place. 

The Hong-Ou-Mandel Interferometer 

The Hong-Ou-Mandel interferometer combines a Mach-Zehnder interferometer with two parametric 

down-converters (Figure 8.4, left).  We first summarize the process in words, and then fill in the quantum 

details. 
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Figure 8.4  The Hong-Ou-Mandel interferometer: (Left) A single photon at a time through the 

system produces interference.  (Right) Blocking the idler eliminates interference between signal 

photons. 

(excerpted) 

More Variations of the Quantum Eraser 

Other variations of the experiment are also instructive.  Return to the setup (Figure 8.4, right) with an 

absorbing screen.  What if the absorber is not complete, but a half intensity filter?  In that case, it has a 50% 

chance of absorbing i1, and a 50% chance of passing it.  That means that half the photons exhibit 

interference, and half do not.  The detector will show some interference, but weaker than the full 

interferometer (Figure 8.5, middle).   
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position, x

intensity

1

2

position, x

intensity

1

2

position, x

intensity

1

2

average

max

min

 
Figure 8.5  The degree of interference is quantified by its “visibility.”  (Left) Perfect visibility is 

100%.  (Middle) Visibility = 50%.  (Right) Visibility = 20%. 

Physicists quantify the degree of interference with its visibility (or “fringe visibility”): 

visibility
max - average max - min

=
average max+min

 . 

(excerpted) 
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9 Appendices 

9.1 Common Quantum Formulas 

References are to Goswami’s Quantum Mechanics [Gos]. 

General Commutation Relations 

  † ˆ ˆˆ ˆ ˆ ˆ, [3.5 p56] , 1 [7.26 p149] , [9.28 p193]zx p i a a L i     
  

 

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,AB C A B C A C B      
     

 [Q3.5 p72, with other commutation identities] 

    
2ˆ 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,    0 [12.8-9 p247]

2 2
i

p i
H x x p p x p x p p H L

m m m

 
            

  

 

2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , [11.6 p221] , 0 [11.10 p222]x y z y z x z x y iL L i L L L i L L L i L L L         
       

 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , 2 [11.51 p235]z z zJ J J J J J J J J     
        
       

x-basis: free particle:   ˆ( , ) exp ( ) [3.1 p53]t x i kx t p i
x

 


   


 

2 2

2
ˆ ( ) [3.10 p58] = (x) [p 121]

2
H i V x x

t m x

 
   

 
   

 
 

momentum-representation:     ˆ [p 56]x i
p





 Energy representation: H|E> = E|E> 

ψ concave toward x-axis when V < E, away when V > E. (correction to Q3.A4 p73) 

Time independent Schrödinger equation: 
2 2

2
( ) ( ) ( ) [3.11 p60]

2

d
V x u x Eu x

m dx

 
   
  

 

 in standard mathematical form: 
2

2 2

( ) 2
( ) ( ) 0 [4.2 p76]

d u x m
E V u x

dx

 
   
 

 

2 ( )
General wave #:

m E V
k


     Bound:   ξ = k’a,   η = βa,    

2
2 2 0

2

2ma V
    

 even:  k’ tan k’a = β  η = ξ tan ξ odd:  k’ cot k’a = –β η = –ξ cot ξ 

Dirac Notation (Chapter 6) 

<x|ψ> = ψ(x) [p 121]  x̂ x x x      [p 125] ˆ ' ' ( ')x x x x x x   [p 125] 

 For basis, :  completeness operator 6.3-4 p119i i i i i op

i complete i
set

      



    1  

ˆ ˆ [6.16, & top p124]

i

j A j A i i   
*†ˆ ˆ [6.18 p124]A A     
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Harmonic Oscillator (Chapter 7) 

2 2
2 2 2

0

1 1
[7.1 p137],   (units of x)

2 2 2 2

p p
H kx m x x

m m m



      

0

1 1
,     [p 138], [7.13 p142]

2 2

m x k
x E n

x m


   

 
      

 
 

Approximate spring constant for general potential minimum: 
2

2
min

[7.2 p137]

x

d V
k

dx


  

†ˆ ˆ
ˆ ˆ ˆ ˆlowering:  , raising:  [7.25 p149]

2 22 2

m ip m ip
a x a x

m m

 

 
     

   † †ˆ ˆ ˆ ˆ ˆ ˆ [7.43 p156]
2 2

m
x a a p i a a

m




     

† †

† †

1 1ˆ ˆ ˆˆ ˆ ˆ ˆ[p152t], [7.27 p149]
2 2

ˆ ˆˆ ˆ ˆ ˆ, [7.28 p150] , [7.29 p150]

N a a H N a a

H a a H a a

 

 

   
       

   

      
   

 

 

† †
1 1

1 1 0

1
ˆ ˆ1 [7.40 p155] [p154b]

1

1
ˆ ˆ ˆ[7.42 p155] , 7.32 p151

n n n n

n n n n

a u n u u a u
n

a u n u u a u a u
n

 

 

  


   v0

 

Equations of Motion (Chapter 8) 

   0 0
ˆ, ,i U t t HU t t

t





  [6.27 p132] 0

0

ˆ ( )
( , ) exp [8.1, p163]

iH t t
U t t

  
  

  

 

ˆ
( ) exp (0)

iHt
t 

 
  

 
 [8.2 p163] 

ˆ ˆ/ /ˆ ˆ( ) [8.4, p163]iHt iHtA t e Ae  

Heisenberg eq. of motion: ˆ ˆˆ( ) , ( )
d i

A t H A t
dt

 
 

 [8.5 p164] 

† † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) (0), ( ) ( ) ( ) (0)  [p165]i t i td d
a t i a t a t e a a t i a t a t e a

dt dt

          

ˆ
ˆˆ ,

d A i
H A

dt
 
 

   [2nd 8.7 p166] 
d x p

dt m
   [8.8 p167]     

( )d p dV x

dt dx
    [8.10 p168] 

Particle in Two Dimensions (Chapter 9) 

ˆ ˆ [9.3 p184]x yp i p i
x y

 
   

 
 ˆ ˆ ˆ [9.4, p186]x x y yp p i    p e e  

Time independent Schrödinger eq:   2

2

2
0

m
E V      [9.8 p187] 
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Motion on a ring:    I = mρ2   [p191]  
1

( ) [9.27 p193]
2

ime  


  

 ˆ ˆˆ ˆˆ [9.24-5 p192]z y xL xp yp i



   


 

Two particle system reduction to 1: x = x1 – x2 
1 1 2 2

1 2

 [9.32 p194]
m x m x

X
m m





 

1 2
1 2

1 1 1
+ [9.33, 9.34+ p194]M m m

m m
    

Time dependent Schrödinger eq: 
2

2( , )
( , ) ( ) ( , ) [9.45 p198]

2

t
i t V t

t m


 


   



r
r r r  

Angular Momentum (Chapter 11) 

2 2 2 2ˆ ˆˆ ˆˆ    [11.4 p220, 11.19 p225] [11.2 p219] / 2    [11.3 p219]z y xL xp yp i L r p H L I



     


 

2
2

2 2

1 1ˆ sin [11.20 p226]
sin sin

L 
    

    
    

     

 

 2 2ˆ ˆ, 1 , 0,1,2,... [p229]

, ( , ), 0,1,2,...; 1, .... , [p230]

z

lm

L l m m l m L l m l l l m l

l m Y l m l   

   

    
 

Legendre polynomials: 

ζ = cos θ      (11.27 p226)  P0(ζ) = 1,      P1(ζ) = ζ,      P2(ζ) = ½(3ζ2 – 1)   [11.34 p228] 

Recursion: 

             

         

2
1 1 1

/ 2 / 2
2 2 2

1 2 1 1

1
1 1 1 [11.35 p228]

2 !

l
l l l l l

m l mm m l

lm lm l l m

dPd
l P l P lP l P lP

d d

d d
P P

d l d

      
 

    
 

  





       

    


 

 

 
  *

,

!2 1
0: ( , ) ( 1) (cos ) [11.41 p231] 1 [11.40 p231]

4 !

mm im
lm lm l m lm

l ml
m Y e P Y Y

l m

  





     


 

ˆ ˆ ˆ ˆ ˆ ˆ [11.50 p234]x y x yJ J iJ J J iJ       

2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ [11.52-3 p235]z z z zJ J J J J J J J J J          

       ˆ ˆ, 1 1 , 1 , 1 1 , 1 [11.62 p238]J j m j j m m j m J j m j j m m j m            

Motion In A Central Potential (Chapter 12) 

   
2 2 2 2

2ˆ[12.2 p245] ( ) [12.3 p245]
2 2 2 2

P p p
H V r H V r V r

M   
          

2 2 2 2

2

( 1)
ˆ ˆ[12.12] [12.15 p249] ( ) ( )    [12.25 p252]

2
r eff

not hermitian

l l
p p i V r V r

r r

 
      


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Hydrogen Atom (Chapter 13) 

     
2 2 4

2 2
( ) p268 13.12 p271 1, p271

2
n r

Ze Z e
V r E n n l l n

r n


        

Spin and Matrices (Chapter 15) 

|z+> = [1, 0]T  |z–> = [0, 1]T [15.12 p309] 

1 11 1
(z-basis) [15.16 p312, & p316]

1 12 2

1 11 1
[p314]

2 2

x x

y y
i i

   
      

   

   
      

   

 

     2
i 2

( , , cyclic)

0 1 0 1 0
Pauli matrices: , , [15.27 p316]

1 0 0 0 1

, 0 , , 2 15.29 p317

x y z

i j i j j i x y z

x y z

i

i

i j i

  

         

     
       

     

       1

 

Addition of Angular Momentum (Chapter 17) 

J = L + S L·S = LzSz + ½(L+S– + L–S+)  [17.13 p355] 

General Clebsh-Gordon coefficient: 

           

         

 
     

      

2 2

1 2 1 2 1 2
1 1 2 2

1 2 1 1 1 1 2 2 2 2

2 1 1 1 3
1 2

1 2 1 2

! ! ! ! ! 2 1
;

1 ! ! ! ! !

1 ! !
, [C&S14 5 p75]

! ! ! !

k j m

k

J j j J j j j j J J M J M J
j m j m J M

J j j j m j m j m j m

J j m k j m k
m m M

J j j k J M k k k j j M


 

        


      

     
 

       

 

Perturbation Theory (Chapter 18) 

2

1(1) (2)
1 (0)(0)

ˆ
ˆ [18.10 p380] [18.14 p381]

k n

n n n n

nk n k

H
E H E

E E

 
 



 


  

1(1)

(0)(0)

ˆ
   [18.12 p380]

k n
n k

nk n k

H

E E

 
 



 
  

  
   

22
( ) Bay 12-20 p251ff V i E


   

Spherical Harmonics and Their Friends 

All spherical harmonics are functions of θ and .  They can be considered functions of all space by 

ignoring the radial coordinate:  Ylm(r, θ, ) ≡ Ylm(θ, ), and can thus be written in rectangular coordinates as 

Ylm(x, y, z).  The transformations require only the conversions in the right column, here: 

sin cos cos /

sin sin sin

cos sin

i

i

x r z r

x iy
y r e

r

x iy
z r e

r





  

  

 

 


 


 
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00 0

1 2 1
( ) cos

4 4
l l

l
Y Y P 

 


   

Plane wave expansion:     0

0 0

2 1 ( ) (cos ) 4 2 1 ( ) ( )ikz l l
l l l l

l l

e i l j kr P i l j kr Y  
 

 

      

The functions below use the Condon-Shortley phase (the (–1)m factor) [C&S 4317 p52]: 

 
   

 

   
 

 

  *
,

2 1 !
1 (cos ) , 0,

2 ! 2
( , ) Wyl 3.6.5 p96

!2 1
(cos ) , 0,

2 ! 2

( ) is the associated Legendre function, 0,1,2..., , 1, ... 1, .

( , ) 1 ( , ), (positiv

im
m

lm

lm
im

l m

lm

m
lm l m

l l m e
P m

l m

Y

l ml e
P m

l m

P x l m l l l l

Y Y m








 




   

  
 


 
 




     

   e and negative).

 

11 10 1, 1

3 3 3 3 3 3
sin cos sin

8 8 4 4 8 8

i ix iy z x iy
Y e Y Y e

r r r

   
     




 
        

   

 

   

2
2 2

22 212 2

2 2 2 2
2

20 2 2

2
2 2

2, 1 2, 22 2

15 15 15 15
sin sin cos

32 32 8 8

5 5 2 5
3cos 1 3 1

16 16 16

15 15 15 15
sin cos sin

8 8 32 32

i i

i i

x iy x iy z
Y e Y e

r r

x y z z
Y

r r

x iy z x iy
Y e Y e

r r

 

 

  
   


  

  
   

 
 

 
     

   
      

 

 
   

 

Spherical Hankel Functions 

[hl and hl
* are sometimes written as hl

(1) and hl
(2).] 

   

   

   
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Integrals (See also en.wikipedia.org/wiki/Lists_of_integrals) 
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General Mathematical Formulas 

completing the square: 

2 2
2 (x-shift / 2 )

42
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ax bx ax b a
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cos 2a = cos2 a – sin2a = 2cos2 a – 1 = 1 – 2 sin2 a sin 2a = 2sin a cos a 

1 cos
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2 2
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1 cos
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cos(a  b) = cos a cos b  sin a sin b  sin(a  b) = sin a cos b  cos a sin b 

cos2 a = ½ (1 + cos 2a)    sin2 a = ½ (1 – cos 2a) 

cos a cos b = ½ [cos(a + b) + cos(a – b)]  sin a sin b = ½ [cos(a + b) – cos(a – b)] 

cosh2 x – sinh2 x = 1 

cosh 2x = cosh2 x + sinh2 x = 2 cosh2 x – 1 = 1 + 2 sinh2 x sinh 2x = 2 sinh x cosh x 
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9.2 Glossary 

Definitions of common Quantum Mechanics terms: 

<x> the average (sometimes called “expectation”) value of ‘x’ 

abelian group a commutative group: a + b = b + a. 

adjoint The adjoint of an operator produces a bra from a bra in the same way the original 

operator produces a ket from a ket: †ˆ ˆ ,        .  Some 

mathematics references use “adjoint” differently: the “adjoint matrix” ≡ transpose of the 

cofactor matrix. 

aka also known as. 

amplitude a complex number specifying the magnitude and phase of a quantum value.  This is quite 

different from most applications, where “amplitude” is a real number giving the 

maximum value of a wave.  In QM, an “amplitude” can be considered a phasor. 

arg(z) the angle of the complex number, z, in polar form, measured counter-clockwise from the 

positive real axis 

azimuthal quantum number This is an anachronism for l, the orbital angular momentum quantum 

number.  However, [Bay p156m] defines it as m, the z-component of angular momentum, 

which is consistent with the term “azimuthal.” 

baryons 3-quark particles, including protons, neutrons, and others.  All baryons are hadrons. 

basis (plural: bases) a set of vectors used to construct arbitrary vectors in the vector space.  . 
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bra a vector in the Hilbert space dual to kets: this means we can take an inner product of a bra 

with a ket to get a complex number (a scalar). 

by definition in the very nature of the definition itself, without requiring any logical steps.  To be 

distinguished from “by implication.” 

by implication combining the definition, and other true statements, a conclusion can be shown by 

implication. 

c-number “commuting number,” or more realistically, “complex number”.  In general, it would be a 

“scalar” in the mathematical vector-space of kets. 

c’est la vie French for “that’s life.” 

canonical momentum In Lagrangian mechanics, canonical momentum is a generalize momentum 

conjugate to a generalized coordinate, defined as the derivative of the lagrangian with 

respect to the coordinate:  /canonicalp L q   .  (Conjugate here is not complex 

conjugate.) 

cf “compare to.”  Abbreviation of Latin “confer.” 

CGS centimeter-gram-second: a system of measuring distance, mass, and time.  There are two 

different CGS systems, with different units of charge. 

closed interval  between c and d is written “[c, d]”, and means the range of numbers from c to d including 

c and d. 

complex having a real an imaginary component: the sum of a real and imaginary number. 

complex plane a 2-D graph of complex numbers, with the real part on the abscissa (horizontal axis), and 

imaginary part on the ordinate (vertical axis). 

complicated involved or intricate. 

component one vector, usually a basis vector,  in a superposition of vectors.  Each vector in the 

superposition has a complex coefficient, so the superposition is called “coherent.” 

comprise to include.  E.g., “An insect comprises 3 parts: a head, thorax, and abdomen.”  We could 

say “An insect is composed of 3 parts,” but there is no “comprised of”. 

conjugate bilinear  a function of two mathematical objects which scales as the conjugate of the 

amplitude of the first, and linearly with the amplitude of the 2nd.  For example, see “inner 

product.” 

constituent as used here: one of the states, |ψk>,  of a mixture (distinct from “component”). 

continuous having the property that between any two elements there are an infinite number of other 

elements, e.g., real numbers are continuous. 

contrapositive The contrapositive of the statement “If A then B” is “If not B then not A.”  The 

contrapositive is equivalent to the statement: if the statement is true (or false), the 

contrapositive is true (or false).  If the contrapositive is true (or false), the statement is 

true (or false). 

converse The converse of the statement “If A then B” is “If B then A”.  In general, if a statement is 

true, its converse may be either true or false.  The converse is the contrapositive of the 

inverse, and hence the converse and inverse are equivalent statements. 

correlated in QM, correlated is used “colloquially” (i.e., incorrectly) to mean “dependent.”  A better 

word is “entangled.”  See “entangled.”  Properly,  two sequences of numbers are 

correlated if there is any component of a linear relationship between the sequences, i.e. if 

the covariance is nonzero.  See Funky Mathematical Physics Concepts for more. 

density some quantity per unit volume, e.g. probability density.  Outside QM, density can also be 

per unit mass. 
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dependent two quantum systems are dependent (aka entangled) if information about one of them 

provides information about the other. 

dimension (1) the number of bases in a complete set; (2) units of measure, e.g., the dimensions of 

voltage in the MKSA system are J/C, or kg-m2/(C-s2). 

discrete having the property that between two adjacent elements, there are no other elements, e.g., 

integers are discrete. 

dot product inner product. 

dual vector In this context, a “dual vector” is one which can be combined with a “vector” to produce 

a scalar (via the inner product).  (Mathematics defines at least two other meanings for 

“dual.”) 

ensemble a hypothetical set of identically prepared systems. 

entangled the quantum states of two systems are entangled when neither system has a definite value 

of some property, but the values of the two systems’ properties are interdependent.  This 

means a measurement of one system provides information about the other. 

esu elector-static unit: a unit of charge which repels a like unit with a force of 1 dyne when 

spaced by 1 meter.  AKA stat-coulomb. 

expectation value not used in this book.  Usually, the average value. 

fact a small piece of information backed by solid evidence (in hard science, usually repeatable 

evidence).  If someone disputes a fact, it is still a fact.  “If a thousand people say a foolish 

thing, it is still a foolish thing.”  See also “speculation,” and “theory.” 

field 1. In mathematics: a set of elements and two operators in which simultaneous linear 

equations can be solved.  Infinite fields have an infinite number of elements.  2. In 

physics, a (scalar or vector) function of space. 

flux particles per second (distinguish from “flux-density”).  Some references use “flux” to 

mean “flux density.” 

flux density flux per unit area, i.e. particles per second per area (distinguish from “flux”).  Some 

references use “flux” to mean “flux density.” 

forbidden forbidden in first order perturbation theory.  See “strictly forbidden.” 

hadrons particles that interact via the strong force.  E.g., includes pions and baryons, but not 

leptons.  3-quark hadrons are also baryons.  2-quark hadrons (a quark and anti-quark) are 

also mesons. 

hermitian her-mish’-un: an operator whose eigenvalues are real; equivalently, a self-adjoint 

operator. 

Hilbert space Physics: a vector space, of finite or infinite dimension, with a metric (dot product).  

Mathematicians require that a Hilbert space be infinite dimensional. 

idempotent an operator is idempotent if Ô2 = Ô, such as a projection operator, |ψ><ψ|.  By extension, 

Ôn = Ô for all positive integers n. 

idler photon one of the two photons produced by a parametric down-converter.  See also signal 

photon. 

iff if and only if; both necessary and sufficient.  Used in definitions. 

implies guarantees.  In conversation, “implies” means “suggests.”  But in math and science, 

“implies” is stronger. 

inflection a change in curvature (from up to down, or down to up).  
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inner product a conjugate bilinear function of two vectors producing a scalar, i.e. the inner product 

scales as the conjugate of the amplitude of the first vector, and linearly with the 

amplitude of the second vector. 

instantaneous amplitude the magnitude of a wave at a given point in space at a given point in time. 

inverse The inverse of the statement “If A then B” is “If not A then not B.”  In general, if a 

statement is true, its inverse may be either true or false.  The inverse is the contrapositive 

of the converse, and hence the converse and inverse are equivalent statements. 

ket a vector in the Hilbert space of quantum states and of the space of vectors resulting from 

operators acting on states.  In wave mechanics, a ket is a function of space.  In matrix 

mechanics, a ket is a vector with discrete components.  The ket space is dual to the bra 

space, which means we can take an inner product of a bra and a ket to get a complex 

number (a scalar). 

logarithmic derivative the ratio of a derivative to the function, i.e.  f ’(x)/f(x) = d/dx (ln f(x)).  This is the 

fractional rate of change with x, with units of [x]–1. 

MKSA meter-kilogram-second-ampere: a subset of the SI system for measuring mechanical and 

electromagnetic phenomena. 

momentum representation  a wave function expressed as a function of momentum, often written 

a(p). 

NIST National Institute of Standards and Technology: the US government body which 

establishes US standards and units of measurement.  Works closely with ISO. 

number current particle number current density, synonym: probability current. 

observation a measurement. 

occupation number the number of particles in a single-particle quantum state, e.g. photons in a given 

mode. 

old quantum mechanics aka “Wilson-Sommerfeld quantization”: the incorrect notion that the classical 

action of a periodic or quasi-periodic system is quantized to multiples of ħ.  The 

hydrogen atom disproves this, but for higher energies, W-S quantization corresponds to 

the WKB approximation. 

open interval between c and d is written (c, d), and means the range of numbers from c to d exclusive of 

c and d. 

orthogonal having a dot product of zero. 

PDF probability distribution function (or probability density function): e.g., pdf(x) = 

probability per unit interval of x, for differentially small intervals, ‘dx’.  Mathematically, 

pdf(x) dx = Pr(value being in the region [x, x+dx]). 

phasor a complex number that represents the amplitude and phase of a sinusoid.  The sinusoid 

frequency is not part of the phasor, and must be known from other sources. 

polar form a complex number expressed as a magnitude and angle, z = (r, θ) = reiθ . 

position representation a wave function expressed as a function of positions in space. 

Pr(event) the probability of ‘event’. 

probability amplitude a complex number whose magnitude-squared is a probability.  Probability 

amplitudes generally add as complex numbers, then the magnitude-squared of the sum is 

a probability. 

QED quod erat demonstrandum.  Latin for “which was to be demonstrated.” 

Quantum Field Theory the physics of relativistic particles and fields (such as EM fields).  Massive 

particles are not conserved, since they may be created or destroyed in interactions. 
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quantum mechanics the physics of nonrelativistic particles and systems at microscopic scales.  

Massive particles are conserved, i.e. they are not created or destroyed. 

quantum state a complex valued function of all space, combined with a spin state, that defines all of the 

properties of a particle; in particular, the state defines the probability amplitudes, and thus 

density functions, for all values of all measurements of all observables of the particle. 

probability current particle number current density, synonym: number current. 

positive definite a matrix or operator which is > 0 for all non-zero operands.  It may be 0 when acting on a 

“zero” operand, such as the zero vector.  This implies that all eigenvalues > 0.  E.g., L2-

hat is a positive definite operator when acting on eigenstates |l m>, when l ≥ 1. 

positive semidefinite a matrix or operator which is ≥ 0 for all non-zero operands.  It may be 0 when 

acting on a non-zero operands.  This implies that all eigenvalues ≥ 0.  E.g., L2-hat is a 

positive semidefinite operator when acting on all eigenstates |l m>, for all l. 

probability amplitude a quantum amplitude (a complex number) whose squared-magnitude is the 

probability of something [Bay p8t]. 

rectangular form a complex number expressed as the sum of a real and imaginary component, z = x + iy 

RHS right hand side. 

signal photon one of the two photons produced by a parametric down-converter.  See also idler photon. 

spatial state the wave-function of a particle or system, which represents all its properties except spin-

related ones. 

speculation A guess, possibly hinted at by evidence, but not well supported.  Every scientific fact and 

theory started as a speculation.  See also “fact,” and “theory.” 

spherical wave a wave which can be written as (eikr/r)f(θ, ).  A spherical wave is not, in general, 

spherically symmetric, as its amplitude and phase may vary with (θ, ). 

spin the intrinsic angular momentum of a particle.  Most particles cannot avoid having spin 

(electrons, protons, neutrons).  It is a property of the particle. 

spin-state the quantum state of a particle’s spin.  It can be represented as a spinor. 

spinor a vector in a 2-dimensional Hilbert space representing a particle’s spin.  It can be written 

as a column of 2 complex numbers.  In relativistic QM, a spinor has 4 components. 

square-integrable a function whose squared magnitude integrates over all space to a finite value:  

 
2

( )dx f x C



 . 

stat-coulomb an esu, or electro-static unit: a unit of charge in the CGS (aka Gaussian) electromagnetic 

unit system. 

static not moving, compare to “stationary.”  A uniformly rotating sphere is stationary, but not 

static. 

stationary properties constant in time.  compare to “static.”  A uniformly rotating sphere is 

stationary, but not static. 

strictly forbidden can never happen at any order, such as one which violates conservation of angular 

momentum.  See “forbidden.” 

superposition a linear combination of vectors, each with a complex coefficient: 1 1 2 2 ...a b a b   . 

symmetry  in general, an invariant property under a given transformation.   

theory  the highest level of scientific achievement: a quantitative, predictive, testable model 

which unifies and relates a body of facts.  A theory becomes accepted science only after 
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being supported by overwhelming evidence.  A theory is not a speculation, e.g. 

Maxwell’s electromagnetic theory.  See also “fact,” and “speculation.” 

thought experiment a way to test the logical consistency of a theory against itself, and other trusted 

theories, by following the theory to some end.  E.g., a thought experiment might compare 

the predictions of QM against those of Special Relativity.  If there is a contradiction, then 

one of the theories must have an error.  (No such contradiction is known.) 

trace the trace of a square matrix is the sum of its diagonal elements. 

TwisterTM the game that ties you up in knots (a stocking feet game). 

unit the base measure of a measurement, e.g., the unit of distance is the meter. 

vectors mathematically, abstract entities that meet the requirements of vector elements of a vector 

space.  In QM, vectors are usually wave-functions or discrete vectors, aka “kets.” 

vector space A mathematical set (often infinite) of a “field” of scalars and a “group” of vectors, with 

algebraic rules that allow solving linear equations.  See text for complete definition. 

wave-function the spatial part of a state: a complex-valued function of space that defines everything 

there is to know about a particle, except spin, including the probabilities of measuring 

every value of every observable property of the particle.  The complex value at each point 

is the probability amplitude. 

wave-number the spatial frequency of a sinusoid, typically in radians per meter. 

wave-vector a vector describing a propagating sinusoid, whose magnitude is the wave-number and 

direction is the direction of propagation. 

welter Weg “which way” in German. 

Wilson-Sommerfeld quantization see “old quantum mechanics”. 

WKB Wentzel-Kramers-Brillouin: an approximation method for solving the time-independent 

Schrödinger equation. 

WLOG without loss of generality. 

x-representation sometimes used as a synonym for “position representation” 
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9.4 Index 

Here are some suggested index keywords.  Some of them might be split into a multi-level term.  For 

example, “complex amplitude” might be listed as-is under “C”, or might be listed as “amplitude, complex” 

under “A”.  Also, many index keywords may appear in slightly different forms in the actual text.  For 

example, “coherence” may appear as-is, or as “coherent,” “coherently,” etc. 

aaa 

aaa 

abelian group 

absorption 

addition of angular momentum 

adjoint operator 

Airy function 

algebraic operator 
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amplitude 

angular momentum 

angular momentum coupling 

annihilation operator (see also lowering operator) 

atomic electron structure 

atoms 

average 

axial symmetry 

axioms 

basis (or bases) 

Bessel function 

bilinear (or conjugate bilinear) 

Bloch sphere 

Bohr model 

Born approximation 

boson 

bound state 

box normalization 

bra 

canonical momentum 

classically allowed region 

Clebsch-Gordon coefficients 

coherence 

coherent state 

coherent superposition 

collapse 

commutator 

completeness operator 

complex amplitude 

complex conjugate 

complex number 

complex plane 

components 

conjugate-transpose 

conservation of probability (conservation of particles) 

consistency 

continuity 

continuous basis 

countably infinite 

coupled basis 

creation operator (see also raising operator) 

cross-section 

Davisson 

de Broglie 

decoherence 

decomposition 

delta-function normalization 

delta function (or Dirac delta function) 

density matrix 

density of states 

differential cross-section 

Dirac notation 

discrete basis 

dot product 

dual (or dual conjugate) 

eigenfunction 
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eigenstate 

eigenvalue 

eigenvector 

elastic scattering 

electric current 

EM radiation 

energy 

energy-conserving delta function 

ensemble 

entanglement 

EPR effect 

Euler's identity 

expectation value (or expected value) 

exponential of an operator 

external fields 

Fermi's Golden Rule 

fermion 

field 

finite basis 

flux 

flux density 

forward scattered wave 

Fourier transform 

g-factor (see also Lande g-factor) 

generalized uncertainty 

generators 

Germer 

Greek letters 

group 

hamiltonian 

Hankel function 

hard target 

Hartree-Fock approximation 

Hartree approximation 

hermitian operator (see also self-adjoint operator) 

hidden variables 

Hilbert space 

Hong-Ou-Mandel interferometer 

Hund's rules 

identical particles 

idler photon 

imaginary 

impulse function 

inelastic scattering 

inflection point 

inner product 

interference 

j-j coupling 

ket 

kinetic energy 

ladder operators 

Lande g-factor (see also g-factor) 

linear operator, definition 

local density 

local energy 

local operator 
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local value 

logarithmic derivative 

lowering operator (see also annihilation operator) 

LS coupling 

Mach-Zehnder interferometer 

magnetic dipole moment 

magnetic force 

magnetic hamiltonian 

magnetic vector potential (see also vector potential) 

magneton 

magnitude 

massless particles 

matrix mechanics 

measurement 

mixed state 

MKSA 

models 

momentum 

momentum basis 

multi-particle state 

negative frequency 

negative kinetic energy 

Newton's 2nd law 

no-cloning theorem 

nonlinear operation 

nonlocal operator 

normalization 

notation 

number basis 

number state 

observable 

observation 

Occam's razor 

occupation number 

operator 

operator algebra 

operator composition 

operator dimensions (or operator units of measure) 

operator identity 

operator, meaning 

optical theorem 

orbital 

orbital angular momentum 

orthonormal 

outer product 

parametric down-converter (PDC) 

parity 

partial coherence 

partial inner product 

partial measurements 

partial waves 

particle current 

particle exchange operator 

particle in a box 

Pauli exclusion principle 

Pauli matrices 
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PDF (probability distribution function) 

phase 

phasor 

photon 

photon wave-function 

polar coordinates 

polar form 

polarization 

polarization vector 

positiion basis 

potential energy 

probability 

probability current 

projection operator 

pure state 

quantum eraser 

quantum weirdness 

quasi-classical state 

radiation 

raising operator (see also creation operator) 

rectangular coordinates (or rectangular form) 

reduction to 1-body 

reflection 

rotation 

rotation matrix 

scalar 

scalar multiplication 

scattering 

scattering, 1D 

scattering, 3D 

Schrodinger equation 

Schrodinger Equation, time-dependent 

Schrodinger Equation, time-independent 

self-adjoint operator (see also hermitian) 

semi-classical 

shell 

short range potential 

signal photon 

simple harmonic oscillator (SHO) 

single-photon state 

Slater determinant 

small k approximation 

soft target 

spatial frequency 

spatial state 

Special Relativity 

spectral density 

spectral line names 

spectroscopic notation 

spherical harmonics 

spherical polar coordinates 

spherical symmetry 

spherical waves 

spin 

spin-orbit interaction 

spin-state 
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spin 1/2 

spin angular momentum 

spinor 

stationary state 

stationary vs. static 

Stern-Gerlach device 

subshell 

superposition 

target 

temporal frequency 

tensor product 

tensor product space 

time evolution 

total cross-section 

trace 

transformation matrix 

transmission 

tunneling 

turning point 

uncertainty 

uncountably infinite 

uncoupled basis 

unitary operator 

units 

units of measure 

vacuum state 

variable kets and bras 

vector 

vector operator 

vector potential (see also magnetic vector potential) 

vector space 

visibility 

Von Neumann series 

wave-function 

wave-function normalization 

wave-vector 

wave equation 

weighted average 

Wilson-Sommerfeld quantization 

WKB (Wentzel-Kramers-Brillouin) 

zero vector 
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