
Microcontrollers 

A Simple Introduction 
A Work In Progress.  See physics.ucsd.edu/~emichels for the latest versions of the Funky Series. 

 
Eric L. Michelsen 

 



a

(a,)

(a+da,)

(a, +d)
(a+da,+d)

constant θ

constant a

dr = da a+d ˆ ˆ

dr

 

|z+> 1

|z-> 
real

|z->
imaginary

 |x+>


|z->

|x-> 

|y+>


|y->

0.9
0.8

0.2
0.1

0.7

0.3
0.4

0.6
0.5 0.5

0
|z->

|z+>
|x+>  |x->

|y->


|y+>



 |z->

|z-> 
real

|z-> imaginary

|z+>

|z->

 

Tijxvx

Tijyvy

Tijzvz

+ dR

 
 

The above graphics have nothing to do with microcontrollers. 

http://physics.ucsd.edu/~emichels


physics.ucsd.edu/~emichels Funky Pending emichels at physics.ucsd.edu 

10/1/2009  20:25 Copyright 2002 - 2009 Eric L. Michelsen.  All rights reserved. 2 of 10 

2006 values from NIST.  For more physical constants, see http://physics.nist.gov/cuu/Constants/ . 

 

Speed of light in vacuum   c = 299 792 458 m s–1  (exact) 

Gravitational constant   G = 6.674 28(67) x 10–11 m3 kg–1 s–2   
 Relative standard uncertainty ±1.0 x 10–4 

Boltzmann constant   k = 1.380 6504(24) x 10–23 J K–1 

Stefan-Boltzmann constant   σ = 5.670 400(40) x 10–8 W m–2 K–4  
 Relative standard uncertainty ±7.0 x 10–6  

Avogadro constant    NA, L = 6.022 141 79(30) x 1023 mol–1  

 Relative standard uncertainty  ±5.0 x 10–8 

Molar gas constant   R = 8.314 472(15) J mol-1 K-1 

calorie     4.184 J (exact) 

Electron mass    me = 9.109 382 15(45) x 10–31 kg 

Proton mass    mp = 1.672 621 637(83) x 10–27 kg 

Proton/electron mass ratio   mp/me = 1836.152 672 47(80) 

Atomic mass unit (amu)   1.660 538 86  10–27 kg 

Elementary charge   e = 1.602 176 487(40) x 10–19 C 

Electron g-factor    ge = –2.002 319 304 3622(15) 

Proton g-factor    gp = 5.585 694 713(46) 

Neutron g-factor    gN = –3.826 085 45(90) 

Muon mass    mμ = 1.883 531 30(11) x 10–28 kg 

Inverse fine structure constant  α–1 = 137.035 999 679(94) 

Planck constant    h = 6.626 068 96(33) x 10–34 J s 

Planck constant over 2π   ħ = 1.054 571 628(53) x 10–34 J s 

Bohr radius    a0 = 0.529 177 208 59(36) x 10–10 m 

Bohr magneton    μB = 927.400 915(23) x 10–26 J T–1 

 

Other values: 

1 inch ≡ 0.0254 m (exact) 

1 drop ≡ .05 ml (metric system, exact.  Other definitions exist.) 

1 eV/particle = 96.472 kJ/mole 

kiloton ≡ 4.184 x 1012 J = 1 Teracalorie 

bar ≡ 100,000 N/m2 

atm ≡ 101,325 N/m2 = 1.013 25 bar 

torr ≡ 1/760 atm ≈ 133.322 N/m2  

 

http://physics.nist.gov/cuu/Constants/


physics.ucsd.edu/~emichels Funky Pending emichels at physics.ucsd.edu 

10/1/2009  20:25 Copyright 2002 - 2009 Eric L. Michelsen.  All rights reserved. 3 of 10 

Contents 
Working Introduction to Microcontrollers ............................................................................................ 4 

Binary Information ............................................................................................................................... 4 
Memory................................................................................................................................................ 5 
Microprocessors ................................................................................................................................... 5 
Assembly Language.............................................................................................................................. 7 

Prototype Board Construction ............................................................................................................... 9 
 



physics.ucsd.edu/~emichels Funky Pending emichels at physics.ucsd.edu 

10/1/2009  20:25 Copyright 2002 - 2009 Eric L. Michelsen.  All rights reserved. 4 of 10 

Working Introduction to Microcontrollers  
This brief introduction is intended for students with little or no programming experience, and no knowledge 
of microprocessors/microcontrollers.  It is intended to give you a basic working knowledge of 
microcontrollers so you can write a real program as quickly as possible.  You will likely want to go on to 
more advanced texts for more information.  We cover these topics: 

1. Binary information 

2. Memory 

3. Microprocessors and microcontrollers 

4. Assembly language 

Binary Information 
Almost all computers today store information in binary: as a series of digits that are either 0 or 1.  A single 
0 or 1 is called a bit., short for Binary digIT.  Several bits are usually grouped together to form a byte, 
which is almost always 8 bits.  For example 

0 1 0 0 0 0 0 1 28 = 256 possible bit 
patterns in a byte

As a number: 65 
As a character: the letter ‘A’
As a computer instruction: ??

 
The meaning of the bit pattern in a byte depends on how it’s used: it could be a number, or a printable 
character, or a machine instruction, or anything you want it to mean.  As a number, there is a standard way 
to interpret the bits: as a base-2 number: 

0 1 0 0 0 0 0 1

As a number: 1x20 + 1x26 = 1 + 64 = 65

128 64 32 16 8 4 2 1
27 26 25 24 23 22 21 20

 
As a number in this form, a byte can hold a value from 0 to 255.  Larger numbers, and fractions, require 
more complicated data structures.  Negative integers use 2’s complement; see Funky Mathematical Physics 
Concepts for a description of 2’s complement numbers (physics.ucsd.edu/~emichels). 

Binary bits are tedious to write, because they’re so long.  If they represent numbers, we usually write them 
in decimal.  If they represent other things, we might write them in hexadecimal, which is base-16.  
Hexadecimal is a short-hand for bit patterns: we can write any pattern of 4 bits as a single hexadecimal 
digit.  The hexadecimal digits are 0-9 and A-F.  Their bit patterns are: 

0   0000 
1   0001 
2   0010 
3   0011 

4   0100 
5   0101 
6   0110 
7   0111 

8   1000 
9   1001 
A   1010 
B   1011 

C   1100 
D   1101 
E   1110 
F   1111 

Hence, we can write the number 0100 0001 as 41h, where the ‘h’ denotes hexadecimal.  The byte pattern 
1010 1111 = AFh.  Note that hexadecimal does not mean the bit pattern represents a number (though it 
might).  “Hex” (as it’s called) is just a shorthand for bit patterns.  Some authors use lower case letters for 
the digits A - F, but it doesn’t matter which case you use.  A single hex digit, i.e. a group of 4 bits, is 
sometimes called a nybble (‘cuz it’s like a small byte.  Get it?)  Also, hex is sometimes written with a “0x” 
prefix, e.g. 0xABCD = ABCDh.  Single digit numbers are the same in hex or decimal, e.g. 7h = 7. 

http://physics.ucsd.edu/~emichels


physics.ucsd.edu/~emichels Funky Pending emichels at physics.ucsd.edu 

10/1/2009  20:25 Copyright 2002 - 2009 Eric L. Michelsen.  All rights reserved. 5 of 10 

If a byte represents a character, there is a standard representation of all the common characters, called 
ASCII (American Standard Code for Information Interchange), pronounced ass’-kee.  You can look up the 
details, but examples are ‘A’ = 41h, ‘B’ = 42h, ... ‘Z’ = 5Ah 

Memory 
Computers store data in memory, which is some device for storing and retrieving bit patterns.  We are 
concerned here only with addressable memory: a sequence of locations, each of which can store some 
number of bits.  For the 18F4520 family, the addressable memory stores bytes, or 8-bits, in each location.  
Here’s an example of an addressable memory holding data (it’s contents).  On the left (in black) is decimal 
addresses and binary contents.  On the right (in blue) is the same data displayed as hex addresses and 
contents: 

0100 00010
1
2
:

4095

0100 0010
0100 0011

0101 1010

41h
42h
43h

:
5Ah

0h
1h
2h
:

FFFh

↔
FFFh = 15x160 + 15x161 + 15x162 = 4095

Address Contents Address Contents

 
Each location is identified by a number, or address, starting from 0, and in this example, going to 4095.  
This memory holds 4096 bytes of information.   

From now on, we always use hex instead of binary.   

Strictly speaking, addressable memory should be called RAM (Random Access Memory), but the term 
“RAM” has been distorted to mean a specific kind of addressable memory.  Today, RAM means memory 
that the computer can write to and read from very quickly.  It is the fastest form of memory for both writes 
and reads. 

[Sometimes, memory holds chunks of data larger than a byte.  These are called words (though “mouthful” would 
better fit the analogy).  A word might be 16-bits, 32-bits, or other sizes.  The word-size depends on the computer 
type.  We don’t care about words right now.] 

Microprocessors 
Computers are machines which execute a stored sequence of instructions (a program) to read in data, 
store it, process it, and write it out.  A microprocessor is the heart of a computer on a single-chip 
(integrated circuit).  A microcontroller is a simple microprocessor, coupled with a bunch of handy add-
ons, on a single chip.  The add-ons are things like memories, Analog-to-Digital converters (ADC), Digital-
to-Analog converters (DAC), pulse-width modulators (PWM), timers, counters, UARTs (don’t worry about 
it), etc. 

Microcontrollers include addressable memory to store the instructions they execute (the program), and 
memory to store the data on which the instructions operate.  Let us invent a simple microcontroller, named 
“Mike”, which illustrates the basic principles of a real microcontroller.  In Mike’s case, both program and 
data are stored in RAM, which is easily written and read. 

Besides the addressable memory, all computers include a small number of special memories which hold 
only 1 byte, or a few bytes.  Each such “tiny” memory is called a register.   

The machine instructions are encoded as bit-patterns, i.e. as bytes.  For Mike, each instruction is a single 
byte.  Different bit patterns represent different instructions.  Mike has a 16-byte RAM for program and 
data.  Note that some memory locations contain instructions telling Mike what to do, and some locations 
contain data, on which Mike will operate.  Mike also has 2 special purpose registers, which we will call the 
“program counter” or “PC”, and “working register” or “WREG” (both defined shortly).  We define 4 
instructions, each with an identifying number:  



physics.ucsd.edu/~emichels Funky Pending emichels at physics.ucsd.edu 

10/1/2009  20:25 Copyright 2002 - 2009 Eric L. Michelsen.  All rights reserved. 6 of 10 

 (0) ‘stop’, (1) ‘copy-to-wreg’, (2) ‘copy-to-ram’, (3) ‘add-to-wreg’.   

We now write a program to add the contents of memory locations 8 and 9, and store the result in location 
10 (Ah in hex), then add the contents of locations 11 (Bh) and 12 (Ch), and store the result in location 13 
(Dh).  To start, our memory for the program and data might look like this (all numbers in hex): 

 Address Contents Meaning  
PC = 0 0 18 copy-to-wreg  
(All 1 39 add-to-wreg  
values 2 2A copy-to-ram  
hex) 3 1B copy-to-wreg Instructions 
 4 3C add-to-wreg  
 5 2D copy-to-ram  
 6 00 stop  
 7 ?? not used  
 8 11 data  
 9 22 data  
 A ?? don’t care Data 
 B 45 data  
 C 67 data  
 D ?? don’t care  
 E ?? not used  
 F ?? not used  

We explain the “contents” shortly. 

Recall that the computer executes instructions in sequence, one after the other.  The computer uses to the 
PC to keep track of which instruction it is executing.  Since Mike has only 16 locations of RAM, and 4 bits 
can represent any number from 0 to 15, Mike’s PC is a 4-bit register, which holds the address of the next 
instruction to execute.  When Mike completes execution of an instructions, it adds 1 to the PC, fetches the 
next instruction pointed to by the PC, and executes the new instruction. 

When we reset Mike, it sets the PC to the number 0, and starts executing.  Therefore, we start our program 
at address 0.  The first nybble of each instruction is the instruction type, as given above: 0 = stop, etc.  The 
2nd nybble of each instruction tells Mike what memory location to use for the instruction (if any). 

Most computers cannot directly add two numbers in memory.  Instead, the computers define a register (e.g., 
a single-byte memory such as WREG) in which all operations take place.  To add two numbers that are in 
memory, we must first copy one number from RAM to the WREG, then add the 2nd number to WREG, then 
copy WREG (now holding the sum) to RAM. 

Let us now become one with Mike, and execute our program from the memory contents given above: 

1. On reset, Mike sets the PC = 0 

2. Mike executes the instruction at location 0: the first nybble is 1, which tells Mike to copy from 
RAM to WREG.  The 2nd nybble is 8, which tells Mike to copy RAM location 8 to WREG.  Now 
WREG = 11h, because RAM location 8 has the value 11h. 

3. Mike adds 1 to PC, so PC = 1.  Mike executes the instruction at location 1: the first nybble is 3, 
which tells Mike to add a value from RAM to WREG.  The 2nd nybble is 9, so Mike adds the 
contents of RAM location 9 to WREG.  Now WREG = 33h (which is 11h + 22h). 

4. Mike increments PC to 2, and executes that instruction: the first nybble is 2, which means copy 
WREG to RAM.  The 2nd nybble is Ah, so Mike copies WREG to RAM location Ah.  Now RAM 
location Ah also contains 33h. 

5. Mike increments PC to 3, and executes: the instruction is 1Bh, which means copy RAM location 
Bh to WREG.  Now WREG = 45h. 

6. Mike increments PC to 4: the instruction is 3Ch, which means add RAM location Ch to WREG.  
Now WREG = ACh (which is 45h + 67h). 



physics.ucsd.edu/~emichels Funky Pending emichels at physics.ucsd.edu 

10/1/2009  20:25 Copyright 2002 - 2009 Eric L. Michelsen.  All rights reserved. 7 of 10 

7. Mike increments PC to 5: the instruction is 2Dh, which means copy WREG to RAM location Dh.  
Now RAM location Dh = ACh. 

8. Mike increments PC to 6: the instruction is 00h, which means “stop”.  Mike stops. 

In a real computer, a single instruction could be 1 byte, 2 bytes, 3-bytes, and sometimes even more.  The 
computer knows how long an instruction is from the bit patterns which compose it. 

Assembly Language 
Programming Mike in binary (or even hex) is tedious, error prone, and hard to read.  Mike has simple, well-
defined instructions.  Wouldn’t it be nice if we could write our program’s instructions in a human-readable 
form?  An assembler is a program you use on your PC that converts human-readable instructions into 
machine-readable instructions that Mike (or some other computer) can execute.  Every computer type (or 
family) must have its own assembler, because the assembler must know the details of the computer 
instructions, memory, registers, etc. 

The first step in making our Mike program readable is to use short mnemonics (human-memory aids) for 
the instructions.  Assembler instructions are often written in capitals.  So our assembler instructions might 
be STOP, CPRW (copy RAM to WREG), CPWR (copy WREG to RAM), and ADD.  Then our program 
could be written: 
CPRW 8  [‘CPRW’ tells Mike what to do, ‘8’ is the memory address to do it on.] 
ADD 9  [This ADD assembles into the instruction 39h, as above.] 
CPWR Ah 
CPRW Bh 
ADD Ch 
CPWR Dh 
STOP 

This improves our instructions, but doesn’t help define our data.  The assembler provides a directive (also 
a mnemonic) to define data.  The directive is DATA.  Also, the assembler allows us to put comments on 
each line, after the “operands”, or memory locations.  So we could write: 
CPRW 8 base price 
ADD 9 add tax 
CPWR Ah total cost 
CPRW Bh mass of elevator 
ADD Ch mass of person 
CPWR Dh total mass to lift 
STOP 
DATA 00 not used 
DATA 11h base price 
DATA 22h tax 
DATA 00 total cost 
DATA 45h mass of elevator 
DATA 67h mass of person 
END  end of program 

We snuck in the END directive, which tells the assembler that the program is done.  The END directive is 
very different from the STOP instruction, which causes Mike to halt when it executes.  Notice that putting 
each DATA byte separately is tedious, so the assembler lets us combine them, by separating data values 
with a comma: 
DATA 00,11h,22h,00  not used, base price, tax, total cost 
DATA 45h,67h  mass of elevator, mass of person 

We don’t need to define location Dh, because it will be overwritten by the program when it executes. 

This is already a big improvement, but having to write the RAM addresses as numbers on all our 
instructions is very bad: it’s tedious, error prone, and makes changing your program very difficult.  Of 
course, the assembler helps with this, too.  The assembler allows you to give “names” to RAM locations 
(and other things).  Then you refer to the RAM locations by name, rather than by number.  The assembler 
converts the names to numbers for you when it “assembles” your source code into machine instructions.  
You can code a label at the beginning of most any assembly line.   



physics.ucsd.edu/~emichels Funky Pending emichels at physics.ucsd.edu 

10/1/2009  20:25 Copyright 2002 - 2009 Eric L. Michelsen.  All rights reserved. 8 of 10 

The assembler assigns the address of instructions or data to the label beginning the line 
of code. 

In addition, entire lines starting with “;” are comments.  So we have: 
;This program computes the total cost of a pencil, and the total mass of 
; a graduate student in an elevator. 
;Mike resets to 0, so this program must start there. 
  CPRW baseprice base price 
  ADD tax  add tax 
  CPWR total_cost total cost 
  CPRW m_elev  mass of elevator 
  ADD m_person mass of person 
  CPWR m_total total mass to lift 
  STOP 
  DATA 00  don’t care 
baseprice DATA 11h  pencil base price 
tax  DATA 22h  tax 
total_cost DATA 00  pencil total cost 
m_elev DATA 45h  mass of elevator 
m_person DATA 67h  mass of person 
m_total DATA 00  don’t care 
  END 

The assembler assigns the value 8 to ‘basepr’, because ‘basepr’ is at address 8 in memory.  Similarly, ‘tax’ 
= 9, ‘total_cost’ = Ah, ‘m_elev’ = Bh, ‘m_person’ = Ch, and ‘m_total’ = Dh.  This program assembles into 
the same program that we originally wrote in hex, but is much easier to read, understand, and modify. 

Notice that we indent our code so that all the instructions and directives line up, as do the comments. 

You might wonder how the assembler can know the address of a label, such as ‘baseprice’ above, before 
the label appears in the code.  It can’t, and so many assemblers are “two-pass assemblers”: they read the 
code twice.  On the first pass, they determine the values of all the labels.  On the 2nd pass, they generate the 
machine instructions. 

TBS: 18F4520 information. 



physics.ucsd.edu/~emichels Funky Pending emichels at physics.ucsd.edu 

10/1/2009  20:25 Copyright 2002 - 2009 Eric L. Michelsen.  All rights reserved. 9 of 10 

Prototype Board Construction 
Prototype boards are commonly called “proto-boards” or “breadboards”. 

Prototype board 
wiring“channel”

gap

gap

Horizontal 
nodes

Horizontal 
nodes

 
The horizontal runs at the top and bottom are usually used for power and ground.  The vertical runs, above 
and below the “channel”, are used for general interconnect.  Note that for all but the smallest breadboards, 
there is a gap in each of the horizontal runs, in the middle of the board.  Thus there are 8 nodes of 
horizontal connection.  It is common to jumper across the gap, thus making the entire horizontal run 
electrically one node. 



physics.ucsd.edu/~emichels Funky Pending emichels at physics.ucsd.edu 

10/1/2009  20:25 Copyright 2002 - 2009 Eric L. Michelsen.  All rights reserved. 10 of 10 

Glossary 
address a number which identifies a memory location 

assembler  a program that converts human-readable instructions into machine-readable instructions 
that a computer can execute.   

computer a machine which execute a stored sequence of instructions (a program) to read in data, 
store it, process it, and write it out.   

memory a device for storing and retrieving bit patterns 

microprocessor  the heart of a computer on a single-chip (integrated circuit). 

microcontroller  a simple microprocessor, coupled with a bunch of handy add-ons, on a single chip.  
Microcontrollers include addressable memory to store the instructions they execute (the 
program), and memory to store the data on which the instructions operate.   

PC a register which holds the address of the next instruction to be executed 

program a sequence of instructions for a computer. 

register a special memory which holds only 1 byte, or a few bytes.   

 


	Working Introduction to Microcontrollers
	Binary Information
	Memory
	Microprocessors
	Assembly Language

	Prototype Board Construction
	Glossary

