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2006 values from NIST.  For more physical constants, see http://physics.nist.gov/cuu/Constants/ . 

 

Speed of light in vacuum   c = 299 792 458 m s–1  (exact) 

Gravitational constant   G = 6.674 28(67) x 10–11 m3 kg–1 s–2   

 Relative standard uncertainty    ±1.0 x 10–4 

Boltzmann constant   k = 1.380 6504(24) x 10–23 J K–1 

Stefan-Boltzmann constant   σ = 5.670 400(40) x 10–8 W m–2 K–4  

 Relative standard uncertainty ±7.0 x 10–6  

Avogadro constant    NA, L = 6.022 141 79(30) x 1023 mol–1  

 Relative standard uncertainty  ±5.0 x 10–8 

Molar gas constant   R = 8.314 472(15) J mol-1 K-1 

calorie     4.184 J (exact) 

Electron mass    me = 9.109 382 15(45) x 10–31 kg 

Proton mass    mp = 1.672 621 637(83) x 10–27 kg 

Proton/electron mass ratio   mp/me = 1836.152 672 47(80) 

Elementary charge   e = 1.602 176 487(40) x 10–19 C 

Electron g-factor    ge = –2.002 319 304 3622(15) 

Proton g-factor    gp = 5.585 694 713(46) 

Neutron g-factor    gN = –3.826 085 45(90) 

Muon mass    mμ = 1.883 531 30(11) x 10–28 kg 

Inverse fine structure constant  α–1 = 137.035 999 679(94) 

Planck constant    h = 6.626 068 96(33) x 10–34 J s 

Planck constant over 2π   ħ = 1.054 571 628(53) x 10–34 J s 

Bohr radius    a0 = 0.529 177 208 59(36) x 10–10 m 

Bohr magneton    μB = 927.400 915(23) x 10–26 J T–1 

 

Other values: 

1 inch ≡ 0.0254 m (exact) 

https://elmichelsen.physics.ucsd.edu/
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1 Introduction 

Why Funky? 

The purpose of the “Funky” series of documents is to help develop an accurate physical, conceptual, 

geometric, and pictorial understanding of important physics topics.  We focus on areas that don’t seem to 

be covered well in most texts.  The Funky series attempts to clarify those neglected concepts, and others 

that seem likely to be challenging and unexpected (funky?).  The Funky documents are intended for serious 

students of physics; they are not “popularizations” or oversimplifications.  

Physics includes math, and we’re not shy about it, but we also don’t hide behind it.   

Without a conceptual understanding, math is gibberish. 

This work is one of several aimed at graduate and advanced-undergraduate physics students.  Go to 

http://physics.ucsd.edu/~emichels for the latest versions of the Funky Series, and for contact information.  

We’re looking for feedback, so please let us know what you think. 

How to Use This Document 

 This work is not a text book. 

There are plenty of those, and they cover most of the topics quite well.  This work is meant to be used 

with a standard text, to help emphasize those things that are most confusing for new students.  When 

standard presentations don’t make sense, come here.   

You should read all of this introduction to familiarize yourself with the notation and contents.  After 

that, this work is meant to be read in the order that most suits you.  Each section stands largely alone, 

though the sections are ordered logically.  Simpler material generally appears before more advanced topics.  

You may read it from beginning to end, or skip around to whatever topic is most interesting.  The “Shorts” 

chapter is a diverse set of very short topics, meant for quick reading. 

If you don’t understand something, read it again once, then keep reading.   

Don’t get stuck on one thing.  Often, the following discussion will clarify things. 

The index is not yet developed, so go to the web page on the front cover, and text-search in this 

document. 

Notation 

See the glossary for a list of common terms. 

Notations used throughout the Funky Series: 

Important points are highlighted in blue boxes. 

Tips to help remember or work a problem are sometimes given in green boxes. 

Common misconceptions are sometimes written in dark red dashed-line boxes. 

TBS stands for “To Be Supplied,” i.e., I’m working on it.  Let me know if you want it now. 

?? For this work in progress, double question marks indicates areas that I hope to further 

expand in the final work.  Reviewers: please comment especially on these areas, and 

others that may need more expansion. 

[Square brackets] in text indicate asides: interesting points that can be skipped without loss of 

continuity.  They are included to help make connections with other areas of physics. 

https://elmichelsen.physics.ucsd.edu/
http://physics.ucsd.edu/~emichels
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[Asides may also be shown in smaller font and narrowed margins.  Notes to myself may also be included as 

asides.] 

Formulas:  When we list a function’s argument as qi, we mean there are n arguments, q1 through qn. 

We write the integral over the entire domain as a subscript “∞”, for any number of dimensions: 

31-D: 3-D:dx d x
    

Evaluation between limits: we use the notation [function]a
b to denote the evaluation of the function 

between a and b, i.e.,  

[f(x)]a
b  ≡  f(b) –  f(a). For example,  ∫0

1 3x2 dx = [x3]0
1 = 13 - 03 = 1 

We write the probability of an event as “Pr(event).” 

In my word processor, I can’t easily make fractions for derivatives, so I sometimes use the standard 

notation d/dx and ∂/∂x. 

Vector variables:  In some cases, to emphasize that a variable is a vector, it is written in bold; e.g., 

V(r) is a scalar function of the vector, r.  E(r) is a vector function of the vector, r. 

Column vectors: Since it takes a lot of room to write column vectors, but it is often important to 

distinguish between column and row vectors.  I sometimes save vertical space by using the fact that a 

column vector is the transpose of a row vector: 

( ), , ,
T

a

b
a b c d

c

d

 
 
  =
 
 
 
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Figure 1.1  Timeline of important scientists. 

The Funky Series 

The purpose of the “Funky” series of documents is to help develop an accurate physical, conceptual, 

geometric, and pictorial understanding of important physics topics.  We focus on areas that don’t seem to 

be covered well in any text we’ve seen.  The Funky documents are intended for serious students of physics.  

They are not “popularizations” or oversimplifications, though they try to start simply, and build to more 

advanced topics.  Physics includes math, and we’re not shy about it, but we also don’t hide behind it.   

https://elmichelsen.physics.ucsd.edu/
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Without a conceptual understanding, math is gibberish. 

This work is one of several aimed at graduate and advanced-undergraduate physics students.  I have 

found many topics are consistently neglected in most common texts.  This work attempts to fill those gaps.  

It is not a text in itself.  You must use some other text for many standard presentations.   

The “Funky” documents focus on what is glossed over in most texts.  They seek to fill in the gaps.  

They are intended to be used with your favorite text on the subject.  We include many references to existing 

texts for more information. 

Thank You 

I owe a big thank you to many professors at both SDSU and UCSD, for their generosity even when I 

wasn’t a real student:  Dr. Herbert Shore, Dr. Peter Salamon, Dr. George Fuller, Dr. Andrew Cooksy, Dr. 

Arlette Baljon, Dr. Tom O’Neil, Dr. Terry Hwa, and others.  Thanks also to Yaniv Rosen and Jason 

Leonard for their many insightful comments and suggestions. 

The International System of Units (SI) 

The abbreviation SI is from the French: “Le Système international d'unités (SI)”, which means “The 

International System of Units.”  This is the basis for all modern science and engineering.  To understand 

some of these constants, you must be familiar with the basic physics involving them.  The SI system 

defines seven units of measure, mostly using repeatable methods reproducible in a sophisticated laboratory.  

The exception is the kilogram, which requires a single universal standard kilogram prototype be preserved; 

it is in France. 

[From http://physics.nist.gov/cuu/Units/current.html, with my added notes.]  The following table of 

definitions of the 7 SI base units is taken from NIST Special Publication 330 (SP 330), The International 

System of Units (SI).  

 

Unit of length   meter3 http://physics.nist.gov/cuu/Units/meter.htmlThe meter is the length of the 

path travelled [Brit.] by light in vacuum during a time interval of 1/299 792 

458 of a second.  

Unit of mass  kilogram   http://physics.nist.gov/cuu/Units/kilogram.htmlThe kilogram is the unit of 

mass; it is equal to the mass of the international prototype of the kilogram.  

Unit of time  second1 http://physics.nist.gov/cuu/Units/second.htmlThe second is the duration of 9 

192 631 770 periods of the radiation corresponding to the transition 

between the two hyperfine levels of the ground state of the cesium 133 

atom.  

Unit of  

electric current   
ampere2 http://physics.nist.gov/cuu/Units/ampere.htmlThe ampere is that constant 

current which, if maintained in two straight parallel conductors of infinite 

length, of negligible circular cross-section, and placed 1 meter apart in 

vacuum, would produce between these conductors a force equal to 2 x 10-7 

newton per meter of length.  

Unit of 

thermodynamic   

temperature 

kelvin http://physics.nist.gov/cuu/Units/kelvin.htmlThe kelvin, unit of 

thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic 

temperature of the triple point of water.  

https://elmichelsen.physics.ucsd.edu/
http://physics.nist.gov/cuu/Units/current.html
http://physics.nist.gov/cuu/Units/meter.html
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Unit of 

amount of 

substance 

mole http://physics.nist.gov/cuu/Units/mole.html1. The mole is the amount of 

substance of a system which contains as many elementary entities as there 

are atoms in 0.012 kilogram of carbon 12; its symbol is “mol.”  

2. When the mole is used, the elementary entities must be specified and may 

be atoms, molecules, ions, electrons, other particles, or specified groups of 

such particles.  

Unit of 

luminous 

intensity 

candela http://physics.nist.gov/cuu/Units/candela.htmlThe candela is the luminous 

intensity, in a given direction, of a source that emits monochromatic 

radiation of frequency 540 x 1012 hertz and that has a radiant intensity in 

that direction of 1/683 watt per steradian. 

My added notes: 

1. As of January, 2002, NIST's latest primary cesium standard was capable of keeping time to about 

30 nanoseconds per year (1·10–15). 

2. The effect of the definition of “ampere” is to fix the magnetic constant (permeability of vacuum) 

at exactly μ0 = 4   10–7 H · m-1. 

3. This defines the speed of light as exactly 299 792 458 m/s. 

Possible Future Funky Mechanics Concepts 

• Distinction between “conserved” and “invariant,” as in “Lorentz invariant.” 

https://elmichelsen.physics.ucsd.edu/
http://physics.nist.gov/cuu/Units/mole.html
http://physics.nist.gov/cuu/Units/candela.html
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2 Symmetries, Coordinates, Basic Laws 

Elastic Collisions 

This section illustrates how understanding physical principles simplifies a problem, and provides 

broadly applicable results.  We follow these steps: 

1. Pose a problem of general interest 

2. Transform it to a simpler problem, using a physical principle 

3. Solve the simpler problem 

4. Generalize the result to all nonrelativistic frames 

5. Generalize to 2D collisions in the COM frame 

6. Generalize to relativistic collisions 

1. A problem of general interest:  Consider a 1-dimensional (1D) elastic collision, i.e. one in which 

kinetic energy is conserved.  Recall that all processes conserve total energy, but elastic processes conserve 

kinetic energy.  Let a heavy blue mass collide with a lighter red mass.  Suppose they both move to the right, 

but the blue moves faster.  Eventually it collides with the red.  It might look like Figure 2.1. 

vbi

mb

vri

mr
smash

vbf

mb

vrf

mr

initial collision final
 

Figure 2.1  Elastic collision where the blue particle collides with the red particle from behind. 

What can we say about the initial and final velocities?  From physical symmetries, we can quickly find 

an important result: the closure rate before the collision equals separation rate after the collision.  To see 

this, we use the symmetry: 

Physics is the same for all observers. 

We define an observer’s frame of reference as the observer’s state of motion and the coordinate 

system fixed to her.  So an “observer” is the same thing as a “frame of reference.”  All observers have the 

same laws of physics.  In fancy talk, we could say “Physics is invariant over all frames of reference.”  

There is a bit of a fuss about inertial frames vs. non-inertial frames, and we recognize that: 

Physics is often simpler in inertial frames of reference. 

2. Transform to a simpler problem:  Now let’s use the symmetry of invariance over frames of 

reference to simplify the above collision, and determine the final velocities.  It’s often simplest to eliminate 

as much motion as possible, so we choose the center of mass frame (COM), i.e. the observer moves at the 

velocity of the COM.  Therefore, to the observer, the center of mass does not move.  Since total momentum 

equals (total mass) times (COM velocity), total momentum in the COM frame is always zero: 

( )( ) 0 (0,0,0) the zero vectortotal total COM totalM M where= = =  =v vp v 0 0 . 

In the COM frame, our collision looks like Figure 2.2: 

https://elmichelsen.physics.ucsd.edu/
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Figure 2.2  Elastic collision viewed in COM frame. 

The red speed in the COM frame is higher than the blue speed, because red and blue have the same 

magnitude of momentum, but in opposite directions.   

3. Solve the simpler problem:  We see immediately that for total momentum to be zero, blue and red 

must move in opposite directions, both before and after the collision.  Furthermore, the magnitudes of their 

momenta must be equal.  This is our first constraint on the final velocities.  [Note that we don’t need to 

know it, but nonrelativistically, each particle’s speed must be inversely proportional to its mass.]  Our 

second constraint is to conserve kinetic energy (elastic collision).  So we have two unknowns (final 

velocities), and two constraints, therefore, there is a unique solution.  The initial velocities satisfy these 

constraints: that’s how we identified the constraints.  Since kinetic energy depends only on the magnitude 

of velocity, but not its sign, reversing the two velocities preserves the two particles’ total momentum (zero), 

and their kinetic energies, and therefore satisfies both constraints.  It is the unique answer (derived with no 

algebra). 

We notice that in the COM frame, the closure speed (before the collision) equals the separation speed 

(after the collision). 

4. Generalize the result:  As observer, we now move to an arbitrary inertial frame, not the COM 

frame.  This involves “boosting” our velocity.   

vbi

mb

vri

mr

smash

mb

vrf
mr

initial collision final

vbf

COM 

motion

COM 

motion

vcom vcom

 

Figure 2.3  Elastic collision viewed in a boosted frame. 

In the new frame Figure 2.3, both blue and red particles have different velocities.  The new velocities are 

the COM velocities plus some constant [the negative of our boost velocity].  But the difference between the 

blue and red velocities is the same in any frame: the rate of closure is the same for all observers.  E.g., if we 

timed how long it takes for them to collide, we get the same time in any (nonrelativistic) frame.  Similarly, 

the rate of separation is the same for all observers.  So we see: 

Using a simple physical principle, we arrive at a universal result. 

To wit: for an elastic collision, the rate of closure before the collision equals the rate of separation after the 

collision, for all observers.  Notice that the collision is 1D in the COM frame, but is 2D in our boosted 

frame. 

Of course, using algebra, we can get the 1D result in any frame collinear with the COM motion by 

starting with conservation of momentum, and conservation of kinetic energy: 

https://elmichelsen.physics.ucsd.edu/
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( ) ( )

( ) ( )

( )

2 2 2 2 2 2 2 21 1 1 1

2 2 2 2

b bi r ri b bf r rf b bi bf r rf ri

b bi r ri b bf r rf b bi bf r rf ri

b bi bf

m v m v m v m v m v v m v v

m v m v m v m v m v v m v v

m v v

+ = +  − = −

+ = +  − = −

− ( ) ( )bi bf r rf riv v m v v+ = − ( )rf ri

bi bf rf ri

bi ri rf bf

v v

v v v v

v v v v

+

+ = +

− = −

 

I find this obtuse, and not very enlightening.  We can make it more insightful by labeling the math: 

( ) ( )

( ) ( )2 2 22 22221 1 1

22 2

1

2

momentum lost by momentum gained

r ri r rf r rf ri

r ri r rf r

blue by red

energy lost by energy gained
blue by

b bi b

rf

bf b bi bf

b bi b

r

bf b bi bf ri

m v m v m v v

m v m v m v

m v m v m v v

m v m v m v vv

+ = +  =

+ = +  =

−

− −

−

( )Factoring:

e

b bi

d

bfm v v− ( ) ( )r rf ribi bf m vv vv = −+ ( )

Canceling:

Rearranging:

initial closure final separation
rat

bi bf

bi b

rf ri

rf

e rat

ri

fri

e

rf

v v

v v

v v

vv vv

=

=

+

−

++

−

 

Better, but this is still nowhere near as simple or as general as the result using physical and mathematical 

principles, but no algebra. 

5.  Generalize to 2D collisions in the COM frame:  The nice thing about the physical symmetry 

approach (physics is the same in any frame) is that it allows us to generalize the 1D result with virtually no 

effort.  Consider a collision which is already 2D in the COM frame, where the particles glance off each 

other, and bounce off at an angle (Figure 2.4). 

vbi
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COM

 

Figure 2.4  Two-dimensional Elastic collision viewed in COM frame. 

The same argument still applies: there exists a COM frame, the relative velocities are still frame 

independent.  The two momenta must be opposite at all times, and the kinetic energy is a function only of 

the magnitudes of the velocities.  Therefore the separation rate equals the closure rate.  The algebraic 

approach also works for 2D and 3D (for a boosted observer): in fact, the algebra is nearly identical, except 

we replace the numbers vb and vr with vectors vb and vr. 
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6. Generalize to relativistic mechanics:  Now here’s the big payoff: what about a relativistic 

collision, where the particles move at nearly the speed of light?  The diagram is qualitatively the same as 

above, but the algebra is much harder, what with 2 2( ) 1/ 1 /v v c  − , and all.  Most importantly, the 

symmetries are similar: 

(1)  Physics is the same for all observers.   

(2)  Momentum is parallel to velocity, and kinetic energy depends only on the magnitude of velocity.  

Therefore, in the COM frame, reversing the velocities reverses the momenta, and leaves kinetic energies 

invariant.   

We can see these symmetries from the mathematical forms for relativistic momentum and kinetic 

energy: 

( ) 2

2 2

1
( ) , ( ) 1 , ( )

1 /
v m E v mc where v and v

v c
  = = −  

−
p v v  

We must consider more carefully, though, the effect of boosting to a new observer frame, because of 

time-dilation and length-contraction.  Time dilation is independent of direction of motion, but length-

contraction depends on direction (Figure 2.5). 

COM 

motion

vcom

no length 

contraction

m
ax len

gth 

con
traction

some length 

contraction

 

Figure 2.5  Length contraction relative to COM frame, for different directions. 

We consider 3 possible cases of observer moving w.r.t the COM: 

(a)  For a small boost, where the observer moves slowly with respect to the COM frame, we can 

neglect time-dilation and length-contraction.  Therefore, the result still holds, even if the particles move 

relativistically with respect to each other. 

(b)  For a relativistic observer w.r.t the COM, but one collinear with both particle motions, the 

collision appears 1D to the observer (the particles hit head on and retrace their paths after the collision).  

However, the magnitudes of the velocities change after the collision, so our earlier argument doesn’t hold.  

Instead, we note that the time dilation and length contraction factors (between observer and COM frames) 

are the same before and after the collision.  Therefore, the closure rate and separation rate are both different 

from the COM values, but different in the same way.  In other words, if rate of closure = rate of separation 

in the COM, then the closure distance per unit time is still the same as the separation distance per unit time 

in the observer frame. 

(c)  Not so with 2D collisions (2D as seen by the observer): the relativistic observer sees the separating 

particles go off at a different angle than they approached.   In this case, length contraction relative to the 

COM frame is different in different directions.  Hence, the separation gets a different length contraction 

than the approach, but time is dilated the same for both.  Therefore, the separation speed is different than 

the closure speed. 

Recapping: for relativistic particles, and for relativistic observers of 1D collisions, we get the same 

general result as nonrelativistically: the velocity of closure before the collision equals the velocity of 

separation afterward.  We also showed, without algebra, that the result does not hold for 2D or 3D 

collisions as viewed by a relativistic observer: in these cases, the rate of closure does not equal the rate of 

separation.  If we really want to understand these cases, we can resort to algebra, or some greater set of 

physical symmetries (of which I’m not aware). 
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Summary:  Using simple physical and mathematical principles, but no algebra, we established the 

result that in all cases but one, elastic collisions have a closure rate (before the collision) equal to the 

separation rate (after the collision).  This is true even relativistically, except for the case where the observer 

is relativistic with respect to the COM frame, and the collision appears 2D to the observer.  The use of 

symmetry saves substantially more algebra in the relativistic case than the nonrelativistic case. 

Newton’s Laws 

Applicable when v << c, and Δp Δx >> ħ. 

Newton’s 3rd Law Isn’t 

Isn’t a law, that is.  Newton’s 3rd law says that for every force, there is an equal but opposite reaction 

force.  It implies conservation of momentum: 

1 1 2 2 2 1 1 2 1 2 0dp F dt dp F dt F F dp dp and dp dp= = = −  = − + =

 

But Newton’s 3rd law is not universal:  consider magnetic forces that 2 positive particles exert on each 

other (Figure 2.6). 

q1

F = qvB

v1

B1 = 0
q2 v2

B2

F q1



F = qvB

v1

B1
q2 v2

B2

F

F

(a) (b)  

Figure 2.6  B1 is the magnetic field created by the motion of q1.  Similarly for B2.  (a)  B1 = 0 

along the line of motion of q1, so q2 feels no force, but q1 does.  (b) Both particles feel a force, but 

they are not equal and opposite. 

In Figure 2.6a, the forces are not equal (force on q2 = 0).  In Figure 2.6b, the two forces are not opposite.   

This failure of the 3rd law, and the apparent non-conservation of momentum, are only significant for 

relativistic speeds, because the Coulomb force between the particles is much greater than the magnetic 

force.  The magnetic force is lower by a factor of v/c.  However, conservation of momentum is fully 

restored when we include the effects of EM radiation [Gri ??].  When the particles accelerate, they radiate.  

The radiation itself carries momentum, which exactly equals the missing momentum from the accelerated 

particles.  We do not show this result here.  In general, Maxwell’s equations together with the Lorentz force 

law imply conservation of total energy and total momentum (charges plus fields). 

Also note that the third law, if considered with regard to the two charged particles, does not apply to 

relativistic systems, because it implies instantaneous force at a distance.  Here, again, the physical reality of 

the EM field is necessary to conserve energy, momentum, and the speed of light as the maximum signal 

speed. 

It’s Got Potential: Workless Forces 

The work energy theorem says that the change in kinetic energy of a particle resulting from a force 

equals the work done by that force: 

(higher dimensions)
b b

a a
W F dx KE or W d KE =   =   F r . 
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The work-energy theorem implies that conservative forces (those whose work between two points is 

independent of the path taken between the points) can be written as the (negative) gradient of a scalar 

potential: 

( ) ( ) (conservative force)F U= −r r , 

where the force is a function of position. 

Dissipative forces, friction and drag, are not conservative, and cannot be written with potentials. 

On the other hand, workless forces (magnetic and Coriolis forces) always act perpendicular to the 

velocity, and thus cannot do work [we neglect the work done by magnetic fields on the intrinsic dipole 

moments of fundamental particles such as electrons].  Workless forces can be written as vector potentials: 

( ) vector potentialk k where=  =    F v B v A A . 

Downwind Faster Than The Wind (DFTTW) 

In 2021, a video [https://www.youtube.com/watch?v=jyQwgBAaBag] claimed to show that a wind-

powered car can be made to travel directly downwind faster than the wind itself (abbreviated DWFTTW).  

The car was made of wheels, gears, and a large propellor in the back.  As physical mechanics, do we think 

the claim is plausible?  [This video, by the car’s designer, Rick Cavallaro, provides several good insights: 

https://www.youtube.com/watch?v=X6oJpnSJyV8 ] 

I was skeptical, but open minded (as any good scientist should be).  In fact, a UC Physics professor bet 

$10,000 that such a feat was impossible.  However, we can find a simple, mechanical explanation for how 

DWFTTW works, that anyone can understand.  It requires no math or fancy physics.  [We consider this 

same claim in Funky Statistical Mechanics Concepts.  I like that we can look at this from multiple 

perspectives: a simple mechanical perspective, and a statistical-mechanical/thermodynamic perspective.]   

Consider the car’s frame of reference (which is also the driver’s).  When it is going faster than the 

wind, it perceives a breeze blowing through the plane of the propeller from front to back (Figure 2.7a).  

Imagine the straight-line trajectory of an air molecule (or a streamline) flowing through that plane from 

front to back.  Now consider the intersection point of a moving, pitched blade as it passes through that 

trajectory (Figure 2.7b).  The intersection of the blade with the trajectory moves backwards over time (still 

from the car’s perspective).  If the blade is moving fast enough, the intersection point moves backward 

faster than the air molecules are moving backward.  The blade conks the air molecule behind it and gives 

the molecule a backward boost, thus giving itself a forward boost (Figure 2.7c).  This imparts to the car 

forward momentum, and energy. 

(a) (b)

plane of 
propeller

•
air 

molecule •

(c)

•

blade 
motion

imparted 
momenta

car
front  

Figure 2.7  (a) The car’s view of the wind, when traveling faster than the wind.  (b) As the blade 

moves down, its intersection with the streamline moves backward.  (c) When the blade move fast 

enough, it conks an air molecule backward, thus propelling itself forward. 

Of course, a similar thing could happen when air molecules coming from the front conk the blade, 

imparting backward momentum to the car.  But in the given case where the propeller’s backward motion 

along the streamline exceeds the molecule’s speed, the would-be impact point on the blade will recede from 

the molecules coming from the front, so they won’t strike it, nor impart any momentum to the blade. 

Thus we see that traveling downwind faster than the wind is indeed possible, and consistent with the 

laws of physics.  “All” that is needed is a gearing system from the wheels to the propeller that gives the 

propeller enough speed.  Furthermore, this description shows that there is no fundamental limit to how 

much faster than the wind the car can go.  We reach this conclusion from simple principles of mechanics, 
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and with no math at all.  These are exactly the conclusions that a more-detailed aeronautical analysis 

derived [according to the follow-up YouTube video]. 
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3 Rotating Stuff 

Angular Displacements and Angular Velocity Vectors 

The following facts underlie the analysis of rotating bodies:   

Finite angular displacements are not vectors, but angular velocities are vectors. 

In this case, the time derivative of a non-vector is, in fact, a vector.  Here’s why:  

In 3 or more dimensions, consider rotations about axes fixed in space.  Finite angular displacements 

(i.e., rotations) are not vectors because adding (composing) two finite angular displacements is not 

commutative; the result depends on the order in which the rotations are made.  In other words, finite 

angular displacements do not commute.  (Compare to translational displacements which are vectors: 

moving first a meters in x and then b in y yields the same point as first moving b in y and then a in x.)  

Therefore, finite angular displacements do not compose a vector space because you cannot decompose a 

finite rotation into “component” rotations relative to some basis rotations. 

However, infinitesimal angular displacements do commute.  Rotating first by dθ from the z-axis, and 

then d around the z-axis yields the same rotation as rotating d around the z-axis and then dθ around the y-

axis (i.e., from the z-axis toward the x-axis) (to first order)  ??No it doesn’t??.  Therefore, infinitesimal 

rotations do compose a vector space, and you can decompose any infinitesimal rotation into the 

composition of component rotations relative to some basis rotations.  We cannot legitimately associate a 

vector with a finite rotation.  I know, I hear the protests now about “axis of rotation” and finite angles; the 

point is that there is no basis into which we can decompose arbitrary finite rotations.  The “sum” (i.e., 

composition) of two rotations is not the vector sum of the two rotation “vectors”. 

This latter point yields an interesting consequence: whereas finite rotations are not vectors, angular 

velocities are vectors.  Whereas finite rotations do not compose a vector space, angular velocities do 

compose a vector space.  This is because angular velocities consist of a large number of infinitesimal 

rotations occurring in infinitesimal time periods: dθ/dt, and infinitesimal rotations are vectors. 

Furthermore, these results generalize: 

 For any set of generalized coordinates, even if the {qi} do not compose a vector,  

the  iq  do compose a vector. 

Central Forces 

Central force problems are widespread in both classical and quantum mechanics.  The prototypical 

central force is either gravity or electrostatics, where the force is a function of the magnitude of the 

separation of the bodies.  A central force is a force between 2 bodies which acts along the line of their 

separation; it may be attractive or repulsive, and its magnitude depends only on the distance between the 

bodies.  Two-body problems are especially common, and their solution is greatly simplified by a technique 

called “reduction to 1-body”.  A typical 2-body problem is shown in Figure 3.1, left. 
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Figure 3.1  (a) A typical 2-body central force problem.  (b) COM motion is the same general 

frame.  (c) 2-body motion in the COM frame.  (d)  The equivalent 1-body problem.  Reduction to 

1-body preserves mechanics, but not other physics, such as E&M. 

There are typically up to 3 steps in solving central force problems: 

1. If we start with a central force 2-body problem, reduce it to a 1-body problem. 

2. Replace the 1-body 2D (r, θ) problem with a 1D r problem, by introducing Veff(r) and a fixed 

angular momentum parameter, l. 

3. To solve for orbits, we often introduce a fixed energy parameter, E, as well as a fixed angular 

momentum, l. 

Reduction To 1-Body  

Reduction to 1-body is a change of generalized coordinates.  It is not just a change of reference frame 

to the center-of-mass frame, because a translation of reference frame does not change the number of bodies 

in the problem.  A simple change to the CM frame would still have two bodies, and they both move.  

Reduction to 1-body is valid for all formulations of mechanics: Newtonian, Lagrangian, and Hamiltonian.  

In all cases, the equations of motion separate into non-interacting equations for separate coordinates.  

Reduction to 1-body can be thought of as a canonical transformation from (x1, p1, x2, p2) to (R, P, r, p), 

where (R, P) is CM motion, and (r, p) is relative motion.  We often discard (R, P), if it is either motionless, 

or trivial.  Reduction to 1-body also applies to quantum mechanics [Bay 7-11 p171b].  

The goal of reduction to 1-body is to construct a simpler, but equivalent, mechanical system to solve a 

2-body central force problem.  To mimic the 2-body problem, our 1-body reduced problem must reproduce 

the following properties at all times of the motion: 

1. Have the same separation from the origin as the two bodies from each other, to have the same 

(central) force; 

2. Have the same moment of inertia, to have the same angular behavior; 

3. Have the same radial acceleration, to have the same radial behavior; 

4. Have the same total energy. 

It is not obvious that such a transformation is possible.  Note that the separation of bodies, r(t), varies 

with time.  We will find that replicating r(t), and the moment of inertia at all times reproduces all the 

orbiting motion, and satisfies all the conditions above.   

To satisfy condition one, we simply declare it by fiat: the one body problem will have its one body at 

position r(t) such that: 

1 2( ) ( ) ( )t t t= −r r r .  (3.1) 

Because r1 and r2 point in opposite directions, in magnitudes we have: 

1 2( ) ( ) ( )r t r t r t= + .  (3.2) 

We must then choose the reduced mass so that it produces the same moment of inertia (condition 2), 

if possible.  We first compute the 2-body center of mass, and its total moment of inertia: 
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We find the reduced mass which produces this moment of inertia: 

2 2

2 2 2 21 1 1
1 2 1 1 1 1 1

2 2 2

( ) 1 1
m m m

I r r r r r r m r
m m m

   
     

= = + = + = + = +     
     

. 

From the last equality, the r1
2 cancel, and we have: 

1 1 1

1 2 1 1 2
1 1

2 2 1 2 1 2

1 1
1

m m m m m
m m or

m m m m m m
 

− − −
     +

= + = = = +     
+     

. 

This is excellent, because the reduced mass is independent of r(t), and therefore independent of time.  At 

this point, we have no more freedom to choose our 1-body parameters.  We have satisfied conditions 1 and 

2, and must now verify that conditions 3 are 4 are met. 

The 2-body radial acceleration is: 

12 21 12
1 2 12 1 2

1 2 2

12
1 2 12

1 2

1
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It’s a miracle!  The very same reduced-mass which satisfies the rotational equation, satisfies the radial 

equation, as well.   

If only the total energy (condition 4) holds up.  The potential energy is the same, since it depends only 

on radial separation, and we defined that to be the same for 1-body as 2-body.  The kinetic energies are: 

( )

( )

( )

2

2 2 2 2 2 2 21 1
2 1 1 2 2 1 1 2 1 1 1

2 2
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2
22 2 21 2 1 2 1 2

1 2 1 1 1
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Lo, and behold!  The 1-body energy is the same as the 2-body.  All the mechanics is preserved. 

Note that the one-body equivalent problem is good for the mechanics only, but not for, say, 

electromagnetics.  E.g., consider a moving charge near an identical, oppositely moving charge in the 

center-of-mass frame.   

From E&M, we know the system has no dipole radiation, because the dipole moment is constant:  

( )

( ) ( )

1 1 2 2 1 2

1 1 2 2 1 2 1 2

electric charge

But

e e e where e

m m m const const const

= + = + 

+ = + =  + =  =

d r r r r

r r r r r r d
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However, if we reduce to a 1-body problem, we have a single accelerating charge, but no way to assign a 

magnitude to that charge.  In fact, there is no charge we can use to reproduce the electromagnetics, because 

the 1-body has a varying dipole moment d, which therefore radiates with a dipole component.  Hence: 

The 1-body reduction is good for mechanics only,  

not for other physics, such as electromagnetics. 

Also, the reduced system does not reproduce linear motion of R and P, as μ ≠ M ≡ m1 + m2. 

To return to the real 2-body motion, we consider Figure 3.1 (right).  We can see almost by inspection 

that: 

2 1
1 2

1 2 1 2

, and
m m

m m m m
= + = −

+ +
x R r x R r , 

because each body has a distance to the center of mass which is inversely proportional to its mass. 

Effective Potential 

As soon as we speak of “effective potential, Veff”, we assume some fixed angular momentum l as a 

parameter of the problem.  (Of course, with no external torques, the angular momentum is indeed fixed.)  

Then the effective potential is just the real potential plus the kinetic energy due to the fixed angular 

momentum: 

22

2
( ) , ( ) , , the angular momentum

22
eff

pl
V V r or V r where p l

Imr


 + +    

r

Ueff

0

 

Figure 3.2  Effective potential. 

The point is, since we know angular momentum is conserved, we can use it to predict the rotational 

kinetic energy strictly as a function of r.  This eliminates θ from the equations, and reduces the problem to 

one dimension in r.  From the one dimensional viewpoint of the coordinate r, it doesn’t matter where the 

energy goes: it can go into potential energy, or it can go into rotational kinetic energy.  The only thing that 

matters is that both of those are not radial kinetic energy, 
21

2
rT mr= , and total energy is conserved. 

What’s my lagrangian?  Since Veff includes some kinetic energy, and the lagrangian distinguishes 

between kinetic and potential energy, you might wonder, what is the lagrangian for the reduced one-body 

problem?  Recall that the lagrangian is defined as the function which, when plugged into the Euler-

Lagrange equations, yields the equations of motion.  In the reduced one-body problem, the equations of 

motion are exactly those of a particle in a simple potential.  Therefore, the only lagrangian that works is 

2
1 1

1
( , , ) ( )

2
body body eff effL r r t T V mr V r− −= − = −  

TBS: Compare the Lagrangian and Hamiltonian views of the reduced (1D) problem in coordinate, r. 
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Orbits 

To solve for orbits, we must introduce some fixed parameters, such as energy, E, and angular 

momentum L, as discussed in the “Reduction to 1-Body” section.  Other orbital parameters are c, ε, a, and 

b.  TBS.  In terms of c and ε, the result is: 

( ) , are orbital parameters
1 cos

c
r where c 

 
=

+
. 

Any two orbital parameters specifies the “standard” orbit, defined as having rmin at  = 0.  Note that time is 

not a parameter here, and this “standard” orbit gives only the shape of the orbit, but not the dynamics: i.e., 

it doesn’t say when the particle will be at position (ϕ, r). 

The Easy Way to Remember Orbital Parameters 

We can easily visualize the relationship between the orbital parameters a, b, and , from Figure 3.3),  

where a ≡ semi-major axis  

 b ≡ semi-minor axis  

 c ≡ latus rectum  

  ≡ eccentricity = distance from focus to center, as a fraction of a 

f1

f2

s1s2

ellipse: s1 + s2 = const = 2a

a

b

s1

s2

bs2 = a s1 = a

a perigee

(lower apside)

apogee

(upper apside)

(a)2 + b2 = a2

mass
a ≡ semi-
major axis

b ≡ semi-minor axis

 ≡ eccentricity

c


(a) (b)  

Figure 3.3  (a)  The invariant (1-bounce) distance from focus-edge-focus is 2a.  (b) Relationship 

of orbital elements: a, b, and ε. 

Recall that an ellipse is defined as the locus of points such that the sum of the distances from the point to 

the foci is constant:  s1 + s2 = const (above left).  Choose the point at the end of the major axis, and we see 

that the constant is 2a. 

(Figure 3.3b)  Choose the point at the end of the minor axis, and s1 = s2 = a.  Then the triangle shown 

gives: 

( )
2 2

2 2 2 a b
a b a

a
 

−
+ =  = . 

There are two sets of parameters: the system parameters, which describe the orbiting bodies, and the 

force between them; and the orbital parameters, which describe a given orbit of the system. 

System parameters γ ≡ force constant; γ = Gm1m2, or γ = –keq1q2 

F(r) ≡ –γ/r2  

M ≡ m1 + m2,   μ ≡ m1m2/M 

Orbital parameters a ≡ semi-major axis  

b ≡ semi-minor axis  

c ≡ latus rectum  

https://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu/  Funky Mechanics Concepts emichels at physics.ucsd.edu 

3/31/2024  21:30 Copyright 2002 - 2024 Eric L. Michelsen.  All rights reserved. 21 of 92 

 ≡ eccentricity = distance from focus to center, 

 as a fraction of a  

rmin, rmax ≡ min and max r in orbit  

L ≡ angular momentum  

E ≡ energy 

We start with our fundamental parameters, which we defined in the orbit equation, ( )
1 cos

c
r 

 
=

+
.  

By geometric inspection (with no need for dynamics or forces): 

min max,
1 1

c c
r r

 
= =

+ −
. 

From the right triangle containing f1f2 and the edge c, and noting that c + hypoteneuse = 2a: 

( ) ( ) ( )
2 22 21 , from 2 2c a a c c a = − − = + . 

As physical quantities, angular momentum and energy must be related to the force constant, γ. 

In the standard coordinates ( = 0 to the right), any two orbital parameters fully defines the orbit. 

TBS: Kepler’s law about equal areas in equal times results from conservation of angular momentum, 

and is true for any central potential, not just 1/r. 

Coriolis Acceleration 

It turns out that a rotating observer measures two accelerations due to his rotating frame of reference:   

(1) centrifugal acceleration, which depends on position, but not velocity, and 

(2) Coriolis acceleration, which depends on velocity, but not position. 

We call the Coriolis phenomenon an “acceleration” because all masses are accelerated the same (just like 

gravity).  Therefore, we dispense with calling it a “force,” which would require us to pointlessly multiply 

all equations by the accelerated body’s mass.   

We first derive the Coriolis acceleration from the body position change (displacement) relative to the 

rotating frame.  Then, for a more complete view, we re-derive it from the viewpoint of a velocity change in 

the rotating frame.  We will see that: 

The two contributions to Coriolis acceleration are (1) the rotating frame creates a perpendicular 

component to the original velocity, and (2) a relative velocity of the rotating reference point.  The 

effects are equal and additive, resulting in the factor of two in the Coriolis acceleration formula.   

Notation:  We consider motion in both an inertial frame, and a frame rotating with respect to it.  We 

use unprimed variables for quantities as measured in the inertial frame, and primed variables for quantities 

measured in the rotating frame.  Note that the vectors ω and r are the same in both frames, so there is no ω’ 

or r’. 

Coriolis acceleration from position change:  Figure 3.4 illustrates the motion which describes the 

Coriolis acceleration, drawn in an inertial frame.  The angles are exaggerated for clarity, but keep in mind 

the angles are infinitesimal.  The body starts at position r.  Suppose that in the rotating frame, the body 

starts with a purely radial velocity, v’.  In the inertial frame, its velocity also includes the speed of rotation 

(upward), so: 

= +v v' ω×r  
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r v’ dt

ω

Δx2

2v’ dt

Δx1

r v’ dt

ω
Δx

Δx

ωr

v’ dt

ω


r

p

q

(a) (b)  

Figure 3.4  (a)  The change in position Δx between pure radial motion and inertial motion is 

independent of position.  (b) The change in position quadruples when the time increment is 

doubled. 

However, the body moves with constant velocity in the inertial frame (Newton’s 2nd law, with F = 0v).  

After a short time, dt, the body is no longer moving exactly radially.  In the inertial frame, it has moved 

(v’ dt) horizontally, and (ω  r) dt upward, to point q.  It is now falling behind the rotating frame.  

Therefore, in the rotating frame, it has a small component of velocity opposite to that of the rotating frame 

at r.  In other words, in the rotating frame, the body has been accelerated downward. 

A purely radial motion, throughout the interval dt, would leave the particle at the new radial position p.  

However, we see that the body has “fallen short” of p by a distance Δx.  Δx is the height of a small triangle 

with (v’ dt) as its base, and a narrow angle of (ω dt).  Figure 3.4a shows that this small triangle is 

independent of the initial radius r.  A much larger starting radius results in exactly the same small triangle 

with the same Δx as its height. 

Now, how does Δx increase with dt?  Above right: suppose we double our time interval to 2dt.  The 

base of the small triangle doubles, and the small angle also doubles.  Therefore, Δx quadruples.  This is 

characteristic of how position varies with a constant acceleration: 

( )
21

2
x a dt

 
 =  

 
. 

Notice that Δx is independent of the initial position r.  We compute a from simple geometry.   

We must carry out our approximations to 2nd order,  

because our displacement Δx is 2nd order in the small-time parameter dt. 

Now, 
3sin( ) ( )x x x= + , so the usual approximation sin(x) ≈ x is valid to 2nd order.  Therefore: 

2 21
' sin( ) '( ) ( ) 2 '

2
x v dt dt v dt a dt a v  

 
 =  =  = 

 
. 

Since Δx is opposite (ω  v’), we can write the Coriolis acceleration as a vector equation: 

2 'Coriolis = − a ω v . 

The Coriolis acceleration depends only on velocity  

in the rotating frame, and not on position.   

And, because the Coriolis acceleration is always perpendicular to velocity: 

The Coriolis acceleration does no work. 

The Coriolis acceleration, by itself, would produce circular motion of the body in the direction 

opposite the rotation of the reference frame.  However, it cannot act by itself, since the body will always be 

subject to centrifugal forces, too. 

Summarizing: A body in a rotating reference frame undergoes two accelerations, centrifugal and 

Coriolis: 

2 ˆ and 2 'centrifugal Coriolisr= = − a r a ω v . 
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In contrast to the Coriolis acceleration: 

The centrifugal acceleration depends only on radial position, and not on velocity. 

And, because the centrifugal acceleration is arbitrarily oriented with respect to velocity: 

The centrifugal acceleration can do work and change the system energy. 

Recall that energy is frame dependent, even nonrelativistically.  So are forces: the centrifugal force exists in 

the rotating frame: it does work, and increases a body’s energy (as measured in the rotating frame).  Not 

bad for a “fictitious” force.  In the inertial frame, the centrifugal force does not exist, and does no work. 

We leave the case of tangential velocity as an exercise for the reader. 

Coriolis acceleration from velocity-change:  It is instructive to consider the Coriolis acceleration 

from the viewpoint of velocities, rather than changes in position.  We now re-derive it as such.  Since the 

Coriolis acceleration is first-order in the velocities, we need keep our approximations only to first order. 

r

v
ω

v’

ω
v’⊥

v’ = v

p

vp

ωr
p

ω(r + v’ dt)

v’⊥

(b)(a)  

Figure 3.5  Coriolis acceleration as a velocity-change.  (a) Body starts at the origin.   

(b) Body starts at arbitrary position. 

The full diagram can be confusing, so we first examine the simple case where the body starts at the 

origin (Figure 3.5 left).  After a time dt, from the inertial frame view, the direction of the radius vector has 

changed, so that the rotating frame velocity v’ acquires a component perpendicular to r.  The small angle of 

rotation is ω dt, so:  

' 'sin( ) ' or, in vector form, ' 'v v dt v dt dt ⊥ ⊥=  = − v ω v . 

In addition, the point p is fixed on the rotating frame, so it has upward velocity in the inertial frame.  In 

other words, it is “running away from” the velocity vector: 

' because 'p dt dt=  =  =v ω r ω v r v . 

Thus there are two contributions to the Coriolis acceleration: (1) the rotating frame causes the initial 

velocity along r to point in a new direction with a “downish” component (in the –θ direction); and (2) the 

point along a fixed radial line is moving upward.  These two effects are equal and additive, resulting in the 

factor of two in the Coriolis acceleration formula.  Finally, the body velocity in the rotating frame is the 

velocity relative to the point p; it is the difference between v⊥ and vp: 

'
' ' ' ' 2 ' 2 'p Coriolis

d
d dt dt dt

dt
⊥= − = −  −  = −   = = − 

v
v v v ω v ω v ω v a ω v . 

Now more generally: above right shows the body starting at an arbitrary radius, but still with purely 

radial velocity v’.  This means that in the inertial frame, it is moving upward with velocity: 

,p initial = v ω r . 

After the time dt, the body has moved to a larger radius, so the reference point p moves upward faster than 

the original (ω  r); the new radius is r + v’ dt, so the final upward velocity is: 

, ( ' ) 'p final dt dt=  + =  + v ω r v ω r ω v . 

Comparing initial to final, the upward velocity has increased by ω  v’ dt, so the point p is again moving 

upward away from the velocity vector with relative velocity  ω  v’ dt. 
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Also as before, the rotating frame creates a component of v’ in the perpendicular direction: 

' ' dt⊥ = − v ω v . 

And as before, the magnitudes of the upward velocity-increase and v⊥ add, giving a factor of 2 in the 

acceleration formula: 

( ), ,' ' ' ' 2 '

'
2

p final p initial

Coriolis

d dt dt dt

d

dt

⊥= − − = −  −  = − 

 = = − 

v v v v ω v ω v ω v

v
a ω v

 

Coriolis acceleration from tangential velocity:  So far, we’ve examined only velocities that are 

initially purely radial.  We now show that a tangential velocity results in the same formula for Coriolis 

acceleration. 

ω
r

p

v’ dt

ω

v’⊥

r

p

q
q

v’v’q

θ

 

Figure 3.6  Coriolis acceleration for a tangential velocity.  (Left) position of body after dt is q.   

(Right) Velocity vectors at q after dt. 

In Figure 3.6, the angles are exaggerated for clarity, but are really infinitesimal.  As always, the 

rotation of the reference system introduces a perpendicular component to v’: 

' 'dt⊥ = − v ω v . 

Now, without any velocity v’, the body would have ended up at p (to first order).  Since the body was 

moving (in the rotating frame), it actually ends up at q.  The velocity of the body in the rotating frame is its 

velocity relative to q.  In the inertial frame, q’s horizontal velocity is larger leftward than p’s by the 

increased angle θ, which is due to the velocity v’: 

'
sin ' or, in vectors,q p q p

v dt
v v r r v dt dt

r
   

 
− =  = − =  

 
v v ω v' . 

This velocity increase is independent of r, because it is proportional to rθ, but θ scales as 1/r.  The final 

velocity change of the body is then the difference: 

( )
'

' ' ' ' 2 ' 2q p Coriolis

d
d dt dt dt

dt
⊥= − − = −  −  = −   = = − 

v
v v v v ω v ω v ω v a ω v . 

Since the Coriolis formula is the same for both radial and tangential velocities, and since the formula is 

linear in those vectors, the Coriolis formula applies to any linear combination of radial and tangential 

velocities.  But every velocity can be written as a linear combination of a radius vector and a tangential 

vector, so the Coriolis formula applies to all velocities. 

Example of both Coriolis and centrifugal acceleration:  Imagine a body at rest in the inertial frame, 

at some position r.  In the rotating frame, the body moves in a circle centered at the origin.  Therefore, the 

Coriolis and centrifugal accelerations must produce a centripetal acceleration to maintain circular motion.  

In the rotating frame, we have velocity and total acceleration: 
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( ) 2

2

2

ˆ' , 2 ' 2 2 (i.e. inward)

ˆ (outward)

ˆ (inward)

Coriolis

centrifugal

total Coriolis centrifugal

r

r

r







= −  = −  = −  −  = −

=

= + = −

v ω r a ω v ω ω r r

a r

a a a r

 

which is exactly the centripetal acceleration required for circular motion. 

Lagrangian for Coriolis Effect 

Complicated dynamics problems are often easier to solve with Lagrangian or Hamiltonian mechanics.  

In a rotating system, then, one needs a lagrangian for the Coriolis acceleration.  The Coriolis acceleration is 

always perpendicular to the velocity, just like the magnetic force.  Therefore, we derive the Coriolis 

lagrangian by analogy with the magnetic force.  Since lagrangians produce forces (not accelerations), we 

must write the Coriolis effect as a force, by multiplying by the body mass.  Also, to agree with the Lorentz 

force, we rewrite the Coriolis force as v  ω (rather than ω  v), giving: 

( )

2

Therefore: 2

Coriolis Lorentzm q

m q

=   = 



F v ω F v B

ω B
 

In other words: 

The angular velocity 2ω acts on a mass  

much like a magnetic field acts on a charge. 

Therefore, we can construct a Coriolis vector-potential for the vector (2ω), just as we construct a magnetic 

vector potential for B: 

2

Then

Coriolis

CoriolisL m L q

 =   =

=    = 

A ω A B

v A v A
 

To complete the story for Lagrangian mechanics, we need the potential for the centrifugal force.  We 

get: 

2 2 2

0

( ) 1
( ) , ( ) ( )

2

r

centrifugal centrifugal

U r
F r m r U r dr F r m r

r
 


= = −  = − = −

  . 

Mickey Mouse Physics: Parallel Axis 

The parallel axis theorem tells us how to find the moment of inertia of a rigid body around any 

axis, given its mass and moment of inertia around its center of mass. 

Note that the parallel axis theorem does not allow us to move from any axis to another, only how to 

move from the center-of-mass axis to any other.  [I didn’t know this as a 1st-year grad student; I’ve seen 

physics professors who don’t know it.]  Every text book proves this theorem mathematically.  We show 

here how to see it physically.  Imagine a Ferris wheel, with a single car on its edge (for simplicity), and a 

Mickey Mouse structure attached rigidly to the side: 
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(a)

R
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wheel, 
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r
distributed 
mass car, mC

(b)

 

Figure 3.7  (a)  A Ferris wheel with 3 significant pieces: the wheel, the car, and Mickey Mouse™.  

(b)  Mickey Mouse viewed in isolation as the wheel turns. 

If I were paying the electric bill to run this wheel, I’d want to know its moment of inertia.  Since 

moments of inertia add, we can find the total moment of inertia as: 

total wheel car Mickey MouseI I I I −= + + , 

assuming the spokes are negligible.  All the mass of the wheel is at the same radius, R, so we have the 

standard formua: 

2
wheel WI m R= . 

As the car goes around the wheel, it remains pointing up, so the occupants are comfortable.  That is, 

the car itself doesn’t rotate (it just revolves around the wheel center).  Therefore, even if the car has a 

broadly distributed mass, it is only the center-of-mass motion that matters.  Hence, the only rotation of the 

car is its rotation around the wheel, and that is the only moment of inertia that contributes to the total: 

2
car CI m R= . 

Mickey is a different story.  Mickey Mouse’s center of mass is at radius r.  First, his entire mass rotates 

in a circle of radius r, much like the car.  This “global” rotation certainly contributes to his moment of 

inertia: 

2
Mickey wheel MI m r− = . 

In addition, if we look at Mickey’s motion about his center-of-mass, we see that Mickey himself also 

rotates around in a circle (Figure 3.7 right).  This rotation is simultaneous with, and in addition to, his entire 

mass rotating around the wheel.  The car does not have this rotation about its center-of-mass.  Mickey’s 

self-rotation also contributes to the total rotational inertia, exactly the amount of Mickey’s moment of 

inertia around his center-of-mass.  Therefore, Mickey’s complete moment of inertia is: 

2
Mickey M Mickey CMI m r I −= + . 

But this is just the parallel axis theorem! 

The parallel axis theorem simply sums the “global” rotation of an object’s center-of-mass about an 

axis, with the object’s “local” rotation about its own center-of-mass. 

Note that if Mickey Mouse is indeed made of 3 circles, we can compute his center-of-mass moment of 

inertia using, again, the parallel axis theorem on each of the 3 circles. 

In unusual cases, we might use the parallel axis theorem in reverse: if we know the moment of inertia 

about a non-CM axis, and we know the object’s mass and distance to the CM-axis, we could compute the 

moment of inertia about the CM: 

2
non-CMCMI I mR= − . 

https://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu/  Funky Mechanics Concepts emichels at physics.ucsd.edu 

3/31/2024  21:30 Copyright 2002 - 2024 Eric L. Michelsen.  All rights reserved. 27 of 92 

Moment of Inertia Tensor: 3D 

In 3 dimensions, the instantaneous angular momentum of a rigid body is not necessarily aligned 

with the axis of rotation (it is when considering 2D planar rotation).   

TBS: How can this be?? 

The moment of inertia tensor relates the angular velocity to angular momentum: 

3

1

i ij j

j

or M I 

=

= = M Iω  (TBS: a real picture of the vectors here). 

[In fact, the moment of inertia tensor is a Cartesian tensor, not a true Riemannian tensor, because it 

involves finite-displacements of the mass points from the rotation axis.] 

Rigid Bodies (Rotations) 

( )

( )

2 2

2 2 2

2 2

2

Moment of Inertia:

, , : For flat object in - : [L&L 32.9+ p100]

Parallel-axis: [F&W26.19 p140, L&L 32.12

ij p ij p pi pj p

p p

i j k z x y

cm
ij ij ij i j

y z xy xz

I m r x x m xy x z yz

xz yz x y

i j k I I I x y I I I

I I M a a a





 + − −
 

= − = − + − 
 

− − +  

 +  = +

= + −

 

p101]

 

( ) ( )

( ) ( )

( ) ( )

1 1 2 3 2 3 1 1 1 1 2 3 2 3

2 2 3 1 3 1 2 2 2 2 3 1 3 1

3 3 1 2 1 2 3 3 3 3 1 2 1 2

Euler eqs: I I I I I I

I I I I I I

I I I I I I

       

       

       

= − = −

= −  = −

= − = −

 

Rotating Frames 

Recall that a reference frame is an infinite set of points whose distances to an observer remain 

constant.  One reference frame may rotate with respect to another reference frame.  Frames in which 

Newton’s 1st and 2nd laws are obeyed are called inertial frames.  If two reference frames are rotating with 

respect to each other, then at most one of those frames can be inertial.   

We now consider the case of an inertial frame (the “fixed frame”), and a (non-inertial) frame rotating 

with respect to the inertial frame.  Consider a continuously changing vector in the fixed frame, Q(t).  For 

any such vector, its time derivative is also a vector: 

fixed rotating

d d

dt dt

   
= +    

   

Q Q
ω Q . [compare to M&T 1st ed 12.7 p 344]. 

Writing Q for the vector in the fixed frame, and Q’ for the vector in the rotating frame, we get: 

'
'

d d

dt dt
= + 

Q Q
ω Q . 

Note that in the ωQ term, if the vector Q is not itself a time derivative (e.g., an electric field), then it is an 

instantaneous vector (a geometric object, an “arrow in space”) and is the same in either frame.  Hence, it 

does not need qualifying as “fixed” or “rotating.”   
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Change of vector in 
the rotating frame

y’

x’

Q’

dQ

’

Q’

ω Q’ dt

ω dt

Change of vector in the 
fixed frame, due to rotation

Total change of vector 
in the fixed frame

dQ = dQ’ 

+ ω Q’ dt

y

x

Q’
ω dt

y

x

 

The uncorrected equation in [M&T] is this: 
fixed rotating

d d

dt dt

   
= +    

   

Q Q
ω Q .  The problem with this 

equation is that the ωQ term is ambiguous: is the Q in this term from the fixed frame or the rotating 

frame?  [M&T] incorrectly hint that this is irrelevant in all cases, because this is an abstract vector 

equation, independent of reference frame.  They imply that the ambiguous Q is therefore a vector at an 

instant in time (it’s just an arrow in space), and independent of reference frame (as described above).  But 

this is wrong.   

For things like the Coriolis acceleration, Q is itself a time derivative: v = dr/dt, the velocity.  There is a 

big difference in both magnitude and direction between v, the velocity in the fixed frame, and v’, the 

velocity in the rotating frame.  In other words, v and v’ are not the same vector written in two different 

frames; they are truly different vectors [S&C2 p151b].  The diagram above shows that the component of 

acceleration (dQ/dt)fixed due to rotation is ωv’, and not ωv. 

Rotating Bodies vs. Rotating Axes 

To rotate an axis (say the z axis) to any position requires two parameters, say θ and .  To rotate a rigid 

body requires 3 parameters, say θ, , and ψ.  The reason for the difference is that rotating an axis about 

itself produces no change, and is hence unnecessary.  For example, consider rotations of a baseball bat with 

a label on the side.  Starting from anywhere, it takes a θ and  rotation to align the axis of the bat to an 

arbitrary axis.  It then takes a third rotation, ψ, to rotate the label to the desired direction.  If the baseball bat 

is replaced by an axis, then the last rotation is meaningless; axes have no ψ rotation. 

Arbitrary rotations of an axis require two parameters, θ and .   

Arbitrary rotations of a rigid body require 3 parameters, θ, , and ψ. 
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4 Shorts 

Here is a collection of short topics which can be read independently of any sequence of topics. 

Friction 

Static Friction 

When dealing with friction, there are two distinct cases that must be considered: with slipping, and 

without.  Without slipping, the friction force becomes as big or small as it needs to be to prevent slipping.  

But there’s a limit: friction is only so strong.  It’s maximum value is given by 

max coefficient of static friction

perpendicular (aka normal) force

s sF N where

N

 = 


 

Many books incorrectly state that the coefficient of friction must be < 1.  This is false.  Consider 

dragging a piece of Velcro across its mating piece.   

The coefficient of friction is clearly greater than one.   

Other examples include dragging tape across a desk (sticky side down), or any rough surfaces with 

deep thin spikes in their microscopic surface.  Or macroscopic surface, since there’s nothing that needs be 

microscopic about friction (though it usually is). 

 

Figure 4.1  (Left)  Microscopic (or macroscopic) view of how to make a coefficient of friction μ > 

1.  (Right)  Simple test for μ > 1. 

There’s a simple way to test if μs > 1: tilt the surfaces to a 45o angle.  If the surfaces don’t slip, μ > 1. 

Often, in a given problem, we don’t know ahead of time whether there will be slipping or not.  

Therefore we must figure it out.  Usually, we must solve the equations first assuming no slipping, and 

compute what frictional force F is required to enforce no slipping.  If it is within Fmax, then there is no 

slipping.  If it exceeds Fmax, then slipping does occur.  We must then replace F with Fmax in our equations, 

and solve them again to get the final answer.  The example below illustrates this, and how, without 

slipping, the unknown friction F is compensated by a kinematic relation equation, and with slipping, F is 

directly calculated. 

Kinetic Friction 

Kinetic friction is the friction force when surfaces are slipping.  It’s coefficient μk is always < μs.  You 

can feel that μk < μs when you push on something that’s not moving, and it suddenly “breaks free” and 

starts moving with less push needed.  You needed more push when it was static because μs > μk.  μk may 

also be > 1.  The simple test for μk > 1 is similar to that for μs: tilt the surface to 45o and give them a push, 

to start them slipping.  If they stop slipping, μk > 1. 

Mathematical Formula for Static and Kinetic Friction 

Rarely, it’s handy to be able to write static and kinetic friction as mathematical formulas.  Of course, 

they are non-linear, which is why friction problems can be difficult.  If x is the coordinate in which N is the 

normal (perpendicular) force:  
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x
N

Fx = ?

x
N

Fx = −µkN

(v > 0)

v

 

Figure 4.2  (Left) static friction.  (Right) kinetic friction. 

Static friction:  Static friction is defined as friction when there is no slipping.  In other words: 

0 (static friction)v x = . 

Fx is a velocity constraint force, constraining v = 0.  As a constraint, Fx must be solved for.  However, the 

maximum force static friction can exert is: 

.max coefficient of static frictions s sF N where = = . 

Kinetic friction:  Kinetic friction is defined as friction when there is slipping (particle is moving).  

Then the force of friction is determined by the normal force, according to: 

sgn( ) velocity of slipping

coefficient of friction

sgn( ) 1, 0; sgn( ) 1, 0

x k

k

F N v where v

v v v v





= − 



  = − 

 

Note that friction always acts opposite to the slipping, indicated by the negative sign.  In 3 dimensions, 

we can write the force of friction as: 

ˆ ˆ unit vector is direction of the velocity of slippingk N where= − F v v . 

Example: Friction With and Without Slipping 

Consider a spool with a central shaft of radius r, and larger wheels of radius R (figure below).  Around 

the shaft is wound a string, on which we pull with tension T at an angle θ with the horizontal. 

 

θ a



T

F

r

R Reference directions, 
not actual motion

 

Figure 4.3  The arrows for  and a show the reference directions, not the actual motion.  In fact, 

when rolling without slipping, one of them must be negative. 

Under all circumstances, from Force = ma and torque τ = I, we have: 

(1) cos (2)ma F T and I FR Tr = − = − , 

where we choose to measure torques about the central axis.  We consider two questions, (a) and (b): 

(a)  We are given T, m, I, θ, r, R, and μ (for simplicity, fixed for both static and kinetic friction).  We 

seek a, α, and F.  Therefore, we need 3 equations.  Equations (1) and (2) provide two of them.  For the 3rd, 

we must consider the cases of rolling and slipping separately, because the frictional force is either unknown 

(rolling), or known directly (slipping).  When rolling, the unknown F is augmented by an additional 

https://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu/  Funky Mechanics Concepts emichels at physics.ucsd.edu 

3/31/2024  21:30 Copyright 2002 - 2024 Eric L. Michelsen.  All rights reserved. 31 of 92 

kinematic constraint equation that relates a and α.  The transition from rolling to slipping is given by the 

maximum friction equation: 

( )max sinF F N mg T   = = − . 

We will see that for any angle θ, there exist tensions that allow rolling (or at least, no slipping), and higher 

tensions that demand slipping. 

Case 1: Rolling (really, no slipping) 

First, we must assume no slipping, and test our result for consistency at the end.  When rolling (or 

staying still without slipping), the linear acceleration is related to the angular acceleration by 

a R= − , 

and F must be solved for.  (We derive the above by considering the instantaneous rotation of the spool 

about its point of contact with the ground.)  Eliminating first a, then α, from our (1) and (2) yields: 

( ) ( )

( )

( )

2 2

2

(3) cos (4) /

cos

cos 1

cos /

1 /

m R F T and I FR Tr FR Tr I

R FR Tr
m F T

I

mTRr mR F mR
T F F

I I I

T mRr I
F

mR I

   







− = − = − → = −

−
− = −

 
+ = + = +  

 

+
=

+

 

If F < Fmax, then our assumption of no slipping is valid.  Then, substituting F into (1) and (2) gives a and α.  

If not, then we have Case 2: slipping. 

Case 2: Slipping 

With slipping, a and α are now independent (the kinematic constraint doesn’t apply).  But this only 

happens when friction is at its maximum, so we find F directly (assuming for simplicity (though 

unrealistically)  that μs = μk): 

( )max sinF F mg T = = − . 

We then plug directly into (1) and (2) to solve for a and α. 

What if we start with the reverse assumption: assume slipping, and check for consistency?  What is 

inconsistent if we start by assuming slipping, and there really is no slipping?  The friction force will end up 

doing more work than the tension puts into the system, and therefore being a source of energy.  This is not 

possible, but is (in my opinion) harder to check than assuming no slipping, and simply checking if the 

required friction force exceeds the maximum available. 

(b)  If we pull gently enough (T small), there will be no slipping.  As we increase T, at some point, the 

wheel starts to slip.  For given other parameters, at what T does slipping begin? 

We start with our equation for F in the case of no slipping from part (a).  F is proportional to T, and the 

maximum F is  

( )max sinF N mg T  = = − . 

Note that as T increases, the required F for no slipping increases, and also the maximum F decreases.  

When the F required for no slipping equals the maximum F, we have the transition tension: 

( )
1

max 2 2

cos / cos /
sin sin

1 / 1 /

mRr I mRr I
F mg T T T mg

mR I mR I

 
    

−
+ + 

= − =  = + 
+ + 

. 
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Rolling Friction 

In reality, when something rolls without slipping, there is usually still some energy loss due to the 

rolling interface.  This loss is called rolling friction, or rolling resistance, or rolling drag.  There are several 

reasons for this: elastic deformation of the wheels, or the surface beneath them, converts some of the 

energy to heat (more so with rubber tires than steel wheels).  Imperfections in the circular wheels or flat 

surface cause some amount of actual scraping as it rolls.  Differences in the wheel sizes on each side of an 

axel force some slippage of one or both wheels, which dissipates energy to friction.  Imperfections increase 

bouncing, and therefore vibration, which carries away energy.  Stickiness between the surfaces can also 

contribute.  The coefficient of rolling friction is typically much less than μk, the coefficient of kinetic 

(sliding) friction.  The drag force from rolling friction is computed similarly to static and kinetic friction: 

coefficient of rolling frictionr rF N where =  . 

μr for a new car tire is typically ~ 0.01 [en.wikipedia.org/wiki/Rolling_resistance]. 

Drag 

Drag is a kind of friction when a body moves through a fluid (liquid or gas).   

Drag differs from kinetic friction in that drag depends on velocity.   

Specifically, 

2 2ˆ velocity of moving body;a bv where v= − −  F v v v v v . 

Like most friction, drag acts opposite to the motion. 

Damped Harmonic Oscillator 

An unforced damped harmonic oscillator has equation of motion: 

2
0 0( ) 2 ( ) ( ) 0 undamped oscillation frequency

damping factor

x t x t x t where  



+ + = 


 

This is a linear differential equation with constant coefficients; it’s solutions are therefore exponentials 

(possibly complex, which are equivalent to sines and cosines).  This section assumes the reader has been 

introduced to damped harmonic oscillators, and the method of solving their differential equations. 

Since the differential equation is linear, the response of the system to “excitations” (things that make it 

move) is linear.  The excitations of a system are the initial conditions plus any forcing functions on the 

system.  In this case, the right hand side is 0, so there are no forcing functions.  Therefore, linearity implies: 

1 1 1

2 2 2

1 2 1 2 1 2

If (0), (0) produce the response ( )

and (0), (0) produce the response ( )

then (0) (0), (0) (0) produce the response ( ) ( )

x x x t

x x x t

kx x kx x kx t x t+ + +

 

The solutions to the above equation come in 3 distinct forms, depending on how β compares to ω0. 

β < ω0 underdamped: the system oscillates with exponentially decaying amplitude 

β = ω0 critically damped: the system decays without oscillation the most rapidly possible 

β > ω0 overdamped: the system decays without oscillation 

You can think of β < ω0 as “more oscillatory than damped,” so it’s underdamped and oscillates.  

Then β > ω0 is “more damped than oscillatory,” so it’s overdamped and doesn’t oscillate. 

Sometimes we refer to the damping ratio defined as ζ ≡ β/ω0.  Then ζ < 1 is underdamped, ζ = 1 is 

critically damped, and ζ > 1 is overdamped. 
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Critical Condition 

This section explores some properties of critically damped oscillators.  By definition, a critically 

damped oscillator has β = ω0.  The characteristic equation therefore has two equal real roots of –β.  Since 

the roots are real, the system does not oscillate.  What does the free (unforced) response of a critically 

damped system look like?  Does it cross the axis, or not?  The answer depends on the initial conditions.  Let 

us consider 4 possible initial conditions: 

1. Displaced, and released with zero speed. 

2. Displaced, and released with velocity away from 0 (increasing the displacement) 

3. Positioned at equilibrium, but released with some velocity 

4. Displaced, and released with velocity toward 0 (toward equilibrium) 

We can qualitatively describe the first three of these without solving any equations.  The last one 

requires some simple math. 

t

x(t)

t

x(t)

t

x(t)

 

Figure 4.4  Critically damped oscillator response for three cases of initial position and velocity.. 

Case 1:  Displaced, and released with zero speed (above left):  Since we know a critically damped 

system doesn’t oscillate, it must be that if I let it go from some displacement, but with zero initial speed, it 

will not cross the axis.  For if it did, then it must stop at some point on the other side.  Then, it will be 

starting from some (smaller) displacement, and zero speed, much like it was a moment ago.  If it crossed 

once, it must now cross again, because the system is linear and the response is proportional to the 

displacement.  But if it crosses twice, it will again reach some highest point, and again be starting from 

some displacement with zero speed.  This would go on forever, and would be oscillation, contradicting our 

prior knowledge that it does not oscillate. 

Case 2:  Displaced, and released with velocity increasing the displacement (above center):  At some 

point, the restoring force will stop the increasing motion.  Then we have the system displaced, and with 

zero speed, which is Case 1.  Therefore, the system does not cross the axis. 

Case 3:  Positioned at equilibrium, but release with some velocity (above right):  Then the system will 

reach a maximum displacement, when the restoring force has stopped the increasing motion.  The system is 

now displace, and with zero speed.  Again, we are back to Case 1.  The system does not cross the axis. 

Case 4:  Displaced, and with initial velocity toward equilibrium.  For tiny velocities, this is only 

marginally different from Case 1, so we suspect that the system still will not cross the axis.  We prove it by 

noting that  for Case 1, sometime after release, the system has displacement with velocity toward 

equilibrium, but it still does not cross.  For larger velocities, can it cross?  For this, we must solve 

equations.  By definition, a critically damped system has β = ω0, and therefore has duplicated roots of the 

characteristic equation: 

 1 2 ( ) t t tr r x t Ae Bte A Bt e   − − −= = −  = + = + , 

where A and B are determined from the initial conditions, as follows: 
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( ) ( ) ( )( )

(0) , (0) (0) (0)

t t t t t tx t Ae B e te B A e B te B A B t e

Then x A x B A B x x

          

 

− − − − − −= − + − = − − = − −  

= = −  = +

 

Plugging into the solution for x(t), we get the complete solution for the given initial conditions (ICs): 

( ) ( )( ) (0) (0) (0) (0) (0) (0)t t tx t x e x x te x x x t e   − − −= + + = + +   . 

To cross the axis, there must be a time t > 0 when x(t) = 0.  Thus 

( )
(0)

0 (0) (0) (0)
(0) (0)

x
x x x t t

x x



= + +  = −

+
. 

WLOG (without loss of generality), we take x(0) positive, and therefore x-dot(0) is negative.  For the zero 

crossing time to be positive, the above denominator must be negative: 

(0) (0) 0 (0) (0)x x or x x +   − . 

response with no 

initial speed

response 

with small 

initial speed

t

x(t)

t

x(t)

 

Figure 4.5  Critically damped oscillator response for two different initial speeds toward the axis: 

(Left)  Speed < βx(0).    (Right)  Speed > βx(0). 

In words, if the initial speed is large enough toward 0, the system will cross the axis only once.  At some 

point on the other side, it will stop.  It will then have displacement but no velocity, and we are back to Case 

1.  It will asymptotically approach the axis, but not cross it again. 

Pressure 

The forces resulting from interior pressure can sometimes be surprising.  Consider a square-cross-

section cylinder, filled with a gas under pressure (below).  (Some cargo airplanes have roughly this cross-

section.)  We can find the force exerted on side R, tending to rip the metal walls along the edge, by 

multiplying the pressure times a cross-section taken vertically.  This is: 

F PA=  

R
T

R
force force

 

Figure 4.6  Force on a square tube under pressure: the force along the walls is different than at the 

corners. 
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By choosing a different cross-section, though, we get a different answer.  The force acting to separate 

the cylinder at its corners is different than that acting to rip its walls.  If we choose a diagonal (above, right) 

as our cross-section, we find the area is larger by √2, and therefore so is the force:  F = √2PA.   

We can compute this second result a different way, by taking the components of the forces on walls T 

and R that lie along the direction of the force acting to separate the cylinder at its corners.  Wall T has force 

PA, and the component (in red) in the corner-separating direction is (1/√2)PA.  But wall R has a similar 

component, and adding the two gives the total force, which is again F = √2PA. 
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5 Lagrangian Mechanics 

Introduction 

The importance of Lagrangian physics cannot be overemphasized: 

All of modern (microscopic) physics, and much macroscopic physics,  

can be described by the principle of stationary-action.   

To describe different phenomena, we need “only” find the right lagrangian for each system. 

Lagrangian mechanics simplifies calculations through two principles: (1) generalized coordinates, and (2) 

Hamilton’s Principle of stationary action [Hamil 1834 sec3].   

Many people mistakenly believe that Lagrangian mechanics is based on  

conservation of energy and/or momentum.  Neither of these is true. 

In fact, for macroscopic systems, Lagrangian mechanics applies to systems that conserve energy and/or 

momentum, and many (non-frictional) systems that don’t.  Furthermore, Lagrangian mechanics provides 

simple methods for determining whether energy or momentum is conserved in a given system.  But 

conservative or not, Lagrangian mechanics provides the correct equations of motion.  Even some frictional 

forces can be added into the general Lagrangian framework, though they do not follow the least-action 

principle.   

Microscopic physics always conserves energy, because there is no friction, as there is in macroscopic 

physics.   

In simplest form, Lagrange’s equations can be thought of as the elementary physics concept that: 

Rate-of-change of momentum equals force: dp/dt = F, 

though extended to generalized coordinates.   

Lagrangian mechanics is a necessary prerequisite to Hamiltonian mechanics, which is used extensively 

in quantum and other advanced physics.  And before we introduce lagrangian mechanics, we have a few 

prerequisites of our own: generalized coordinates, and configuration space. 

Generalized Coordinates 

Generalized coordinates allow specifying the positions of all parts of a system, i.e. its configuration, 

usually with a minimum number of coordinates.  In some cases, when additional constraints between 

coordinates are desirable or necessary, they can usually be included in the Lagrangian method.  Such 

constraints reduce the independent degrees of freedom from the 3N of N point particles.   

Generalized coordinates are the essence of analytic mechanics.  Instead of the usual (x, y, z) or other 

simple coordinates, generalized coordinates measure displacements in units natural to a given problem: 

they may be angle, distances, or other numbers measured with respect to arbitrary references, such as arc-

length along some path.  The configuration-space (see below) defines the position of all points in the 

system, and the generalized coordinates are usually labeled qi = {q1, ... qn}. 

This leads to generalized force, which is the quantity which satisfies the work equation in generalized 

coordinates [F&W 15.4 p54m]: 

, generalized force; sometimes written asi i i i
i

đW
W Q dq where Q Q

dq
 =  = , 

where the đ indicates an inexact differential (ignore this if you don’t understand inexact differentials).  

Generalized forces also satisfy the generalized momentum equation [ref??]: 
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dp
F p Q p

dt
 =   = . 

I Need My Space: Configuration Space, Momentum Space, and Phase Space 

Configuration space is the space of all possible values of generalized position coordinates; it is n 

dimensional, where n is the # of generalized coordinates of the system.  Note that configuration space is an 

abstract space, not (in general) physical space.  If there are k constraints between the coordinates, then there 

are only (n – k) independent degrees of motion in the system, and the allowed points in configuration space 

form an (n – k)-dimensional subspace of configuration space. 

Momentum space is the n-dimensional space of all possible values of generalized momenta.  Again, 

constraints may restrict the state of the system to a subspace of momentum space. 

Phase space is the aggregate of configuration and momentum space: it is the 2n-dimensional space of 

all possible position and momentum values.  [Mathematically, phase-space is the tensor product of 

configuration-space and momentum-space.]  Summarizing: 

1 2

1 2

1 1 2 2

Configuration space: ( , , ... )

Momentum space: ( , , ... )

Phase space: ( , , , , ... , )

n

n

n n

q q q

p p p

q p q p q p

 

We will use phase-space later, in Hamiltonian mechanics.  

Choosing Generalized Coordinates, and Finding Kinetic Energy 

There are no definitive rules for the “best” choice of generalized coordinates.  Usually: 

We choose coordinates that are the minimum needed to specify the motion,  

and which reflect the symmetries of the system. 

Symmetries include the form of the potential energy, and any constraints.  Sometimes, we choose more 

coordinates than are needed, and impose separate constraints among them (see Motion With Constraints, 

later).   

To write the lagrangian in generalized coordinates, we need to express the kinetic and potential 

energies in those coordinates.  Since the symmetry of the potential energy is a factor in our choice of 

coordinates, the potential energy is usually fairly easy to write in terms of the coordinates.   

However, kinetic energy is often harder.  The generalized coordinates might have complicated 

relationships to Cartesian coordinates, and they may be time dependent.  A common procedure for finding 

the kinetic energy is to write the position of each particle in Cartesian coordinates, as a function of the 

generalized coordinates, and possibly time: 

( , ) ( , ) ( , )i i ix x q t y y q t z z q t= = =  

Then the magnitude of the velocity squared uses the chain rule to write time derivatives of the Cartesian 

coordinates in terms of the generalized coordinates.  In 2D: 

2 2 2 2

2 2 2
1 2 1 2

1 2 1 2

2 2 2 2

1 2 1 2
1 2 1 2

( , )

.
2

i

x x y y
v q t x y q q q q

q q q q

m x x y y
T q q q q

q q q q

          
= + = + + +       

          

           
  = + + +       

            
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Figure 5.1  (a) Simple pendulum with one generalized coordinate: θ.  (b) Fermat’s principle of 

least time says the actual path of light from A to B takes less time than any nearby path.  (c) The 

brachistochrone problem: what path y(x) gets a marble from A to B in the least time? 

A simple example:  Let us compute the lagrangian for a simple pendulum (Figure 5.1a), in the 

generalized coordinate θ, measured as angular displacement from the vertical.  In this case, both kinetic and 

potential energy are most easily expressed in Cartesian coordinates x and y.  Therefore, we need to convert 

from θ to (x, y) for both T and U.  [You might wonder, then, “Why didn’t we use (x, y) coordinates in the 

first place?”  The reason is that using θ requires only one generalized coordinate, whereas using (x, y) 

requires two coordinates and a constraint equation.  Try it, and you’ll quickly see that (x, y) coordinates are 

nearly intractable.]  For potential energy, we have: 

( , ) and ( , ) cos ( ) cosU x y mgy y Y t l U mgl   = = = −  = −  

For kinetic energy: 

( )

( )

( ) ( )2 2 2 2 2 2 2 2

( , ) sin , ( , ) cos

( , ) cos ( . ) sin

cos sin
2 2 2

x t l x t l

y t l y t l

m m m
T x y l l

    

    

   

= =

= − =

= + = + =

 

We see that the final v2 could also have been quickly deduced from the definition of a “radian.”  Note that 

we frequently need to use trigonometric identities to simplify our final results in terms of our generalized 

coordinates.  Know your sum and difference angle identities (see Formulas section). 

Manifold mathematicians will notice that in computing the kinetic energy, we have actually computed 

the metric field for our coordinates.  Note that the metric field is only a true tensor in a coordinate basis, 

and so the metric computed here is generally not a true tensor field. 

Lagrangian Mechanics: The Basics 

For non-relativistic, non-magnetic mechanics, the lagrangian is kinetic energy minus potential energy 

(derived shortly): 

( , , ) ( ) ( , , )
U L

L q q t T q U q q t F
q q

 
= −  = − =

 
. 

The lagrangian (we do not capitalize the function) always has units of energy, regardless of the units of the 

generalized coordinates.  Together with Hamilton’s Principle, the lagrangian gives us the equations of 

motion: 
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Lagrange's equations: 0 (aka Euler-Lagrange equations)

Can be written:

Defining

d L L

dt q q

d L L

dt q q

L d L
p p F

q dt q

  
− = 

  

  
= 

  

 
   = =

 

 

(Historically, Lagrange did not use Hamilton’s Principle for his derivation, since Hamilton introduced it 

about 50 years later.) 

[Aside: Note that if some of the forces are not included in the lagrangian (such as non-potential forces like 

friction), we can include them on the right hand side of Lagrange’s equations, essentially by using dp/dt = ∑F: 

# non- # non-
#

n

Lagrangian Lagrangian Lagrangian
# forces forces fo

/

rces forces

,

Lagrangia
fo

, , ,

1 1

r s

1

ce

1

i
l i j i k i k i

i il j

d

k

t

k

p d

dp L L
F F F F

dt t q q
= = = =

   
= = +  − = 

   
    .] 

What is a Lagrangian? 

Circular though it may seem: 

We define the lagrangian of a system as the function of dynamical variables and time  

(typically q, q-dot, and t) which, when put into the Euler-Lagrange equations,  

yields the equations of motion of the system. 

There is no general method for doing the reverse: finding a lagrangian from the equations of motion 

[Gol??].  However, [J&S] develop the lagrangian for a charged particle in a magnetic field by first finding 

several conditions such a lagrangian must satisfy, and then one needs only a small amount of “guess and 

check” to finish.  As we will show, there are infinitely many lagrangians for any system, which all give the 

same EOMs.  Also, different systems can have the same lagrangian (a hoop rotating flat about a point is the 

same as a pendulum in gravity??).    

Equivalently (and still somewhat circularly), the lagrangian can be defined as the function whose time 

integral gives the action of the motion.  We will see that: 

The value of the lagrangian function is independent of the chosen generalized coordinates,  

since it is defined by terms which are coordinate independent.   

However, the lagrangian does depend (trivially) on the chosen zero of potential energy. 

For example, the nonrelativistic, nonmagnetic lagrangian is L = T – V, which is independent of coordinate 

choice: 

( ), , ( , , ) ( , , ), (general non-relativistic lagrangian)

1,... # coordinates .

i i i i i iL q q t T q q t V q q t

i

= −

=
 

Notice that the equations of motion do not define the lagrangian completely.  Firstly, any constant 

multiple of a lagrangian produces the same equations of motion.  It is important to fix this constant, 

because: 

The lagrangian for a system comprising subsystems  

is the sum of the lagrangians of the subsystems. 

For this summation to work, every subsystem must have the same multiplicative constant (more later).  The 

standard convention is to use a scaling such that the coefficient of the scalar potential V(qi) is  –1.  This 
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scaling also makes the hamiltonian, derived from the lagrangian, equal to the total energy under a few mild 

conditions. 

Secondly, the total time derivative of any function can be added to the lagrangian, and produces the 

same equations of motion.  Conventions are looser here, but all common physics has a well-defined agreed-

upon lagrangian. 

Note that we often use the typical lagrangian form of ( ), ,L q q t  as representative of most, but not all, 

physical problems. If our problem has a lagrangian of this form, then our variations of q (and thus q-dot) 

are all the possible variations to make.  Hamilton’s principle of stationary action then leads to the typical 

Euler-Lagrange equations of motion. 

However, some lagrangians include higher derivatives.  [Lan] page 59b (bottom) gives a problem for 

finding the differential equation resulting from a lagrangian including 2nd derivatives. Pages 70+ gives an 

example of a physical elastic system (continuous, though) with U(q(x), q’(x), q’’(x) ) (potential energy) 

depending on the 2nd derivative q’’(x). 

What Is A Derivative With Respect To A Derivative? 

There is a notational shortcut that is universal in mechanics: that of defining the lagrangian as a 

function of , , and , whereq q t q  is the time derivative of q.  Then, we take partial derivatives with respect 

to :
L

q
q


  


.  There’s no new calculus here; it’s just to keep the notation simple.   

To see this, recall that a lagrangian is a function of 3 variables; let’s call them q, b, and t.  Then: 

( , , ) , , and
L L L

L L q b t
q b t

  
= 

  
 are all well-defined. 

But it happens that when evaluating the lagrangian L(q, b, t), we will always use q  for b.  So we don’t 

bother introducing the variable b, and just write q  everywhere, including in the derivatives.  So where q  

appears in the lagrangian, it is just an argument of the lagrangian function.   

However, when considering the action integral over some path q(t) (actual or variational), the 

lagrangian reduces to a function of time: 

( )

  ( )
2

1

( ), ( ), ( ), which allows us to integrate:

( ) ( ), ( ), .
t

t

L L q t q t t L t

action S q t dt L q t q t t

= 

 =  
 

Note that the action is a functional of the trajectory q(t). 

Hamilton’s Principle: A Motivated Derivation From F = ma 

There is a long-standing, but rarely answered, question: why is Hamilton’s Principle of stationary 

action true?  Or similarly, how did Hamilton come up with it?  Given the context of Hamilton’s time (c. 

1834), we can imagine a plausible train of thought leading to Hamilton’s Principle.  We motivate and 

derive here Hamilton’s principle, starting with a very simple form.  Next, we motivate the extension for 

magnetic forces.  We then describe how the Principle rapidly extends to a broad class of important 

dynamics problems, including those with constraints of various forms.  This wide application was reason 

enough to drive the exploration of Hamilton’s Principle that ensued for over a hundred years, so that today, 

virtually all of fundamental physics can be given in Lagrangian form.  The following derivation also 

introduces the power of coordinate-free methods, which are very important in many fields, such as tensor 

calculus, differential geometry, and relativity.  [I don’t yet have the derivation of time-dependent 

lagrangians.??] 

We know the brachistochrone problem (pronounced bra-kiss-toe-krone, from the Greek for “shortest 

time”). 
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There are two important features of Hamilton’s era: First, outside of classical mechanics, the 

mathematical theory of the calculus of variations was already well-known.  From the brachistochrone 

problem (posed by Leibnitz and Bernooulli in 1696 [Gossick 1967 p1]), and others like it, the Euler-

Lagrange (E-L) equations were known to make stationary an integral, with fixed endpoints, of the form: 

2

1

1 2 1 2( ( ), '( )) , , ( ), and ( ) are fixed
x

x
f y x y x dx where x x y x y x . (5.1) 

The function, y(x), which makes the integral stationary with respect to small variations in y(x), satisfies the 

E-L equation: 

( , ') ( , ') 0
'

d
f y y f y y

y dx y

 
− =

 
. (5.2) 

For a given f( ), this is a differential equation in y(x).  Therefore, solving this E-L equation finds the y(x) 

that makes (5.1) stationary. 

Another feature of Hamilton’s day was that there was a long-standing belief that nature was elegant 

and parsimonious, i.e. that the laws of nature satisfied minimization properties.  For example, as early as c. 

60 CE, Hero of Alexandria (Heron) stated a form of Fermat’s principle of least time for light propagation 

[Gossick 1967 p1].  In the 1700s, Maupertuis believed that the extremal principles of mechanics (those that 

were known at the time) proved the existence of God [Gossick 1967 p2].  In keeping with this spirit, one 

might well ask: Do the laws of motion (classical mechanics) satisfy some minimization principle?  We 

show here that they do, and derive the principle.  

Starting directly with ( )
d d

F p q mq
dt dt

= =  in one dimension, and for now using a cartesian coordinate 

q, we write the equation of motion (EOM) of a particle in a potential U(q): 

( ) 0 is a cartesian coordinate (for now)

( ) is derivable from a scalar potential, i.e. ( ) .

d
F q mq where q

dt
d

F q F U q
dq

− =

= −

 

We recognize this as having the form of the E-L equation (5.2), given the change in notation: y → q, x → t, 

f → L, ∂f/∂y’ → /L q  : 

( )

( , ) ( , ) 0 ( ), ( ) ( )

F q mq

d d
L q q L q q where q q t q t q t

q dt q dt

 
− =    

 
. (5.3) 

Therefore, the solution q(t) of the EOMs of simple dynamics does, in fact, make stationary some integral: 

 
2

1

( ) makes stationary ( , ) ( , ) is as-yet unknown
t

t
q t L q q dt S q where L q q      . 

S is called the action of the trajectory q(t) for a given system.  S is stationary with respect to arbitrary 

small changes in the trajectory, δq(t), which also imply small changes in the velocity ( )q t .  We now find 

the function ( , )L q q , whose integral is made stationary by the actual trajectory q(t). 

We make (5.3) equivalent to ( ) 0
d

F q mq
dt

− =  by equating corresponding terms: 

( ) ( , ), ( , ) or ( , )
d d

F q L q q mq L q q mq L q q
q dt dt q q

  
= = =

  
. 

We find ( , )L q q , the integrand of the integral that is made stationary against small variations δq(t) and 

( )q t , by taking the anti-derivatives (indefinite integrals) of ( ) , andF q dq mq dq : 
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2

( , ) ( ) ( ) a function of ,

1
( , ) ( ) a function of .

2

L q q F q dq U q q

L q q mq dq mq T q q

= = − +

= = = +





 

Together, these imply (the constant of integration is irrelevant): 

 
2

1

( , ) ( ) ( ) and ( , ) is stationary
t

t
L q q T q U q L q q dt S q= −  . (5.4) 

We call L( ) the lagrangian.  We define the integral as S, and call it the action. 

This is a most satisfying result, for two reasons: first, L(•) is a scalar function of the motion, and its 

value is therefore coordinate-free, though its functional form must depend on the chosen coordinates (more 

shortly).  Second, L(•) is simply the difference between two well-known and physically meaningful 

quantities. 

Generalized Coordinates 

Recall that we derived the lagrangian L( ) above for a cartesian coordinate.  But the simplicity of 

Hamilton’s Principle allows us to immediately conclude: 

The Euler-Lagrange equations of motion (5.3) are valid for arbitrary (generalized) coordinates. 

How so?  The integral is coordinate free: if the integral is stationary over any small variations in the 

trajectory q(t), it is stationary over small variations in all coordinates, even oblique (non-orthogonal) ones.  

Since we showed that stationarity implies the E-L equation, the E-L equation is valid in arbitrary 

coordinates. 

We note briefly that any potential energy allows for an arbitrary additive constant; therefore, so does 

the lagrangian.  This is consistent with the E-L equation containing only derivatives of the lagrangian, so 

the E-L equation is insensitive to any additive constant in the lagrangian.  We will discuss another, less 

trivial invariance later. 

Hamilton’s Principle and generalized coordinates were so successful in analyzing nonmagnetic 

mechanics problems that it was natural to ask, “Can we reap these benefits for a wider class of problems?”  

The answer is “yes”. 

Generalizations of Hamilton’s Principle 

Hamilton’s principle in higher dimensions:  We have derived Hamilton’s Principle in its simplest 

form.  We now show that it easily extends to a much wider range of applications.  An obvious extension is: 

what about 2D or 3D motion?  In 3D, starting again with cartesian coordinates, the equations of motion 

separate: 

{ , , }: ( ) ( ) 0, ( ) ( ) 0, ( ) ( ) 0i x y z x i x y i y z i z

d d d
q q q q F q p t F q p t F q p t

dt dt dt
 − = − = − = . 

This leads directly to the straightforward extension of the integrand (5.4).  Since the 3 coordinates have 

independent motions, minimizing each coordinate’s action individually is equivalent to minimizing their 

sum.  Therefore, we extend the definition of L to be the sum of the 3 lagrangians from the 3 coordinates.  

The action is similarly extended.  Skipping some details, this gives: 

( ) ( )
2

1

#
2

)

1

(

1
( ), ( ) ( ), ( ), ( )

2

i

coordinates
t

i i i i i

T q

i
t

i

L q t q t mq U q S L q t q t dt

=

 
 
  − 
 
  
 

  . 
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Again, making the action stationary over small variations in 3D immediately implies the validity of 

generalized, oblique 3D coordinates. 

We should note that although Hamilton’s principle is valid in 3D, evaluating the kinetic energy T in 

oblique coordinates is often difficult, because v2 requires taking a dot-product (or at least, a vector 

magnitude).  A similar problem appears later when we include magnetics. 

Hamilton’s Principle for multiple particles:  Another obvious extension is multiple particles.  Again, 

each can be treated separately at first, and again, minimizing each particle’s individual action is equivalent 

to minimizing the total action of the system.  Skipping some details, our above definitions of “lagrangian” 

and “action” are now valid even when the generalized coordinates span multiple particles. 

Applying what we’ve learned to the ubiquitous simple harmonic oscillator (SHO), we find that the 

action is not necessarily minimized, because the action of SHO motion is not, in fact, a minimum with 

respect to variations in q(t), but it is stationary under such variations.  This is fine, because the E-L 

equations we started with never guaranteed minima in the first place, only that the action integral is 

stationary. 

Hamilton’s Principle for time varying potentials:  What about time-varying potentials?  It turns out, 

the existing formulas work just as well with them.  [I’m not sure how to do this yet??  Perhaps, we apply 

our current E-L equations over the infinitesimal interval t1 to t2 ≡ t1 + dt: 

2

1

( , , )
t

i i
t

dS L q q t dt  . 

Over this interval, the explicit time dependence of L can be ignored, and our existing E-L equations are 

valid.  We’d like to stitch together a large number of such intervals to create a finite interval, but our 

current E-L equations only apply when the endpoints at t1 and t2 are fixed.  An arbitrary variation δq(t) over 

a finite interval would not be fixed at the endpoints of each infinitesimal interval.  I’ll bet there’s a way to 

fix this, but it’s not obvious to me.] 

Hamilton’s Principle for magnetic forces:  What about magnetic forces, which do not derive from a 

scalar potential?  The Lagrangian formalism we have developed so far is so powerful, that we are highly 

motivated to see if we can push it to cover even more physical situations.  Is there a lagrangian that will 

produce the Lorentz force: F = ev  B?  While there is no direct derivation of such a lagrangian, [Jose and 

Saletan, 1998] point out that, if it exists, it must be linear in both v and B, and proportional to the charge e.  

It must also be a scalar, and some kind of “potential,” so the ansatz ev·A is the minimal lagrangian meeting 

these criteria.  Direct substitution reveals that this term does, in fact, yield the proper equation of motion (in 

SI units).  The resulting classical lagrangian, covering many particles in many dimensions (i.e., many 

degrees of freedom), and magnetism is: 

# particles

1

( , ) ( ) ( ) ( )i i i i j j j

j

L q q T q U q e

=

 − +  v A r . 

Note that both the velocities vj and the dot-products in the last term may be difficult to evaluate in oblique 

coordinates. 

We also note that since A has gauge freedom, so does the lagrangian.  In fact, our lagrangian already 

has another “gauge freedom” from early on: adding to the lagrangian the total time derivative of any 

function of the coordinates {qi(t)} and time has no effect on the resulting E-L equations of motion.  This is 

because such a function adds a fixed constant to the action, regardless of the trajectory.  Such a constant has 

no effect on which trajectories make the action stationary, and so doesn’t affect the equations of motion.  

(The gauge function can depend on q(t) and t, but not the coordinate velocities ( )q t , because they are not 

fixed at the endpoints of the action integral.) 

Other generalizations of Hamilton’s Principle:  A development similar to magnetics allows the 

inclusion of the Coriolis acceleration when working in a rotating frame of reference.  The centrifugal force 

is also accommodated by a simple, scalar potential [elsewhere in this work]. 
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Sometimes, it is advantageous to define additional generalized coordinates beyond what we need, 

especially if we must compute the forces required to constrain the motion in some way.  Such constraints 

can be incorporated into Lagrangian mechanics by introducing Lagrange multiplier functions of time, λ(t).  

Details are available in standard texts [elsewhere in this work]. 

Given the success of Lagrangian mechanics in the wide range of applications already described, 

physicists are eager to apply its methods to even more situations.  For example, can Special Relativity be 

described with lagrangian mechanics?  As with the magnetic force, one can constrain the possible forms of 

such a lagrangian, and a little trial and error reveals that SR can be accommodated.  Note, however, that the 

relativistic lagrangian is not T – U, even when using the relativistic kinetic energy.  (However, the 

relativistic hamiltonian is the relativistic total energy.]  The magnetic lagrangian, just like the Lorentz force 

law, is already relativistically valid. 

Another big discipline in mechanics is that of deformable continua.  Continua have infinite degrees of 

freedom, because every point in the “solid” can move.  Casting the system in lagrangian form requires 

defining generalized coordinates that describe the deformations as functions of both time and space, and 

incorporating a new derivative term, the spatial derivative (gradient).  The “lagrangian” itself is then built 

up from a lagrangian density (essentially “lagrangian per unit volume”): 

3( ( , ), ( , ), ( , ), ), and ( , , , )
space

q t q t q t t L q q q t d=    r r r r . 

This form leads naturally to a relativistic scalar definition of the action: 

( )
2 2

1 1

3 4 ,
t t

t t space spacetime
S L dt d dt d x where x t

 
 = =  

 
   r r . 

With continua and relativistic scalar action now covered, quantum field theory (QFT) becomes 

susceptible to yet another generalization of Hamilton’s Principle of stationary action.  Furthermore, in a 

reach to one of the farthest corners of physics, it turns out that even the Einstein field equations of General 

Relativity can be written in lagrangian form. 

Hamilton’s Principle is so fundamental and ubiquitous across physics that when a new idea is 

formulated, physicists often look early-on for a lagrangian to describe it.  Sometimes, journal reviewers 

explicitly request a “least-action” formulation [Magueijo, 2003].  Clearly, the principle of stationary action 

has grown far beyond anything that William Rowan Hamilton could have imagined back in 1834. 

Hamilton’s Principle of Stationary Action: A Variational Principle 

We here derive the equations of motion from Hamilton’s Principle, the reverse of what we did above.  

(The following notation makes {qi} ≡ q look like a vector.  However, the qi are usually not the 

components of a vector.  For example, polar coordinates are not the components of a vector, because you 

can’t add them to find the vector sum.  See Funky Mathematical Physics Concepts.)  Define q(t) as the set 

of position functions: ( )1( ) ( ), ... ( )nt q t q tq .  These may describe the actual trajectory of a system through 

configuration space, or they may be a hypothetical trajectory.  Hamilton’s principle defines the action, 

S[q(t)], as a functional of q(t), and states:  

For trajectories near the actual trajectory of a system, the variation of the functional S is zero,  

i.e., the action is stationary to first order in small variations of the trajectory. 

Given the positions of a system at some time, q1(t1), and its positions later, q2(t2), how can we find the 

trajectory q(t) of the system between the 2 points?  Note that velocities are unknown, even at the endpoints 

t1 and t2; solving for q(t) also solves for the velocities everywhere.  Hamilton’s principle says the system 

trajectory between the two pairs of given points and times makes the action functional stationary between 

them: 

2

1

( ) makes stationary [ ( )] ( , , )t S t dt L t 
q

q
q q q q . 
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(Often, q(t) makes the action minimum, but not necessarily.)  In other words, the actual trajectory of 

motion from q1 to q2 is “shortest” in the sense of being “least action.” 

The stationary paths of the action functional S[q(t)] are found by the vanishing of its first order 

variation δS[q(t)] for arbitrary infinitesimal variations δq(t) of the path connecting (q1, t1) to (q2, t2).  To 

compute δS[q(t)], substitute q(t) + δq(t) for q(t) in the definition of action, expand to first order in δq(t), 

and integrate the 2nd term by parts (JH 3.38 p 44): 

2

1

2 2

1 1

1

[ ( )] ( , , ), : ( ) ( )

[ ( )] ( ( ), ( ), ) ( ) ( )
( ) ( )

, ...

t

t

t t

t t

n

d
S t dt L t NB t t

dt

L L
S t dt L t t t dt t t

t t

where
q q

 

   

= =

  
= = + 

  

   
  =  

   



 

q

q q q q q

q q q q q
q q

q

 

Now we integrate by parts to eliminate δq-dot in favor of δq, noting that δq(t1) = δq(t2) = 0v: 

2
2

1
1

:

, ( ) , ( )
( ) ( )

[ ( )] ( ) ( )
( ) ( ) ( )

t
t

t
t

IBP U dV V dU

L d L
Let U dV t dt dU dt V t

t dt t

L d L L
S t dt t t

t dt t t

 

  

→ −

 
= =  = =

 

   
= − + 

   


q q
q q

q q q
q q q

0
( ) ( )

d L L

dt t t

 
 − =

 q q

 

This can be thought of as a generalized Newton’s 2nd law: “rate of change of momentum = sum of forces.”  

This equation is Lagrange’s Equation of Motion (LEM), or just Lagrange’s Equation. 

Note that since the small variations of the trajectory are arbitrary, the q(t) can be arbitrary generalized 

coordinates, so long as they fully specify the positions over time of all degrees of freedom of the system.  

In other words: 

Hamilton’s principle implies that for any generalized coordinates,  

Lagrange’s equations solve for the motion. 

Hamilton’s Principle: Why Isn’t “Stationary Action” an Oxymoron? 

What is the significance of “least action” vs “stationary action”? 

The action for the motion of a system is stationary: either minimum, or non-decreasing.   

Action is not necessarily minimized, and it is never maximized [Ref??].  A stationary action might be 

neither a minimum nor a maximum.  All minima and maxima are stationary paths, but not all stationary 

paths are minima or maxima.  [Note that some references use the term “extremize” nonstandardly to mean 

“make stationary.”  Similarly, they may use the term “extremum” nonstandardly to mean “stationary 

path.”] 

To illustrate, let’s recall a simpler case: a stationary point of a function:  In calculus, a function can 

have a zero derivative in 3 cases: a maximum, a minimum, or an inflection point.  Zero derivative is where 

the function is “stationary”: there is no (first-order) change in the function for tiny changes in its argument, 

i.e., 

2
when '( ) 0 : ( ) ( ) ( )f x f x dx f x O dx= + = + . 

E.g., f(x) = x3 has zero derivative at x = 0, but that is neither a maximum nor a minimum.  It is an inflection 

point. 
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y = x3

starting 
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Figure 5.2  (Left)  A stationary point of y = x3.  (Right)  Reflections from the inside of an ellipse 

follow paths of stationary action, but are neither minimum nor maximum. 

Thus, a stationary point doesn’t have to be a minimum; it could be a maximum, or even just a “flat spot” in 

the function, which is neither a maximum nor a minimum.   

So it is with a path whose action is stationary: it might be the least of any nearby actions, or it could be 

just a big flat spot among many paths.   

As an example closer to stationary action, the diagram above right shows the case of stationary action 

for lots of adjacent paths: reflections from inside an ellipse.  Imagine a shiny ellipse.  If you shine a 

flashlight at the wall, the light will reflect and go through the other focus.  So the path from one focus to the 

other is one of stationary action.  But shining the flashlight in any direction will send light through the other 

focus in exactly the same amount of time.  No one path is preferred over the other, and all the actions of all 

the directions are the same.  The action on any path is stationary, but it is neither larger nor smaller than 

nearby paths.  It is exactly equal to other paths that go in straight lines, bounce off the wall, and through the 

other focus. 

The original Hamilton’s principle is a little weird because it is not predictive: you have to know the 

position and time of the starting point, and the position and time of the endpoint.  Hamilton’s principle then 

tells you how the particle got from “here” to “there” (i.e., what path it took).  In this form, though, it doesn’t 

tell you where the particle will be in the future.  However, by analysis of Hamilton’s principle, we can find 

the equations of motion which do predict the future.  Euler and Lagrange did this analysis, and their 

equations are called the Euler-Lagrange equations of motion.  Of course, they are the same as Newton’s 

equations of motion for those cases that Newton studied, but the E-L equations of motion are more general: 

they work for any physics describable by an action (which is all of known microscopic physics). 

TBS: Other examples of non-minimum (but stationary) action: harmonic oscillator, multiple reflections 

between plane mirrors (stationary). 

Addition of Lagrangians 

Consider a system comprising multiple parts, each part of which has its own individual lagrangian.  

Amazingly, the lagrangian for the whole system is simply the sum of the individual lagrangians.  When 

dealing with individual lagrangians and the principle of stationary action, the lagrangians are only defined 

to within a multiplicative constant, i.e. multiplying a lagrangian by any constant produces an equivalent 

lagrangian, that produces the same physics.  However, when adding two such lagrangians to produce the 

total lagrangian for the aggregate system, the multiplicative constants between the two lagrangians matters.  

Both must be on the same “scale,” so to speak.  After they are added, then any multiplicative constant on 

the aggregate lagrangian is again arbitrary. 

The scale factor for individual lagrangians are well defined by the requirement that they produce the 

correct equations of motion when combined with each other.  Physicists pretty much all agree on the scale 

factors for lagrangians, and lagrangians in text books are always written with the proper scale factor. 

A trivial example is a system of 2 nonrelativistic particles: 

1 1 1 2 2 2 1 2 1 1 2 2, total total totalL T V L T V L L L T V T V T V= − = −  = + = − + − = − . 
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Velocity Dependent Forces 

There are two very common velocity-dependent forces: the magnetic Lorentz force, = F v B , and the 

Coriolis force, 2= − F ω v .  Both of these act perpendicular to the velocity, and therefore do no work 

(energy is unchanged), and produce circular orbits.   

This section describes how the cross-product velocity terms can be written in-plane as derivatives of 

the “vector potential” [in fact, as the exterior derivative of the vector potential.  The exterior derivative 

essentially reduces to the curl in 3 dimensions.] 

We take the magnetic force on a charged particle as a concrete example. 

Just as rotations, in general, are not about an axis, but rather in a plane,  

the magnetic field can be thought of not as a vector pointing in some direction,  

but as a potential field acting in a plane.   

This planar field can be broken up into 3 components, the x-y component, the y-z component, and the z-x 

component.  The x-y component corresponds to Bz, the y-z component to Bx, and the z-x component to By.   

Let us consider the x-y (or equivalently, the Bz) component of the magnetic field.  It is derivable from 

the magnetic vector potential A(x, y, z) as:   

, ,
y y yx x x

z x y z y y x z x

A A AA A A
B F v B v F v B v

x y x y x y

       
= − = = − = − = − −   

        
. 

Note that each component of A(x, y, z), i.e., Ax(x, y, z), Ay(x, y, z), and Az(x, y, z), is a function of all 3 space 

coordinates, so Ax changes when we move in the y direction. 

Fy = − vxBz

y

x

y

x

z

Bz

v

Bz

Fx = vy(−∂Ax/∂y)Fy = −vx(∂Ay/∂x)

Ay

Ax
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Fx = vyBzz
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Ay

F = v×B

y

x

z

Bz

v
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v

v
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Figure 5.3  Magnetic vector potentials for a given B-field. 

Velocity-dependent forces change the basic lagrangian from T – V  to (defining q ≡ (q1, q2, q3) = (x, y, 

z) ): 

( ) ( ) ( ) constant giving the strength of the forceL T V k where k= − +  q q q A q . 

It is remarkable that such a simple term in the lagrangian, kq·A, a scalar, produces the much more involved 

equations of motion.  Let’s see how this works for a charged particle in a static magnetic field (gaussian 

units): 

2

1

1

1
Lagrangian: ( ) , charge of the particle.

2

( )
Lagrange's Eq: ( ) ( ) ( )

mechanical degrees of fre

dof

j j j

j

dof
j

i i j
i ii j

e e
L T mq q A where e

c c

Ad L L d e e
p t A q t

dt q q dt c c q

where dof

=

=

 
= +  = +        

 

    
= → + =   

    







q A q

q
q

edom, i.e. # of generalized coordinates.
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[Note that it is not convenient to write these equations of motion in vector form, because the right hand side 

is awkward in vector notation.]  These are the equations of motion, so dA/dt (in the last equation) is a result 

of the particle moving in space, not because A(r) is changing in time: 

( ) ( )

1 1

1 1

1

Define ( ) ( ) ( ) ( )

( )( ) ( ) ( )
Then ( )

( )( )
Eqs of motion: ( ) ( )

( ) ( )
( )

i i

dof dof
ji i i

j
j jj j

dof dof
ji i

j j
j ij j

dof
ji i

j
i jj

t t A t A t

dq tdA t A A
q t

dt dt q q

Adp Ae e
q t q t

dt c q c q

Adp Ae
q t

dt c q q

= =

= =

=

  

 
= =

 


+ =

 

  
= −

  

 

 



A A q q

q q

qq

q q ( ) ( )
: .

j i

i j

A A
NB

q q

   
−      

     

q q
A

 

In words, /L q   on the left removes q  and leaves A(q).  Then the d/dt turns A(q) into q A .  On the 

right, the ∂L/∂q leave the q  alone, and acts on A(q) to also produce q  ∂A/∂qi terms.  These terms from the 

left and right combine to produce the “curl” of A. 

The last term cancels the j = i term from the sum, so that force in the i direction involves velocities in 

all directions except i.  But from the point of view of planes instead of directions, we say that the Lorentz 

force in the x-y plane is completely determined by the x-y components of the vector potential A.  This is the 

true nature of the magnetic field: 

The magnetic forces in a plane are completely  

determined by the vector potential components in that plane. 

In traditional terms, the x-y components of A completely determine Bz, but then (for a given velocity in 

the x-y plane) the Lorentz force 
e

c
= F v B  in the x-y plane is determined completely by Bz.  Therefore, 

the Lorentz force in the x-y plane is determined completely by the x-y components of A.  In other words, 

potentials in the plane, stay in the plane.   

We’ve now broken the magnetic forces into planes, instead of vectors.  But we must remember that 

each direction in space is a member of two planes: x is included in the x-y plane and the z-x plane, and 

similarly for y and z.  Therefore, the x-component of force is the sum of the forces from the x-y plane and 

the z-x plane.  This is why the force in the x direction involves velocities in both the y and z directions. 

Coriolis forces can similarly be taken account by introducing a Coriolis vector potential.  See Funky 

Electromagnetic Concepts for discussions of finding the vector potential for a given magnetic field (or 

other velocity-dependent force).  You can use the analogy 

2 , , 2Coriolis Lorentz

properties of
the particle

e e
F m F so m and

c c
=   =   v ω v B ω B . 

Non-potential Forces 

Some forces (e.g., static or kinetic friction, viscous drag) cannot be derived from a potential function 

(they are “polygenic forces” in Lanczos’ terminology).  Such forces can be incorporated into Lagrange’s 

equations by simply writing them on the RHS [Gol p23]: 
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( ), ( ) are the non-potential-derivable forcesi i
i i

L d L
Q t where Q t

q dt q

  
− = 

 
. 

Examples TBS: kinetic friction, viscous friction.  Friction work function of [F&W]. 

Lagrangians for Relativistic Mechanics 

At relativistic speeds, the lagrangian is not T – V (see Funky Relativity Concepts for more information).  

The relativistic lagrangian for a charged particle is (in Gaussian units): 

2 2 2

1/

( , ) 1 / ( ) [LL216.4 p48]

charge of particle, ( ) potential of particle ( ) for an electric field

e
L mc v c V

c

where e V e





= − − +  −

  =

q v v A q

q q

 

Fully Functional 

The concept of functionals is too often glossed over so quickly that it makes no sense.  With a few 

simple definitions and examples, functionals and functional derivatives are readily understood.  This 

provides a solid foundation for their use in continuum materials (strings, magnets, fluids, etc.), and in 

theoretical analysis, such as classical mechanics.  This section requires only simple calculus.  We follow 

this course: 

• Definition of a functional, with examples. 

• Functional derivatives, with examples. 

• Superposition of small variations, i.e. linearity of functional derivatives. 

• A slightly different view of functionals as functions of an infinite number of arguments. 

• Sample application: classical mechanics and Euler-Lagrange equations. 

A functional takes a function as input and produces a number from it.  [Contrast with a function, 

which takes a number (or a set of them) and produces a number.]  A simple functional might be: 

1

0
[ ( )] ( )W f x f x dx=  . 

Square brackets around the function-argument is standard notation for a functional.  One of the best known 

functionals in physics is the action functional, S[ ]; it acts on the lagrangian, and produces the action, S (a 

number): 

 
2

1

( ) ( )
t

t
S L t L t dt  . 

However, the lagrangian is a function of the coordinates and velocities, q(t) and ( )q t , which are themselves 

functions of time.  Therefore, the action can be considered a functional of the coordinates and their 

velocities: 

  ( )
2

1

( ), ( ) ( ), ( ),
t

t
S q t q t L q t q t t dt  . 

Even though q(t) and ( )q t  are related, they are treated as independent variables, because there is 

so much flexibility in their values that they are, for most practical purposes, independent. 

We’ll return to this point when we discuss functional derivatives. 

Another example of a functional is the hamiltonian of a continuous medium, such as a string or the 

magnetization of a material.   
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Figure 5.4  (Left) A vibrating, stretched string has kinetic and potential energy.    

(Right) Magnetic fields and misalignment of magnetization both store potential energy. 

For a stretched string (above left), the hamiltonian is  

  ( )
22

0

is the mass density (per unit length)

( ) ( ) '( ) is the string tension
2 2

( ) string displacement at position

L
H y x dx y x y x where

y x x


 




 

= +  
  



  

Notice that in this case, the functional “took derivatives” of its argument, y(x).  This is a common 

shorthand: the definition of a functional may include differential operators.  A more complete notation 

would write the hamiltonian explicitly as a function of  ( ), ( ), and '( ) : ( ), ( ), '( ) ...y x y x y x H y x y x y x = , as 

we did for the action above, a functional of q(t) and ( )q t .   

For a magnetized material (above right), the hamiltonian might look like: 

  ( )
23 2

is the position vector in the body

( ) ( ) ( ) ( ) magnetization at position
2

, are constants

k
H m d x m t m where m

k t


 

= +   
  





x

x x x x x  

Here again, the functional “took the gradient” of its argument, m(x).  In this new shorthand, we could omit 

the ( )q t  from the action functional, where it is understood that time derivatives of the functional argument 

q(t) may be used in the functional: 

  ( )
2

1

( ) ( ), ( ), (shorthand functional arguments)
t

t
S q t L q t q t t dt  . 

If we make a small change in our function, call it δq(t), we will get a small change in the action, δS: 

     ( ), ( ), ( ), ( ) ( ) ( ), ( ) ( ) ( ), ( )S q t q t q t q t S q t q t q t q t S q t q t     + + − . 

Note that the change in S depends not only on the small change δq(t), but also on the function q(t) 

which we are deviating from.  This makes δS a functional of 4 functions, as above. 

Functional derivatives:  Just as a function derivative describes the response of a function to small 

changes in its argument, a functional derivative describes the response of the functional to small changes 

in its function argument.  We write functional derivates with “δ”.  For example: 

Given: [ ( )], ( ) such that ( ) ( )
W

W f x K x W K x f x dx
f


 


 =  . 

Since we seek δW (a number) given δf(x) (a function), you might think that the functional 

derivative is also a functional, but it’s not.   

A functional derivative is a function: it is the kernel function for integrating δf(x) into δW. 

Note that the operation of integration with a kernel is indeed a functional; in this case, it acts on the 

function δf(x), to produce a number, δW.  A key aspect of integration with a kernel is that it is a linear 

operation on the variation of the function argument, δf(x).  This means superposition applies (discussed 

more shortly). 
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Some functionals do not have functional derivatives, for example, a functional which chooses the 

largest value of its function argument.  The change in the functional cannot be written as an integral 

operation on the change in function argument, therefore the functional derivative is not defined. 

A functional of two arguments has two partial functional derivatives: one with respect to the first 

argument, and another with respect to the 2nd argument.  This is analogous to a function of two arguments 

which has two partial derivatives.  For example, 

( )

 

( )

23 2

1 2

3
1 2

3

[ ( ), ( )] ( ) ( ) ,
2

( ), ( )

( ) ( ) ( ) ( )

2

k
Given H m m d x m t m

H H
then K K

m m

H d x K m K m

d x km m t m m

 

 

  

 

 
 = +  

 

 


 = + 

= +    







x x x x

x x

x x x x

 

The functional derivative is only valid in the limit that variations in all its function argument(s) are 

infinitesimal everywhere in the domain of interest.  For example, the functional derivative of the action S is 

valid only when both δq(t) is everywhere small and also ( )q t  is everywhere small, over the time interval 

[t1, t2].  Note that δq being small does not guarantee that ( )q t  is small; consider a series of small, 

instantaneous steps in δq (Figure 5.5 left).  δq is small, but the velocity ( )q t  is infinite at the steps.  

Conversely, ( )q t  being small does not insure that δq is small; consider a large δq which varies slowly 

(below right).   

δq(t)

tiny

δq(t)

.

large

δq(t)

tiny

large

δq(t)

.
t t t t

 

Figure 5.5  (Left) δq(t) is small, but ( )q t  is not.  (Right) ( )q t  is small, but δq(t) is not. 

It is in this sense that the functional and functional derivative treat δq(t) and ( )q t  as independent.  

Similarly, if H[m(x)] depends on m(x), then δH/δm is meaningful only for both δm(x) → 0 for all x, and 

δm(x) → 0 for all x.   

In physics, we often look for minima (or stationary paths) of functionals, such as minimum energy, or 

minimum action.  This means the functional derivative with respect to all arguments (explicit, and implicit 

from derivative operators in the functional) are zero.  Then we might write, in the shorthand notation, 

 ( ), ( ) , 0, 0
S S

Given S q t q t is stationary AND
q q

 
 

 
 = = . 

But again, δq(t) → 0 does not imply ( )q t → 0.  In mechanics, references often find the path of 

stationary action without writing it explicitly in the form of a functional derivative.  However, we are 

finding the functional derivative.  Since δS = 0 for arbitrary δq(t), this requires the functional derivative be 

identically 0.  Note also that in deriving the Euler-Lagrange equations, we first take a functional derivative, 

which acts as if δq(t) and ( )q t  are independent.  However, to complete the derivation, we crucially must 

make use of the complete dependence of ( )q t  on δq(t) (see any mechanics text). 

Superposition:  In function derivatives, we have a principle of superposition for small changes in the 

argument, i.e. given two small changes, the result of both changes together is the sum of the individual 

changes: 
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( )1 2 1 2 1 2 1 2Given ( ), , then ( ) ( )
df df df

f a da and da df f a da da f a da da da da
da da da

 + + − = + = + . 

Also, for functions of two or more arguments: 

Given ( , ), , then ( , ) ( , )
f f

f a b da and db df f a da b db f a b da db
a b

 
 + + − = +

 
. 

Similarly, with functional derivatives, we have a principle of superposition: 

     1 2 1 2( ) ( ) ( ) ( )S q t q t S q t S q t      + = + . 

This follows directly from the equation for δS in terms of the functional derivative, K(t): 

( )2 2 2

1 1 1
1 2 1 2 1 2

1 2

[ ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( ) ( )

[ ( )] [ ( )]

t t t

t t t
S q t q t dt K t q t q t dt K t q t dt K t q t

S q t S q t

      

   

+ = + = +

= +

  
 

It is this requirement for linearity (aka superposition) in the variation of a functional that insures that 

all functional derivatives can be written as kernel functions, which can be integrated with the argument 

variation to produce the functional variation.  Integration with a kernel function is the most general linear 

operation that can be performed on another function.  It is analogous to taking the dot product of a finite-

dimensional vector with some constant vector: taking a dot product with a constant vector is the most 

general linear operation that can be performed on another vector.  The continuum limit of infinite 

dimension takes the dot product into integration with a kernel function. 

Given the lagrangian for the action S, we can evaluate the functional derivative of the action in terms 

of the lagrangian: 

( ) ( )

 

2

1

2 2

1 1

1 2

1

( ), ( )

2

( ), ( )

[ ( ), ( )] ( ) ( ), ( ) ( ) ( ), ( )

( ) ( ) ( ) ( )

( ( ), ( ))

( ( ), ( ))

t

t

t t

t t

q t q t

q t q t

S q t q t dt L q t q t q t q t L q t q t

L L
dt q t q t dt K q t K q t

q q

S L
K q t q t

q q

S L
and K q t q t

q q

    

   









= + + −  

  
= + = + 

  


  =




 =





 
 

We have written the functional derivative of S in terms of partial derivatives of L.  As previously 

mentioned, the functional derivative is evaluated along a given path, much like a function derivative is 

evaluated at a given point.  As a simpler example, consider: 

( )

( ) ( )

( )

1 2

0

1 2 2

0

1 2

0

[ ( )] ( )

[ ( )] ( ) ( ) ( )

( )

W f x dx f x

W f x dx f x f x f x

dx f x

  



  + −
  

=





 ( )
2

2 ( ) ( ) ( )f x f x f x + + ( )
2

( )f x−

1

0
2 ( ) ( ) 2 ( )

W
dx f x f x f x

f






 
  

=  =

 

This functional derivative is valid for all f(x), but it has different values for different f(x).  For example, 

consider this functional derivative evaluated for 3 different choices of f(x): 
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1

0

1

0

12 2 2

0

1: ( ) 1, ( ) 2 ( ) 2 2 ( )

2 : ( ) , ( ) 2 ( ) 2 2 ( )

3 : ( ) ( ) 2 ( ) 2 2 ( )

Choice f x K x f x W dx f x

Choice f x x K x f x x W dx x f x

Choice f x x K x f x x W dx x f x

 

 

 

= = = =

= = = =

= = = =







 

The functional derivative (kernel function) K(x) is different for different choices of f(x). 

Alternative view of functionals:  A functional can be viewed as a function of N arguments, in the 

limit as N → ∞.  The differential dW = the sum of the partial derivatives, which goes over into a kernel 

integral: 

 

1 2 1 2
1 2

( , ,..., ), ...

( ) , ( ) ( ) ( ) ( )

N N
N

W W W
Given W f f f dW df df df

f f f

W W
Given W f x W dx f x dx K x f x where K x

f f

 
  

 

  
= + + + →

  

= =  

 

Summary:  A functional takes a function and produces a number.  Functionals are often written in a 

shorthand notation which allows the functional to use differential operators on the function.  A functional 

derivative is a function, which can be integrated with a small variation in the function argument to produce 

its change in the functional: 

( ) ( ) ( ) ( )
W W

W dx f x dx K x f x where K x
f f

 
  

 
= =   . 

A functional derivative treats its function argument and its derivatives as independent functions, even 

though they’re not; they’re treated as independent because of the tremendous flexibility in choosing the 

values of both.  When a functional derivative is zero, the functional does not change with any small 

variations in its function argument, and also small variations in any derivatives of the function argument 

which the functional uses. 

Reference: http://julian.tau.ac.il/~bqs/functionals/node1.html 

D’Alembert’s Principle 

[Section under construction.]  D’Alembert’s principle is the fundamental principle of analytical 

mechanics, according to Cornelius Lanczos’ Variational Principles of Mechanics [Lan p77t].   Lanczos 

[Lan ch 3] has an interesting discussion of the progression from Newton’s laws, to d’Alembert’s principle.  

D’Alembert’s principle is [equivalent to?? implies??] Hamilton’s principle, and other lesser-known 

principles of Euler, Lagrange, and Jacobi.  Therefore, it is the “only postulate of analytical mechanics,” as 

Lanczos sees it. 

D’Alembert’s principle can be integrated with respect to time to get Hamilton’s principle [Lan p11-3].   

Hamilton’s principle is valid only when d’Alembert’s principle is valid. 

[Lan] points out specifically how action-minimizing principles now describe all fields of physics, far 

beyond what Lagrange could have anticipated.   

D’Alembert’s principle of virtual work (1742) attempts to “reduce” dynamics problems to “statics.”  

Essentially, we rename the rate of change of momentum as a “force”: the inertial force.  Then the sum of 

all the “forces” equals zero.  For example: 

#

1

,

particles

e i e

i

d
m where

dt
=

= = → − = = + = =  −v v

p
F a F p 0 F F F 0 F p . 

This looks like a statics problem.  Similarly for rotations, we relate torque and angular momentum: 
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#

1

,

particles

e i e

i

d
I where

dt
=

= = → − = = = =  −v v

L
T θ T L 0 T + T T 0 T L . 

The inertial force originates from the center-of-mass of the system; the inertial torque is a moment, and can 

act about any arbitrary point (in fact, it’s the same around all points). 

In a static system, the sum of the forces is zero.  Therefore, the gradient of the total potential, which is 

the sum of the forces, is zero: 

V= − = vF 0 . 

For a small displacement of the system, the work done to achieve the displacement equals the change in 

potential energy, which is simply V·δr: 

0 (infinitesimal displacement )W V   =   =  =r F r r . 

By calling ma a “force”, we have one form of d’Alembert’s principle: Constraint forces do no work on 

virtual displacements.  Why?? 

Like all good variational principles, according to [Lan], d’Alembert’s principle applies to generalized 

coordinates, not just rectangular ones.  In addition, d’Alembert’s principle applies for both holonomic 

(integrable) and non-holonomic constraints, making it more general than Hamilton’s stationary-action 

principle.  [Liu] disputes this claim. 

[Liu] states that d’Alembert’s principle applies to velocity constraints only when the velocity terms of 

the constraint equations are homogeneous (of any order) in the velocities.  In other words, when we can 

write the constraint equations as: 

( , , ) ( , ) ( , , ) ( , , ) is homogeneous in thei i i i i i i ig q q t f q t s q q t where s q q t q= + . 

This is a very large class of velocity constraints, which covers most practical situations. 

Noether World 

Noether’s theorems describe a deep property of physics: the connection between symmetries and 

conserved quantities.  Noether’s theorems have had a huge impact on the framing of modern physics.  They 

are widely misunderstood, and like so many other topics, are substantially simpler than often believed.  

However, Amalie Emmy Noether was not simple [www.agnesscott.edu/lriddle/women/noether.htm].  She 

was a preeminent mathematician, with significant accomplishments in several areas of mathematics and 

mathematical physics.  When physicists like David Hilbert and Albert Einstein needed help with 

conservation laws in General Relativity, they turned to Emmy Noether.  She was born in 1882 in Erlangen, 

Bavaria, Germany, and died in 1935 in Pennsylvania, USA. 

There are three distinct theorems, with the common theme that symmetries imply constants of the 

motion, i.e. conserved quantities.  Her first theorem describes spatial symmetries, and makes it easy to find 

the conserved quantity, without the burden of a specialized coordinate transformation.  Her second theorem 

describes time symmetry, and follows trivially from the Lagrangian equations of motion.  Her third 

theorem applies to field theories, both classical and quantum, and describes symmetries of the fields (such 

as gauge symmetry for electromagnetism).  Not surprisingly, in quantum field theory, this third form is the 

most far reaching, and also the most challenging to understand. 

We discuss here only the spatial and time symmetries.  We show that conservation of energy (or more 

generally, the hamiltonian) cannot be derived in the same way as conservation of momentum. 

Note that knowing the existence of constants of the motion, before solving for the motion itself, often 

can make solving for the motion easier.  We’ve all seen elementary physics problems where using 

conservation of energy made the solution much simpler than using Newton’s laws directly. 

Noether’s theorems require an understanding of basic Lagrangian mechanics, including ignorable 

coordinates and their conserved momenta. 
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Conservation of What? 

Before submerging into the details of conserved quantities, let us dispel a common misapplication of 

Noether’s theorem.  Some people argue that some new proposed physics is impossible because it violates 

our current conception of “conservation of momentum” (or energy).  The correct understanding of 

Noether’s theorem is that with each new lagrangian comes a new “momentum” that is conserved.  Non-

conservation of a “preexisting” momentum does not in any way constrain the possibility of new theories.  If 

it did, then both special relativity and magnetic forces would be impossible, as we now show. 

Classical nonmagnetic mechanics conserves momentum mv.  Each lagrangian defines its own 

“momentum”: 

21
( )

2

L
L mv V m


= −   =


r p v

r
. 

This is conserved within its domain of applicability: nonrelativistic, nonmagnetic particle mechanics.   

It is not conserved in magnetic mechanics, but we cannot claim that magnetics is impossible because it 

doesn’t conserve mv.  With magnetics comes a new lagrangian, and therefore a new “momentum” that is 

conserved: 

21
( ) ( ) ( )

2
L mv q V m q= + −  = +v A r r p v A r . 

This is conserved within its domain of applicability: nonrelativistic particle mechanics.  Note that in the 

absence of magnetic fields, this reduces to the simpler definition of momentum.  [As an aside, note that 

canonical momentum is also now gauge dependent.] 

Similarly, (mv + qA) is not conserved in relativistic mechanics, but we cannot claim that relativity is 

impossible because it doesn’t conserve momentum as-we-know-it.  With relativity comes a new lagrangian, 

and therefore a new “momentum” that is conserved: 

2 / ( ) ( ) ( )L mc q V m q = + −  = +v A r r p v A r . 

This is perfectly conserved in relativist, magnetic particle mechanics.   

None of this constrains the possibility of new physics that doesn’t conserve the above momentum: 

such new physics would have a new lagrangian, and a corresponding new definition of “momentum”, 

which (if the system, including the EM fields, has space translation invariance) would be conserved. 

Lest you think this opens the door to unphysical things such as perpetual motion, consider: magnetism 

breaks conservation of kinetic momentum (mv), but didn’t open the door to perpetual motion.  

Conservation of canonical momentum still maintains order in the universe. 

Note also, though, that total energy in the universe is not conserved in GR: the total energy in the 

universe is constantly increasing through expansion.  And this is a perfect example of how we cannot use 

“but it violates conservation of energy” as an argument against GR. 

Spatial Symmetry and Conserved Quantities 

We present the ideas through an example whose properties are familiar from elementary physics, and 

show how Noether’s theorem can derive the familiar result.  We start first with spatial translation 

symmetry.  We finish up with the much simpler time translation symmetry. 

Before using one of the theorem’s, you must know a symmetry of the lagrangian.  Usually, they are 

identified by inspection of the mathematics, or by knowledge of the symmetry of the physics. 

Details:  Recall that if the lagrangian is independent of a particular coordinate, qc, then the conjugate 

momentum is conserved (is a Constant Of the Motion): 

0 c
c c

L L
p COM

q q

 
=   =

 
. 

https://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu/  Funky Mechanics Concepts emichels at physics.ucsd.edu 

3/31/2024  21:30 Copyright 2002 - 2024 Eric L. Michelsen.  All rights reserved. 56 of 92 

When the lagrangian is independent of a coordinate, we say the lagrangian is symmetric w.r.t. 

translations in that coordinate.  But our choice of coordinates is arbitrary.  It is reasonable, then, to suppose 

that if the lagrangian has any spatial translation symmetry, whether it aligns with a coordinate or not, there 

should be a conserved quantity.  We now prove this, and find the general conserved quantity, which is 

simply the component of the generalized momentum vector along the line of symmetry. 

The figure below shows a 2D space with x-translation symmetry.  In general, though, the coordinates 

used to parametrize configuration space may not align with the symmetry.  We take v and w as our 

coordinates, though we know from elementary physics that it is x-momentum that is conserved.  We now 

use Noether’s spatial theorem to find the conserved quantity from the symmetry. 

x

w

z

v

g

v’
w’

ζ
x

z

v

g

v’

ζ

representative 
particle

 

Figure 5.6  (Left) A space with x-translation symmetry.  ζ parametrizes the translation.  

(Right) The space labeled with (v, z) coordinates. 

Noether’s spatial theorem states that any continuous symmetry of the coordinates that leaves the 

lagrangian invariant corresponds to a constant of the motion, given by the theorem. 

A constant of the motion is defined as a fixed function of the dynamic variables (coordinates and 

velocities) which is constant throughout the motion of the system.  Common example of COMs are energy, 

momentum, and angular momentum.  COMs are also called conserved quantities, and sometimes 

conserved “charges”. 

In (v, w) coordinates, our lagrangian for a particle is: 

( )2 2( , )
2 2

m v w
L v w T V v w mg

+
= − = + − . 

We see by inspection that any translation of coordinates from (v, w) to (v’, w’) which preserves the sum 

(v + w) is a symmetry of the lagrangian.  A continuous spatial symmetry is a coordinate transformation 

that can be parametrized by a single parameter, which we call ζ.  The symmetry must exist for finite ζ, and 

often exists for unbounded ζ.  In this example, our symmetry keeps (v + w) unchanged, so we can choose ζ 

to be the distance we translate the coordinate origin (passive transformation).  Then: 

' 1 ' 1
' , ' , ,

2 2 2 2

dv dw
v v w w

d d

 

 
= − = + = − = . 

is a continuous family of coordinate transformations, parametrized by ζ.  Essentially:  

We have identified a direction in configuration space  

which is a symmetry of the lagrangian. 

A vector s which points along that line of symmetry is (Figure 5.7): 

1 2
1 2

1

ˆ ˆ ˆ ˆ...

n
n

n

dq dqdq dq

d d d d





   

=

= + + + = s q q q q . 
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q’1

ζ = 0

q’2
family of 

transformations 

ŝ

p

p∙ŝ = ps

 

Figure 5.7  (Brown) Family of symmetry transformations.  (Red) Generalized momentum vector 

for resulting motion.  (Green) Vector in direction of symmetry.  (Blue) ps = component of 

momentum along symmetry direction. 

Note that configuration space is an abstract space, not (in general) physical space.  Therefore: 

The curve of symmetry in configuration space may have  

a different shape than the symmetry in real space. 

For example, consider 2D rotational symmetry in (r, ) coordinates.  In real space, the curve of symmetry is 

a circle, but in configuration space, the curve of increasing  (i.e., the “coordinate curve”) is a straight line.   

Therefore, the conserved quantity is the component of the generalized momentum along the curve of 

symmetry in configuration space, which is simply the dot product of s with the generalized momentum 

vector: 

1 2
1 2 1

1 2

1 2 1

ˆ ˆ ˆ ˆ...

...

n

n
n

n
n

n

L L L L

q q q q

dq dqdq dqL L L L
COM

q d q d q d q d







   

=

=

   
= + + + =

   

   
 = + + = =

   





p q q q q

p s

 

[If you are familiar with differential geometry, you may object that the dot product above, in potentially 

oblique coordinates, does not use the metric.  However, the momentum “vector” p is really a 1-form, so the dot 

product does not need a metric.  We give an oblique coordinate example later.] 

We now prove the above result.  At first, we consider only infinitesimal values of ζ, and extend the 

result later.  We constructed the transformation to leave L( ) unchanged for all ζ, so we write the total 

derivative dL/dζ, first in our example above, then in general: 

(1) 

1

' ' ' '
0

' '
In general: 0

n

dL L dv L dv L dw L dw

d v d v d w d w d

dq dqdL L L

d q d q d

 

 

    

  
=

   
= =  +  +  + 

   

  
= = + 

  


 

If we were to change coordinates such that one coordinate r1 points along s, then the lagrangian would be 

independent of r1, and its conjugate momentum would be conserved.  We now show how to compute that 

conserved momentum without actually bothering to find a specific coordinate transformation. 

In eq. (1), as when deriving Lagrange’s equations of motion,  we want only one derivative w.r.t. either 

the q’s or q-dot’s.  In this case, though, we expect our conserved quantity to be momentum-like, so we 

eliminate ∂/∂q in favor of / q  : 
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1

' ' '
and

' ' ' '
0

' '
In general: 0

n

L d L dq d dq d dq

q dt q d d dt dt d

dL d L dv L d dv d L dw L d dw

d dt v d v dt d dt w d w dt d

dq dqd L L d

dt q d q dt d

 

 

  

    

 
=

 
= = = 

 

         
= = + + +      

         

   
= +  

    


 

Each term in square brackets is the result of the product rule, so: 

( )

1

1

'' '
0 In general: 0

' ' 1 1
so

2 2 2

'
In general: .

n

n

dqdL d L dv L dw dL d L

d dt v d w d d dt q d

L dv L dw m
COM m v w w v

v d w d

dqL
COM

q d









    

 



=

=

   
= = + = = 

   

   −   
+ = = + = −    

      


=  







 

Let’s check this result.  We know that xp mx=  is the conserved quantity.  Let us convert (v, w) to the 

x-coordinate, and compare: 

( )

/ 2 , / 2

1

22 2 2 2

v x other w x other

m m x x
w v mx

= + = − + 

− 
− = − = − 

 

 

Well, if ( )1/ 2 , thenmx COM mx COM− =     = .  We have recovered the expected result. 

So far, this works only for infinitesimal ζ.  This means there exists a small neighborhood around ζ = 0 

where the given quantity is conserved.  We now extend this result to finite ζ.  There was nothing special 

about expanding around ζ = 0.  We could have expanded around any value of ζ.  Now that we have a 

neighborhood around  ζ = 0 which conserves the quantity, we can choose a value of ζ away from 0, but in 

the neighborhood of 0, in which the quantity is still conserved.  Our new neighborhood overlaps the first, 

but goes beyond it on one side.  In this way, we can construct as many overlapping neighborhoods as we 

need to cover any range of ζ, out to ± ∞, so long as the symmetry exists. 

Note that for rotational symmetry, the overlapping neighborhoods will be along circles (in real space) 

around the origin.  Noether’s theorem follows the curve of the symmetry, whatever its shape. 

Example 2:  We now explore some variations of this example.  Suppose we defined our original 

transformation without the 2: 

' '
' , ' , 1, 1

dv dw
v v w w

d d
 

 
= − = + = − = . 

Our derivatives are larger by 2, so our COM is: 

( )
1

2
m w v COM mx− = = − , 

which differs only by a multiplicative constant, so is essentially the same result. 

The conserved quantity from Noether’s theorem  

includes an arbitrary multiplicative factor. 

Example 3:  Now let’s use oblique (non-orthogonal) coordinates (Figure 5.6, right).  In (v, z), we have: 
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2
2( , )

2 2

' '
Transformation: ' , ' , 1, 0 .

m v
L v z T V z mgz

dv dz
v v z z

d d


 

  
 = − = + −    

= − = = − =  

 

Then the conserved quantity derives only from the v’ coordinate: 

( )
'

1
2

L dv v
COM m mx

v d


= = − 


. 

Noether’s spatial  theorem summary:  Noether’s theorems apply only to systems with a lagrangian.  

E.g., it does not apply to dissipative systems.  The fact that space has a symmetry tells us that something is 

conserved.  Exactly what is conserved depends on the lagrangian.  For example, for the nonrelativistic 

lagrangian in gravity, 

( )2 2 2( , , , , , ) , are conserved, but not
2

m
L x y z x y z T V x y z mgz mx my mz= − = + + −  . 

For relativistic speeds, the lagrangian, and the conserved quantities, are different.  L is no longer T – V: 

( )

( )( )

2 2 2 2 2

1/ 2
2 2 2 2

1 / , are conserved, but not

1 /

L mc x y z c mgz mx my mz

where x y z c

  


−

= − − + + − 

 − + +

 

A symmetry of the lagrangian may be more specific than a symmetry of the physics. 

For example, consider physics on a table in uniform gravity, versus physics on the floor.  The physics 

is identical: the acceleration of gravity is the same on the table and on the floor.  This does not mean that 

the lagrangian is symmetric with respect to vertical translations; it is not.  The lagrangian always includes 

any potential energy terms, and potential energy is a function of height.  Therefore, vertical momentum is 

not conserved. 

We often hear that spatial translation invariance implies conservation of momentum.  But we could say 

it the other way around: the laws of physics simply include conservation of momentum, and therefore, the 

lagrangian describing those laws must include spatial translation invariance. 

Time Symmetry and Conserved Quantities 

What about a symmetry w.r.t. time?  This is different than a spatial symmetry.  Does it result in a 

conserved quantity?  As a first attempt, remembering that time and the hamiltonian (t, H) are almost like a 

coordinate/momentum pair, we try to apply the formula for space (derived above) to time.  We see that it 

fails: 

' '
' , 1 , and 1 (uh oh)

1??
1

dt L dt dt
Let t t COM t

d t d dt

L
COM


 


= + =  = = =




 = 



 

The result is nonsense.  Fortunately, the E-L equations of motion themselves furnish a simple conserved 

quantity, a fact which is derived in every exposition of Lagrangian mechanics: 
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1

1

1 1

( , , )

Use:

n

i i

n

i

n n

h q q t

dq dqdL L L L L d L

dt q dt q dt t q dt q

dqd L L d L
q

dt q dt q dt t

d L L d L
q q L

dt q t dt q

 

 






 
  

=

=

= =

     
= + + = 

     

    
= + +  

     

      
 = +  −          





 
1

( , , )

n

H q p t

d L
p q L

dt t
 

 =

  
 = − = −
  
 


 

Thus, if the lagrangian has no explicit time dependence, i.e. ∂L/∂t = 0, then the hamiltonian is a COM.  We 

have (recall ( , , )h q q t  ≡ hamiltonian written as a function of q-dot, instead of p): 

1 1

( , , ) or ( , , )

n n
L

h q q t q L COM H q p t p q L COM
q

  
 = =


 − =  − =


  . 

Motion With Constraints 

Many types of constraints are possible on the motion of a system through configuration space, 

including: 

1. holonomic constraints 

2. differential constraints 

3. integral constraints 

4. velocity constraints 

In this section, we discuss holonomic, differential, and velocity constraints.  Holonomic constraints define 

relations between the coordinates, but not velocities or other dynamic quantities.  All other constraints are 

non-holonomic.  Non-holonomic constraints include differential constraints (rolling without slipping), 

velocity constraints, and harder things, including discontinuous constraints such as particles in a box: 

0 < q < L.   

The Lagrangian formulation of mechanics allows incorporating several kinds of constraints into the 

equations of motion, thus solving for the constrained system.  The Hamiltonian formulation does not allow 

constraints [Gol p335t]. 

There are at least 3 reasons why we solve for constrained motion: 

• Even when it is possible in principle to use the constraint equations to eliminate the redundant 

generalized coordinates, it may be easier to keep them all, and include the constraints in the 

solution. 

• Including all the coordinates, and using Lagrange’s method of undetermined multipliers, give the 

forces of constraint.  In other words, it tells how strong the constraining system has to be to 

enforce the constraints. 

• For non-holonomic constraints, it is not generally possible to eliminate redundant coordinates. 

Constraint Forces vs. Applied Forces 

Typically, applied forces are given, or their potentials are given.  In contrast, constraint forces limit the 

resulting motion in some way, but their values and potentials are, a priori, unknown.  Most constraint forces 

of practical interest do no work.  Therefore, like many sources: 

In this work, we define “constraint forces” as doing no work. 
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It is often important to know the values of the constraint forces, because it drives the design of the 

constraining system (how strong must the roller-coaster rails be?).  Most methods of solving for the motion 

of a constrained system also provide straightforward methods of solving for the constraint forces. 

Holonomic Constraints 

For n generalized coordinates qi, we can write k (for “konstraints”) possibly time-dependent holonomic 

constraints as: 

1( ,..., , ) =constant, 1, ... [F&W 18.12 p 68, 19.4 p 69]j n jf q q t c j k= = . 

[“holonomic” from the Greek for “integrable” [J&S p50t].]  Some references specify the constants cj to be 

zero, but we will see that only derivatives of f are used in the equations of motion, so in practice, there is no 

benefit to moving the constants across the equals sign.   

The constraint equations imply differential relationships, obtained by taking the total time derivatives 

of both sides: 

 1 2
1 2 1

... 0, 1, ...

n
j j j j j

n
n

f f f f f
dq dq dq t q t j k

q q q q t






=

     
 + + + + = + = =
     
 
 . 

There remain, then, n – k independent degrees of motion.  This means that to apply Hamilton’s principle to 

vary the action, we can no longer vary the n qi independently.  For simplicity, consider a single constraint 

f(q) = 0, so k = 1.  At most, we can vary n – 1 coordinates independently (label them q1 through qn–1), 

before the differential constraint fixes δqn.   

(1) 1 2 1
1 2

...n n
n

f f f
q dq dq dq

q q q
 −

   
= − + + + 

   
. 

Thus our previous derivation of Lagrange’s equations of motion does not apply, because the individual 

coefficients in  

1

0 1, ...

n
d L L

n
dt q q 



=

 
− = =

 
 . 

need not vanish independently.  I.e., the qσ may be interdependent so as to make the sum 0 without all the 

coefficients being 0. 

Lagrange asked, can we bring the constraints into Hamilton’s principle?  As noted above, we are free 

to take the constraint constants cj to be zero.  Then we can add some unknown, time-dependent multiple of 

the constraint equation, which is still zero, to the Lagrangian, without changing it:   

( , , ) ( , , ) ( ) ( , )i i i i iL q q t L q q t t f q t→ + . 

The λj(t) are functions of time alone, just like the q(t), i.e.  ∂λj/∂qi = 0.  [Tay p277m] 

Some popular references misleadingly state that the λj(t) are functions of the coordinates and/or 

their derivatives.  This is not so, since the λ(t) are not affected by variations δq(t).  However, when 

finally solving the simultaneous equations, we will obtain equations relating the λ(t) to the qi(t) 

and their time derivatives, just as we obtain equations relating a given qi(t) to all the others.   

But as functions, the λ(t) depend only on t. 

Therefore, when taking the variation of the trajectory, the δqi(t) do not affect the λj(t).  Thus, for any 

variation δqi(t) that satisfies the constraints: 

(2) 

1

( ) ( ) 0 [F&W 19.2 p69]

nB

A

L d L f
S dt t q t

q dt q q


  

  

=

   
= − + = 

   
 . 
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As we freely vary the n – 1 independent coordinates, producing some unavoidable δqn(t), there must 

exist, then, some λ(t), an as-yet undetermined function of time, which will cancel the forced variation of 

δqn.  [needs more explanation??]  The λ(t) are called undetermined multipliers, since we don’t yet know 

what they are.  They are also called “Lagrange multipliers.” 

[Many references state that “we can now vary all of the qi independently.  I disagree.  We can never 

vary them independently because the constraint equation always applies, and prevents it.]  We can now find 

n equations of motion (not just n – 1 equations) by including the λ(t) to cancel the forced variations of the 

dependent qn. 

( ) 0, 1, ... (one constraint)
L d L f

t n
q dt q q  

 
  

− + = =
  

. 

We now have n equations of motion, 1 constraint equation, n unknown coordinate functions of time qi(t), 

and 1 unknown undetermined multiplier λ(t).  Thus we can solve the system of n + 1 differential equations 

and n + 1 unknowns. 

For k constraints (instead of just 1), note that we can freely vary n – k coordinates q1 through qn–k, and 

we have k forced variations of qn–k+1 through qn.  Then k undetermined multipliers λj(t) must exist which 

together cancel the forced variations.  This adds a summation over constraints to the equations of motion: 

 1

1

1

( , , ) ( ) ( , ) , ...

( ) 0 1, ... ( constraints)

k

i i j j i i n

j

k
j

j

j

L L q q t t f q t where q q q

fL d L
t n k

q dt q q  



 

=

=

= +  

 
− + = =

  





 

Since constraints must include forces that guide the trajectory along constraint lines [F&W p52 ff], we 

can include them in Lagrange’s Equations of Motion (LEM).  Given n coordinates and k constraints, we 

can rearrange the constraint equations to be additional equations of motion that give us a full system of 

n + k equations for n + k dynamic variables.  With the constraints defined as above, 

(3) ,

1

( ) ( ) 1,..., [F&W 19.3 p69]

k
j

j constraint

j

fd L L
t Q t n

dt q q q


  

 

=

 
− =  =

   , 

which can be thought of as “rate of change of momentum − forces due to potentials = other forces.”  The 

other forces are exactly the n generalized forces of constraint Qσ(t),constraint, as functions of time. 

These n equations plus the k constraint equations solve for the n qσ(t) and the k λj(t).   

In the course of solving the equations, the qi(t) and λj(t) will have relations to the coordinates, including 

their time derivatives possibly up to order 2(n – k), and possibly t.  You solve for the qi(t) and λj(t) 

simultaneously from the equations of motion, and the constraint equations.  The solution can lead to 

relations including such higher order derivatives of qi(t). 

Generalized forces satisfy the same momentum and work equations as Cartesian forces: 

,

(no sum on ), 1, ... [from F&W 15.4 p54]

( ) ( ), 1,..., [from (3) above]

i i

i i constraint i
i i

W Q q i i n

d L L
p Q t Q t i n

dt q q

 = =

 
 = +  =

 

 

Differential Constraints 

Differential constraints are written relating the differentials of coordinates, the coordinates, and 

possibly time: 
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 

1 1 2 2

1

1

( , ) ( , ) ... ( , ) ( , ) ( , ) 0

1, ... , ... [F&W p71m]

n

j j jn n j j

n

q t dq q t dq q t dq dt q t dq q t dt

j k where q q q

 



     

=

+ + + + = + =

= 


 

The jσ(qi, t) are functions of the coordinates and possibly time. 

Recall that for holonomic constraints, in applying Hamilton’s principle (eq. (2)), we used only the 

resulting differential constraint, Eq (1), where the ∂f/∂qi are also functions of the coordinates and time.  

Therefore, differential constraints are also included in that part of the holonomic constraint analysis.  With 

a simple change of notation to the coefficients jσ, we have: 

1

( , )
( , ) : ( ) ( , ) ( ) 1, ...

[F&W p71b]

k
j i

j i j j i

j

f q t d L L
q t t q t Q t n

q dt q q
  

  

   

=

  
→ − =  =

     

However, we still need k constraint equations to augment the n equations of motion, to yield n + k 

equations in all, needed to solve for n unknown qi(t) and k unknown λj(t).  We get these by dividing the 

differential constraint equation by dt.  Physically, this means the instantaneous velocities of the coordinates 

must obey the relationship: 

1 1 2 2

1

( , ) ( , ) ... ( , ) ( , ) ( , ) 0

1, ... [F&W p71b]

n

j i j i jn i n j j i j iq t q q t q q t q q t q q t

j k

 



     

=

+ + + + = + =

=

  

[F&W p71b] note that this can be extended to the case where the j are functions of the velocities q-doti, 

but give no references.  Velocity constraints (described below) are tricky. 

Constraints Including Velocities 

The topic of velocity constraints has been fraught with much error and confusion, even among 

physicists.  We explain here several of the errors, and their corrections, citing published works along the 

way. 

Constraints including velocities are one kind of non-holonomic constraints.  We can extend the 

holonomic constraints by including the velocities in the constraint functions: 

1 1( , ... , , ... , ) =constant 1, ...j n n jg q q q q t c j k= = . 

Note that [Gol] has a serious error concerning velocity constraints.   

[Thanks to Patrick Geisler for pointing this out to me.]  The error is based on a 1966 paper [Ray1], 

which was retracted the same year by the author [Ray2].  ([Gol p47b] also mistakenly cites the year as 

1996.)  Specifically, [Gol p47] (following [Ray1]) uses the method of Lagrangian multipliers with an 

incorrect trajectory variation procedure, yielding an incorrect equation of motion.  A corrected, but still 

incomplete, procedure is given by [S&C1], [S&C2], and [J&S]. 

The error in [Ray1] and [Gol] derives from allowing variational trajectories which satisfy the 

constraints, but which cannot be achieved by any physical constraining system.  Specifically, for the 

constraining mechanism to achieve the forces necessary for the trajectory, it would have to exert forces that 

are not perpendicular to the motion, i.e. would have to violate D’Alembert’s Principle.  In other words, the 

constraining mechanism would have to “drag” the system in unphysical ways.  Furthermore, even with 

such a magical capability, the solution is not unique, because the equations are under-determined [J&S??].  

Clearly, any given physical system, with a full set of initial conditions, has only one (unique) motion 

resulting from it. 

[J&S p116t] claim that the correct variational procedure allows only trajectories which satisfy 

d’Alembert’s principle (which is disputed by [Liu]).  Surprisingly, such a variational procedure is very 
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simple.  Instead of derivatives of the constraint equations with respect to the coordinates, we take 

derivatives with respect to the velocities.  We quote the result, which apparently even [J&S] are uneasy 

about, since they only timidly endorse it, saying “this result is generally accepted....” [J&S p116t]: 

,

1

( ) ( ) 1,..., [from J&S 3.21 p116t]

k
j

j constraint

j

gd L L
t Q t n

dt q q q


  

 

=

 
− =  =

   . 

It may seem that in taking the derivative of gj, we have lost information, but recall the that full constraint 

equation is part of the set of equations used to finally solve the motion.  Hence the information is retained.   

However, the above equation is incomplete, because some of the k constraints may include only 

coordinates (but not velocities), while others may include both [Liu (12) p752, and following].  How do we 

simultaneously include both kinds of constraints?  Furthermore, this result is based on d’Alembert’s 

principle , which [Liu] claims is not valid for arbitrary velocity constraints, but only for a restricted class of 

them. 

Surprisingly, [Liu] addresses both of these problems in a 1981 paper that far predates [J&S].  Liu’s 

approach uses F = ma directly, and therefore converts the original constraints into constraints on 

acceleration.  Liu’s prescription is: 

2

2

( , )
For each constraints of the form: ( , ) ( , , , )

( , , )
For each constraints of the form: ( , , ) ( , , , )

j
j j j

j
j j j

f q t
f q t c define h q q q t

t

g q q t
g q q t c define h q q q t

t


= 




= 



 

By construction, the hj(·) (j = 1, ... k) form a set of k constraints, all of which are linear in the 

accelerations.  As before, the information lost in taking derivatives here is retained in the constraint 

equations which form part of the complete set of simultaneous equations that must be solved for the 

motion.  Since [Liu] does not use Hamilton’s (or any other) variational principle, his most general 

equations of motion are Newtonian and in 3D vector form.  For N particles (and therefore 3N – k 

independent degrees of freedom): 

1

( ) , 1, ... [Liu (15) p752]
k

j
i i i j

ij

h
m t i N

=


= + =


r F

r
. 

For those classes of constraints (described later) which satisfy d’Alembert’s principle, and therefore 

also Hamilton’s principle, we can use generalized coordinates 

,constraint

1

( ) ( ) [From Liu (19) p752]
k

j
j

j

hd L L
Q t t

dt q q q





=

 
− = =

  
 . 

[Liu sec. 6 p753] derives d’Alembert’s principle, concluding: 

d’Alembert’s principle is valid if and only if the constraints on the system are either (i) holonomic, 

or (ii) homogeneous in velocity dependence. 

By “homogeneous in velocity dependence” he means the velocity terms, taken separately from the 

holonomic terms, are homogeneous (of any order) in the velocities.  In other words, the constraint can be 

written as: 

( , , ) ( , ) ( , , ) ( , , ) is homogeneous in thei i i i i i i ig q q t f q t s q q t where s q q t q= + . 

Hamilton’s principle is valid only when d’Alembert’s principle is valid. 

[Liu p752] points out that Newton’s 2nd law, F = ma, applies to all types of constraints, even when 

Hamilton’s principle does not.  Furthermore: 
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Newtonian-like equations of motion can be solved for the forces of constraint,  

even when Hamilton’s principle does not apply. 

Summary 

We have shown that holonomic constraints can use the method of Lagrange undetermined multipliers 

to solve simultaneously for all n of the interdependent qi(t), and for the undetermined multipliers λj(t).  This 

also provides the forces of constraint.  Similarly, for differential constraints, the method of undetermined 

multipliers solves for the motion and the forces of constraint, but uses a velocity relationship to supplement 

Lagrange’s equations of motion.   

Another variant of undetermined multipliers can be used to solve for integral constraints [Aro ch 8]. 

Velocity constraints have been widely misunderstood and incorrectly published by physicists for a 

century.  The most definitive work seems to be [Liu] in 1981, though his paper is only 4 pages.  The final 

result converts each constraint equation, whether a holonomic or velocity constraint, into an acceleration 

constraint, which is necessarily linear in the accelerations.  Undetermined multipliers once again provide 

the final mathematical step to solve for the motion and constraint forces.  d’Alembert’s principle, and 

therefore Hamilton’s principle of stationary action, is only valid for holonomic constraints, and velocity 

constraints whose velocity terms are homogeneous (of any order) in the velocities. 

Newtonian-like equations of motion can be solved for the forces of constraint, even when Hamilton’s 

principle does not apply. 
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6 Hamiltonian Mechanics 

Hamiltonian mechanics rewrites lagrangian mechanics in a different form, which is useful for many 

applications.  In particular, quantum physics uses the Hamiltonian form extensively. 

What Is the Hamiltonian? 

The hamiltonian is defined as: 

# coordinates

1

( , , ) ( , , ), [F&W 20.12 p79b]i i i i i i i
ii

L
H q p t p q L q q t where p

q
=

  
  − 
  
 

 , (6.1) 

and L is any lagrangian appropriate for the physics.  Note that the hamiltonian is a function of coordinates 

and momenta (qi and pi), whereas the lagrangian is a function of coordinates and their velocities 

( )andi iq q .  Therefore, when transforming from the lagrangian to the hamiltonian, one must eliminate the 

velocities in favor of the momenta using the definition of conjugate momentum, included in (6.1). 

The units of the hamiltonian are always energy.   

The units of a coordinate times its conjugate momentum are always action (energy-time). 

This follows from the lagrangian having units of energy, and the definition of momentum in (6.1). 

In the case of time invariant potentials, and nonrelativistic L = T – V, the above definition of H often 

reduces to H = T + V.  [Since some references address only this latter case in earlier discussions, they 

confusingly define their hamiltonian in a highly nonstandard way [P&R 4.6 p43], though they fix it later in 

the book.] 

The hamiltonian is not defined as T + V. 

Definition (6.1) allows for constrained velocities and time-dependent potentials. 

[TBS: Bead on rotating hoop example.  Linear bead on an accelerating (oscillating?) spring example.]  

Note that constrained velocities usually require that the constraints do work on the system, thus changing 

its energy over time.   

Note that the value of the lagrangian function is always independent of the chosen generalized 

coordinates, since it is defined by energy terms which are coordinate independent.  In contrast [Gol p63t], 

The values of the hamiltonian function depend on the coordinates chosen. 

This can be seen from the defining equation above, which explicitly includes the coordinates and momenta, 

along with the coordinate independent lagrangian.  Later on, we’ll see that in electromagnetics, both the 

lagrangian and hamiltonian are gauge-dependent. 

It is not clear that the hamiltonian is well-defined for a dissipative system [ref??].  Hamiltonian 

mechanics is generally used only for non-dissipative systems (which includes microscopic systems, such as 

most elementary quantum systems). 

The energy function:  We can write the hamiltonian as a function of the qi and their velocities [Gol 

??]: 

1 1

( , , ) ( , , ) ( , , )
n n

i i i i i i i i i
ii i

L
h q q t p q L q q t q L q q t

q
= =


 − = −


  . 

However, this is only the energy of the system in some cases, which we detail later. 
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TBS: How to hide time dependence in a system.  For example, to add time-dependence to a given 

mechanical system, we could define a new generalized coordinate, call it qt, with a constrained velocity and 

initial condition: 

1, (0) 0 ( )t t tq q q t t= =  = . 

and then claim the hamiltonian is time-independent.  The changes in energy that result are now due to the 

“force” which is enforcing the constrained velocity on qt. 

If the Hamiltonian Isn’t the Total Energy, Then What Is It? 

If the hamiltonian is not the total energy, then what is its essential property?  Much like the lagrangian, 

we can define the hamiltonian in operational terms, i.e. what can I use it for?  The hamiltonian of a system 

is that function of the coordinates and their momenta for which Hamilton’s equations yield the correct 

equations of motion.  Equivalently, and importantly: 

The essential property of the hamiltonian is that  

it is the generator of time evolution for the system. 

Given the state of a system at some time, and its hamiltonian, we can predict its future state for all time.  

This property of generating time evolution is crucially important in classical mechanics, as well as quantum 

mechanics.   

For most quantum systems, the total energy function is the hamiltonian, but this is not the case for 

relativistic fermions.  Fermions satisfy the Dirac equation, and its hamiltonian is not the total energy.  Too 

many QM references insist on calling the hamiltonian the “energy,” which it clearly is not, when it is 

perfectly simple and consistent to interpret it as the generator of time evolution. 

When Does the Hamiltonian Equal Energy, and Other Questions? 

There are three distinct questions we might ask about the hamiltonian: 

1. Is the hamiltonian “conserved,” i.e. a constant of the motion? 

2. Does the hamiltonian equal the total energy? 

3. Does the hamiltonian equal T + V? 

Note that [Gol p345]?? 

H may be the total energy, or not.  H may be conserved, or not.   

These are independent properties.  A given H may be either, both, or neither. 

It is not clear (to me, at least) that the hamiltonian is well-defined for a dissipative system, or that the 

lagrangian is, either.   

1.  Is the hamiltonian conserved?  This is simple: if the lagrangian does not explicitly depend on 

time, then the hamiltonian is conserved: 

( , , ) ( , )
0 ( , ), 0, and 0, i.e., is conserved

L q q t H dH q p
L L q q H

t t dt

 
=  =     =         =      

 
. 

This follows directly from the equations of motion [F&W p80t].  Note that the modified equations of 

motion which include friction (or drag) do not conserve the hamiltonian.  Note that explicit time 

dependence in the lagrangian is equivalent to explicit time dependence in the hamiltonian.  Also, time-

dependent potentials lead to time-dependent lagrangians (and hamiltonians), and non-conservation of H. 

2.  Does the hamiltonian equal the energy? Sometimes the hamiltonian is the total energy;  

sometimes it’s not.  How to tell the difference?  There are at least 4 equivalent ways to insure that H = total 

energy, but as we show next, they are not necessary:  

• When H = total energy, i.e., when you work out total energy as a function of the dynamic 

variables (q, q-dot) or (q, p), and see that it equals H(q, p).  This may seem trivial, but it works. 
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• When the generalized coordinates include all motion of the system, and all the forces derive from 

a potential that is velocity independent [Gol p345].  This will lead to the preceding case. 

• When T (kinetic energy) is quadratic in the generalized velocities, i.e. is a homogeneous function 

of degree 2 of the velocities [Arovas], and all the forces derive from a potential that is velocity 

independent [Gol p345].  This homogeneity implies that all the motion of the system is included 

by the generalized coordinates, which is the preceding case above.  Note that the coefficients of 

the quadratic velocity terms may be functions of the coordinates (i.e., need not be constant). 

• When transformation of generalized coordinates to Cartesian coordinates does not explicitly 

include the time, and all the forces derive from a potential that is velocity independent [Gol p345]. 

Note that total energy may be different than T + V  if V = V(q, q-dot) includes velocities (see below).  In 

some cases, even though the lagrangian includes terms linear in velocities, the hamiltonian is still the total 

energy.  This happens with magnetic forces (more later). 

Only conservative systems (no friction or drag) allow the hamiltonian to be the total energy. 

Time independent constraints are insufficient to insure the hamiltonian be the total energy. 

3.  Does H = T + V?  This depends on the conventions used by an author.  If V = V(q) is the potential 

energy as a function only of position, and there are no other forces, then H = T + V.   

For velocity-dependent forces, such as the magnetic Lorentz force or Coriolis force in a rotating frame, 

it is common to explicitly add another term to the lagrangian.  For example, for a charged particle subject to 

potential-forces and magnetic forces, we have (SI units): 

1( , ) ( ) ( ) ( ,... ),

magnetic vector potential, electric charge

( ) position dependent potential

i i i i n

i

L q q T V q e q where q q

e

V q

= − +  

 



q A q

A  

Then numerically, H = T + V, which is the total energy, but its functional form includes A and the 

canonical momentum pcan, so H is still the generator of time evolution (see below). 

However, some references include velocity dependent potentials, such as the magnetic vector potential, 

in V, which then becomes a function of positions and velocities [Aro 7.69]: 

( )( , ) ( ) velocity-dependent forces

( , ) ( ) ( , ) (combined position-velocity potential)

V q q U q e

L q q T q V q q

 −   

 = −

q A
 

In this case, V is a “potential,” but it is no longer a “potential energy,” since it includes a term which is not 

an energy.  This is just a change in notation that has no effect on the physics.  Therefore, H ≠ T + V(q, 

q-dot), but (as shown below) it does equal the total energy. 

All Charged Up: The Magnetic Hamiltonian  

It is interesting to compare the hamiltonian of a charged particle in a magnetic field to the total energy.  

Many references say the hamiltonian is only the total energy if the “potential” is independent of velocity.  

This statement is ambiguous, since it is not clear if the magnetic term in the lagrangian is considered a 

“potential.”  Regardless, the magnetic lagrangian term is linear in the particle velocity. 

We compute the hamiltonian of a particle of charge e in a magnetic field, in 3D space, starting with the 

lagrangian (in SI units): 
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( )

2

2

2

( , ) ( ),
2

( , ) ( )
2

( )
2

( ) ( ) total e
2 2

can

m L e
L e V m e

m

e m e e
H L e V

m m m

e m e
e V

m m

ee e
V V

m m

 −
= +  −  = = +  =



− − −   
  − =  − −  +   

   

−  −    
=  − − +    

    

−− −   
=  + = + =   

   

p A
x x x x A x p p x A x

x

p A p A p A
x p p x p A x

p A p A
p A x

p Ap A p A
x x nergy

 

This reflects the fact that “kinetic momentum” pkin = mv = p – eA, and kinetic energy is (pkin)2/2m.  

However: 

Even though the magnetic lagrangian includes a velocity dependent term outside the kinetic 

energy, the hamiltonian is indeed the total energy. 

This example also illustrates that the hamiltonian is a function of the canonical momentum, and not the 

kinetic momentum.  The functional form of the hamiltonian is essential.  For example, this magnetic force 

hamiltonian satisfies: 

( )
2 2

hamiltonian  hamiltonian

( , ) ( ) ( ) ( )
2 2

kin

not

e
H V T V V

m m

−
= + = + = +

p A p
x p x x x . 

The first equality gives the hamiltonian is its essential form, and defines the dynamics of the system; the 

last equality is true numerically, but cannot be used to compute the dynamics of the system.  In particular, 

the last expression includes no information about the magnetic field. 

Canonical Coordinates 

Briefly, a canonical coordinate is a continuous real value that describes the position or orientation of 

some part of the mechanical system.  The conjugate momentum is the partial derivative of the lagrangian 

with respect to the coordinate velocity: 

( , , ),( , , ),
1,...# degrees of motioni iL q q tL q q t

p or p
q q







  =
 

. 

A canonical pair is the matched pair of a canonical coordinate with its conjugate momentum (qσ, pσ). 

Example of a non-canonical coordinate: angle mod 2.  It fully defines the physical configuration 

(position) of the system, but cannot be used to analyze its dynamics, because it jumps discontinuously from 

2π to 0 when wrapping around to the starting point.  To be a valid coordinate, it must continue on with 

values > 2π, so that its derivative is physically meaningful. 

Are Coordinates Independent? 

The following considerations are important to understanding Poisson brackets, as well as general 

Lagrangian and Hamiltonian mechanics.  They extend the above section “What Is the Derivative With 

Respect To a Derivative?” 

In Hamiltonian mechanics, we say things like 0a

b

p

q


=


, because pa and qb are “independent.”  What 

does this mean?  Given a system, we can (in principle) solve it to find pa(t) and qb(t).  Then in some 

infinitesimal time interval dt, pa will change by an amount ( )a adp p t dt= , and qb will change by an amount 

( )b bdq q t dt= .  So you might be mislead into thinking that we could define the derivative dpa / dqb as the 

ratio: 
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( ) ( )
0 (incorrect)

( ) ( )

a a a

b b b

dp p t dt p t

dq q t dt q t
= =  .   

But in this case, the “derivative” a

b

dp

dq
 is ill-defined.  pa(t) is not a function of qb, so how can it have any 

derivative with respect to qb?  Clearly, when we say that  pa and qb are “independent,” we do not mean that 

in the actual motion, one can change without the other changing. 

So what does 0a

b

p

q


=


 mean?  Let us approach this through some simple examples.  Consider a function: 

2 3 2( , ) . Then 2 and 3
X X

X c d c d c d
c d

 
= + = =

 
. 

We can avoid introducing the spurious function X by saying more directly, 

( ) ( )2 3 2 3 22 and 3c d c c d d
c d

 
+ = + =

 
. 

On the other hand, X is a function, and we could describe this same function with different variables as 

its arguments: 

2 3 2( , ) . Then 2 and 3
X X

X e f e f e f
e f

 
= + = =

 
. 

This new description has not changed the function X;  we’ve simply changed the names of its arguments.  

And we could still eliminate X entirely by writing: 

( ) ( )2 3 2 3 22 3e f e and e f f
e f

 
+ = + =

 
. 

Returning to ∂pa/∂qb, let us change argument names again, and define: 

2 3 2( , ) . Then 2 and 3b a b a b a
b a

X X
X q p q p q p

q p

 
= + = =

 
. 

Or: ( ) ( )2 3 2 3 22 and 3b a b b a a
b a

q p q q p p
q p

 
+ = + =

 
. 

Now consider a simpler function X: 

( , ) . Then 0 and 1b a a
b a

X X
X q p p

q p

 
= = =

 
. 

Or: ( ) 0 and 1a a
a a

b b a a

p p
p p

q q p p

  
= = = =

   
. 

The first equation in the last line is the desired result.  It means that, when “pa” is viewed as a function of 

the dynamic variables, rather than as pa(t) [a function of time], then 0a

b

p

q


=


. 

Similarly, the 2nd equation of the last line says that, when “pa” is viewed as a function of the dynamic 

variables, rather than as pa(t) [a function of time], then 1a

a

p

p


=


. 
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Lagrangian and Hamiltonian Relations 
#

1

, , , ,

[F&W 32.9, 32.11 p 175; 32.15a,b p 176; 32.29, 32.30 p 178]

coordinatesL H H
L T V p H p q L p q

q q p
    

 =

  
 −   − = − =

  


 

The hamiltonian depends on time only if it is explicitly time dependent: 

[F&W 32.18 p 177]
dH H L

dt t t

 
= = −

 
    

A conservative system implies a potential V(q) a function of coordinates only (but not time), and 

holonomic time-independent constraints: 

( , ) ( , ) ( )

(conservative holonomic, time-independent potential & constraints) [F&W 32.20 p 177]

H T V Energy const= + = =



q p q p q
 

Transformations 

Point transformations involve only the coordinates and time (not velocities or momenta): 

( )1, ..., , [F&W 32.4a p 174]nq q Q Q t = . 

Canonical transformations involve coordinates and momenta for every transformed variable: 

( )

( )

1 1

1 1

, ..., , , ..., , [F&W 34.1a,b p181]

, ..., , , ..., ,

n n

n n

p p P P Q Q t

q q P P Q Q t

 

 

=

=
 

For example, the central force transformation from 2-body problem to the 1-body problem is a 

canonical transformation.  In this case, the new canonical equations of motion separate into independent 

equations for the center of mass motion and the orbiting motion.  That’s why it’s so useful.  Usually we can 

ignore the center-of-mass motion, and focus only on the (now simpler) orbiting motion.   

Canonical transformations preserve Hamilton’s Equations of Motion (HEM), phase-space volume, and 

Poisson brackets.  This means a transformation is canonical if and only if it has unit Jacobian (P&R 6.54 p 

94): 

( , )
1

( , )

Q Q

q pQ P Q P P Q

P Pq p q p q p

q p

 

     
= = − =

     

 

. 

Generating functions are functions of one old variable and one new variable.  Time-independent 

generating functions are F1(Q, q), F2(P, q), F3(Q, p), F4(P, p).  [P&R Table 6.1 p 90]: 

, , , , ( , ) ( , ) ( , )
F F F F

q p Q P K Q P H Q P H q p
p q P Q

   
= − = = = − = =

   
. 

Time-dependent generating functions are F1(Q, q, t), F2(P, q, t), F3(Q, p, t), F4(P, p, t)  [P&R , 6.60 p 95, 

6.70 p 97].  (For comparison, F&W’s S(q, P, t) is like P&R’s F2(P, q) [F&W35.4a, b p184]): 

( )

31 2 4

2

, ( , , ) ( , , ) ( , , )

( , , ) , ,

jFFF F F
K Q P t H Q P t H q p t

t t t t t

S q P t F P q t

  
= = = = = +

    



. 

How does the new lagrangian relate to the old lagrangian?? 
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1

2

3

4

( , ) ( , ) ( , , ) ( , , ) ( , )

( , , )

( , , )

( , , )

( , , )

dF
H q p K Q P L q q t pq H L Q Q t PQ K Q P

dt

where F F q Q t

F F q P t Qp

F F p Q t qp

F F p P t qp QP

→  = − = = − +

=

= −

= −

= + −

 





 

 

For example, for F1(q, Q, t): 

1

, ,

dF F F F
pq H PQ K PQ K q Q

dt t q Q

F F F
p P K H

q Q t

  
− = − + = − + + +

  

  
 = − = − = +

  

 
 

Interesting and Useful Canonical Transforms 

[From PD 26c] 

a) Identity:  2( , ) ,F q P qP p P Q q=  = = . 

b) Interchange: 1( , ) ,F q Q qQ p Q P q=  = = − . 

Graphically demonstrates the interchangeability of ‘p’ and ‘q’ labels in Hamiltonian mechanics. 

c) Point transform: 2 ( , ) ( ) , ( )
df

F q P f q P p P Q f q
dq

=  = = . 

d) Orthogonal transform: 2

,

( , ) ,i ik k i ki k k ik

i k k k

F q P Pa q p a P Q q a=  = =   . 

Hamilton-Jacobi Theory 

The goal is to transform so all the Q’s and P’s are constant, achieved by transforming H to zero.  

F&W’s S(q, P, t) is like P&R’s F2(P, q) [F&W35.4a, b p 184, 35.12 p 185]: 

1

1

, , ( , , ) ( , , ) 0

,..., , ,..., , 0n

n

S S S
p Q K H P Q t H p q t

q P t

S S S
H q q t

q q t

S S
P const and Q const

P
   

 

 


  
= = = = + =

  

   
 + = 

   

 
 = = = = = =

 

 

where all the P’s and Q’s are constant, and we rewrite them as α and β [F&W 35.15, 19, 20 p 186]. 

S(t) evaluated along the actual trajectory of the system is the action [F&W 35.23 p 187]: 

dS
L

dt
= . 
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Time-Independent H-J Equation 

If H has no explicit time dependence, then H = const = E, then we define W, and compute H (F&W 

35.25, 26 p 187, but I think the α arguments for W should start with α2): 

1 1 1 2 1

1 1

1

( ,..., , ,..., , ) ( ,..., , ,..., )

( , , ) 0 ,..., , ,..., ,

n n n n

n

n

S q q t W q q t

S W W S
H p q t H q q t E

t q q t

    



= −

    
+ =  = − = = 

    

 

Then if W separates in the q’s, we have some hope of actually solving for W, then finding S from W, and 

finally computing the solution to the original problem from S, noting that the constants ασ and βσ are 

determined from initial conditions (F&W 35.27 p 188, 36.1 p 191, cf. 35.38-47 p 189-190, 35.14 p 186): 

( ) ( ) ( ) ( )

( ) ( )

1 1 1 1 1 2 2 1 1

1 1 1 1

1 1

,..., , ,..., , ,..., , ,..., ... , ,...,

( ,..., , ,..., , ) ( ,..., , ,..., )

..., ..., ..., ...,

( ,..., , ,..., , )

n n n n n n n

n n n n

n n

W q q W q W q W q

S q q t W q q Et

S q t S q P t
Q const

P

Inverting q t

a

 

 



       

   






   

= + + +

= −

 
= = = =

 



1 1( ,..., , ,..., , )n nS q q t L
nd p or p

q q
 

 

  
= =

 

 

Poisson brackets [F&W 37.1 p 197]: 

   
( , , )

, , ,
F G F G dA t A

F G A H
q p p q dt t   

     
 − = + 

     


q q
. 

Action-Angle Variables 

For the bounded motion of conservative systems, the motion is periodic.  The simplest general 

variables are action-angle variables. 

Arbitrary 

Periodic Motion

Periodic Motion in an 

asymmetric Potential

Periodic Motion in a 

Symmetric Potential

V(q) = V(−q)

p

q

p

q

p

q

 

Phase curves for three kinds of periodic motion: (Left) Asymmetric potential is still symmetric 

about ‘q’ axis.  (Middle) Symmetric potential is symmetric about both axes.  (Right) Non-

symmetric motion is only possible with velocity dependent forces. 

Thus, the goal is to transform to canonical momenta  I = const (action), and coordinates θ (angle variables) 

that linearly increase with time.  This implies the hamiltonian H(I) is independent of θ [P&R 7.3-6 p 103-

105, PD p 30]: 
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( )
0 (constant of motion),

( ) ( )
( ) ( ) ( )

H I
I I COM

H I E I
I COM t I t

I I



    


= − =  =



 
= = = =  = +

 

 

F&W say the “angles” are not canonical conjugates of the action [F&W 36.13 p193], but PD says 

they’re wrong.  The above eqs are Hamilton’s, and [P&R p106 and many others] and [PD p33] say “the 

transformation (q, p) → (θ, I) is canonical”. 

The action variable has dimensions of action = angular momentum = energy-time.  The angle variable 

is dimensionless (P&R p 107).  For libration (oscillation), action can be computed from E and V [P&R 

7.10-14 p106-107]: 

( )

( )

( )

2

max

min

max

0

( , ) ( ) ( , ) 2 ( )
2

phase-space-area 1 1
( ) ( , ) [arbitrary phase curve]

2 2 2

1
2 ( ) [particle in simple potential]

2
2 ( ) [particle in symmetri

q

q

q

e

p
H q p E V q p q E m E V q

m

I E dq dp dq p q E

dq m E V q

dq m E V q

  





−

−

−

= = +  = −

= = =

= −

= −

 



 c potential ( ) ( )]e eV q V q= −

 

The turning points qmin and qmax are where T = 0, or E = V, or velocity = 0. 

Abbreviated action is the generating function for the action-angle canonical transform [P&R 7.29 p 

112]: 

2 2
0

( , ) ( , ) ( , )
q

F q I S q I dq p q I= =  . 

For periodic motion (rotations), simply change the above integration limits to one period, and rename q = ψ 

(P&R 7.44, 7.46 p114, cf. 7.51 p115).  However, P&R assume a period of 2π in the original coordinate ψ 

(not just the transformed coordinate θ), which is bad (e.g., P&R problem 7.2: original period is 4π): 

( )( , ) ( 2 , ) ( , ) 2 ( )

1
( ) ( , )

2 T

H q p H p p E m E V

I E d p E

    

 


= = +  = −

= 
 

Action-angle variables for the linear (i.e. harmonic) oscillator: 

2
2 2

1/ 2

2 2

1
( , , )

2

2 2
sin , 2 sin 2 cos

p
H q p t m q

m

I I
q p m I m m I

m



     
 

 
= + 

 

 
= = − = 

 

 

Small Oscillations: Summary and Example 

Introduction:  A persistent challenge in mechanical engineering is designing machines that preserve 

their integrity, and are compatible with their surroundings.  In other words, they don’t fall apart, and don’t 

jump around too much when they operate.  Such machines are designed to restrain unwanted motion, but 

this can never be fully achieved.  This very restraint necessarily leads to “small” oscillations.  To control 

them, one must first understand them.  We describe here undamped small oscillations.  Real machines 

https://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu/  Funky Mechanics Concepts emichels at physics.ucsd.edu 

3/31/2024  21:30 Copyright 2002 - 2024 Eric L. Michelsen.  All rights reserved. 75 of 92 

include damping, but to design a damping system, one must understand the free motion one is trying to 

stop, and especially the frequency of any oscillations.  Such free motion is the topic of small oscillations. 

Overview:  Small oscillations are the motions of a small perturbation of a system from a stable 

equilibrium point.  The derivatives of the energies of an arbitrary system are evaluated at the equilibrium 

point, and determine a set of constants (the M and K matrices), which are independent of any small 

displacement.  This set of constants then defines a linear system (linear in force, quadratic in energy, as 

usual).  Within this linear(ized) system with constant coefficients, we choose small displacements as our 

coordinates, and then solve the equations of motion to find that they are oscillatory.  We will see that the 

EOM is a matrix generalization of the 1D simple harmonic oscillator.  Notation is widely varied on this 

topic. 

This section requires a thorough understanding of the 1D simple harmonic oscillator, and a basic 

understanding of vectors, matrices, eigenvalues, and matrix notation.  It may be helpful to understand 

phasors (see Funky Electromagnetic Concepts), and basis (or canonical) transformations. 

As an example, consider a mass moving horizontally on a spring, with a pendulum hanging from it: 

x



M

m

L

k

g

 

System with gravity, using two generalized coordinates: x and θ. 

Brief Summary:  We now summarize the analysis of small oscillations in general, and then work 

through the above example.  Define the coordinate “vector” (really just a list of coordinates): 

( )1 2( ) ( ) , , ... the generalized coordinatesi nt q t q q q n q . 

Note that q(t) is not a vector in the sense of a vector space; e.g. in generalized coordinates you can’t add 

two vectors component-by-component.  However, it is convenient (and common) to use vector and matrix 

notation.  [q-dot is a true vector.]  The energies of the exact system, before we convert to small oscillations, 

are given by two functions: 

( ; ), ( )KE T PE V q q q . 

Note that this does not allow for magnetic forces, which cannot be derived from scalar potentials. 

A system at rest at a stable equilibrium point qe will remain motionless forever.  Recall that a stable 

equilibrium point requires that V(qe) be a local minimum, and hence all the partial derivatives ∂V/∂qi = 0, 

and also the n eigenvalues of the 2nd-derivative matrix are all positive (or at least, non-negative): 

( )
2

, 0 or at least, 0 with additional constraints

1,2, ...

e
j k

V
eigenvalues of

q q

n

  




  

 

=

q
 

Small oscillations are perturbations around qe.  We refer to our oscillations as small displacements η 

from qe: 

1( ) ( ), ( ) ( , ..., ) . ( ) ( )e nt t t all small Note that t t = +  =q q η η η q . 

However, many references (and professors) simply redefine the variables ‘qi’ to be the perturbations (small 

displacements), instead of using ηj.  And virtually everyone redefines the potential energy V(η) to be the 

offset from the equilibrium energy, i.e.  
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( ) ( ) ( ) ( ) ( )e e eV V V V V − = + −η q q q η q .   

Then, in the perturbation coordinates, η: 

, 1 , 1

1 1 1 1
,

2 2 2 2

n n
T T

jk j k jk j k

j k j k

KE T M PE V K   
= =

 = =  = = η Mη η Kη . 

The kinetic energy is a quadratic form of the generalized velocities, and the potential energy is a 

quadratic form of the generalized (small displacement) coordinates.  (This again reveals the limitation of no 

magnetic forces.)  The above forms show that we can populate the M and K matrices from the 2nd 

derivatives of the kinetic and potential energies: 

(1) 
2 2 2 2( ) ( ) ( ) ( )

,

e e

jk jk
j k j k j k j k

T T V V
M K

q q q q



   

   
= = = =

       
q q

η q q
, 

which contain only constant terms (i.e., no η). 

The whole system of small oscillations is based on the displacements η(t) being small.  Therefore, M 

and K have only constant terms (the kinetic and potential energies are Taylor expanded to 2nd order), so the 

energies are quadratic in the η.  Higher order terms are neglected.  This insures that: 

The M and K matrices are constants (contain no η or derivatives).   

They are also symmetric, and positive definite. 

Finally, note that since the generalized coordinates have different units (x in m, θ in rad): 

The matrix elements of M can have different units from each other,  

as can the elements of K. 

The equation of motion (EOM) can be found from Euler-Lagrange, and turns out to be: 

which looks a lot like the ODE oscillator case: mx kx= − = −Mη Kη . 

This is a linear differential equation with constant coefficients in the vector η.  [If we have arrived at the 

equation of motion somehow, we can populate the M and K matrices from it.  That’s usually much more 

work than taking derivatives of the T(η-dot) and V(η) functions.]  We can solve it similarly to the ODE, by 

converting to Fourier space (aka Fourier modes, or simply phasors).  Analogously to the ODE case, we 

expect the result to be sinusoidal oscillations in time.  Then we use the complex-valued phasor vector a to 

represent the sinusoids (a is not acceleration): 

 

( ) ( )
2

2

2

2

( ) Re is yet to be determined

, , and we have

, or

i tt e where

d d
i

dt dt

 

 



+=

 → → −

− = −

η a

Ma Ka

 

(2) ( )2− = vK M a 0 . 

Note that a is a constant phasor vector, and the time dependence is exp(+iωt), not the usual physics 

convention of “–iωt”.   

[Aside: instead of a complex phasor, we could have simply assumed that the solution has the form: 

( )

( )

( )

1 1

2 2

cos

cos
( )

:

cosn n

A t

A t
t

A t

 

 

 

 + 
 

+ =
 
 

+  

η , 
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which yields the same transformation for the 2nd derivative, ∂2/dt2 → –ω2, but the later algebra is simpler in the 

complex form.] 

Now our equation for the complex vector a, eq. (2), can be viewed as a system of n linear equations in 

n unknowns: the components aj.  It has a non-trivial solution only if the determinant: 

2 20 or equivalently 0 − = − =K M M K . 

Since we will be solving for ω2, we avoid many minus signs by using the form on the right, above.  This 

determinant is an nth order polynomial in ω2, so it yields n discrete values of ω2, which will all be positive.  

For each ω2, we choose the positive square root +ω, since the negative root simply duplicates the solution 

of the positive root.  Thus: 

There are n discrete values of ω, all real, for each of which  

a solution to the system of small displacements exists. 

[F&W p??] say the ω can be degenerate.  If so, then we can construct orthogonal eigenvectors in the 

usual way, such as with Graham-Schmidt orthogonalization.  The set of ω are the generalized eigenvalues 

of the generalized eigenvector equation, eq. (2) above.  [If M were the identity, it would be a standard 

eigenvector equation.]  We solve it by simply solving the set of simultaneous equations, with ordinary 

algebra.  Each frequency, ωα, yields a distinct phasor eigenvector, aα, which represents a solution to the 

small oscillations: 

 ( ) Re 1,2,...
i t

t e n
  +

= =η a . 

Thus we have n linearly independent solutions to the equations of motion, ηα(t), each of which is a 

complete set of n coordinate functions of time.  Recall that eigenvectors are only defined up to a 

multiplicative constant. 

Now the matrices M and K are symmetric (i.e., self-adjoint) and positive-definite, which implies the 

eigenvectors aα can be chosen to be purely real.  This means for a single frequency ωα (i.e., for a single 

mode), all the coordinates ηi(t) cross their zero-points at the same time, i.e. they are all either in-phase or 

exactly out-of-phase. 

Also, eq. (2) is linear, so any multiple of a solution is also a solution, and any linear combination of 

solutions is a solution.  This means we have: 

( )

( )
1

( ) cos is real, and

( ) cos ( ) is the most general solution .
n

t A t where

t A t where t

    

   


 

 
=

= +

= +

η a a

η a η
 

The 2n free parameters Aα and δα are the amplitudes and phases of the oscillations, and can be chosen to 

satisfy 2n “boundary conditions” (really, any 2n constraints on the solution, be they at the boundary or not).  

In such a combination of modes of oscillation, the coordinates ηi(t) no longer cross their zero-points 

simultaneously. 

The modes of oscillation act independently of each other. 

Therefore, it is often useful to transform to a set of n coordinates where each coordinate represents a single 

mode of oscillation.  By simply rearranging the above general solution for η(t), we can define normal 

coordinates ξα(t) such that: 

( ) ( )
1 1

( ) cos ( ) ( ) cos
n n

t A t t where t A t       
 

     
= =

= +   + η a a . 

(Such a transformation often comes up in quantum mechanics, because the resulting normal coordinates are 

simple harmonic oscillators, and are quantized as such, in the usual quantum way.)  Continuing classically, 

though: 
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If we write the M and K matrices in the normal coordinates, they will be diagonal,  

since the modes of oscillation do not interact. 

[If you think about it, the constant parts of the normal coordinates, Aα and δα, appear to be a set of 2n 

Hamilton-Jacobi coordinates for the linearized system: they fully define the motion of the system, and are 

constants of the motion.] 

Example:  We consider the small oscillations of the above example system.  By inspection, we note 

the equilibrium position: 

is unknown, but it won't matter.
0

e e
e e

e

x x
where x



   
= =   

  
q  

Also by inspection, we write T(q-dot) and V(q): 

( )

2 2
2

22 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2

1 1 1
( , ) sin cos

2 2 2

1 1 1
cos sin

2 2 2

1 1 1 1
cos cos sin

2 2 2 2

1 1 1
cos (using cos sin 1)

2 2 2

(

d d
T x Mx m x L m L

dt dt

Mx m x L mL

Mx mx mL x mL mL

Mx mx mL x mL

V x

  

   

     

    

   
= + + +   

   

= + + +

= + + + +

= + + + + =

( )
21

, ) cos
2

ek x x mgL = − −

 

[Aside: For a single particle, in finding the KE, we would have essentially determined the metric tensor 

field, gjk(x, θ).  At the equilibrium point, the mass times the metric tensor = the mass matrix: m gjk(xe, θe) = 

Mjk.  Also, while q is not really a vector, q-dot is a vector.]   

In the potential energy, we chose a reference zero of θ = π/2.  If we had chosen θ = 0, then the bob’s 

potential energy would have been more complicated: mgL(1 – cos θ).  Note that since PE is defined only up 

to an additive constant, we can always discard constant terms.  Had we chosen θ = 0, we would have 

discarded the constant mgL term anyway, and returned to the V(x, θ) given above. 

We populate the M and K matrices with eq: (1) above.  First M: 

2

2 2

cos( )

0cos
e e

e
jk e

j k

M m mL M m mL xT
M where

q q mL mL mL mL





+ +     
= = = =     

          q q

q
q . 

Note that M is independent of xe, since the x-velocity is independent of where the equilibrium point is.   

Now K: 

2 0 0( )

0 cos 0 0
ee

e
jk e

j k

k k xV
K where

mgL mgLq q 

     
= = = =     

       qq

q
q . 

As with M, K is independent of xe.  Note that M and K are all given constants of the system, as always.  

We now define our motion as small oscillations η(t), with T and V given by the M and K matrices: 

( ) ( )
2

01 1 1 1
, , ,

02 2 2 2

x xT T
x x

M m mL k
T V

mgLmL mL
 

 

 
   

 

+     
= = = =     

       

η Mη η Kη , 

and the EOM: or= − + = vMη Kη Mη Kη 0 . 
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Since our solution is sinusoidal oscillations, we use a phasor vector a (i.e. we “switch to Fourier 

space”) to represent our small displacements η(t).  Then: 

(3) ( )
( )2 2

2

2 2 2

0

0

xaM m k mL

amL mL mgL 

 


 

 + −    
− =  =     

    − 
vM K a 0 . 

This is two equations in the two unknowns ax and aθ.  For a non-trivial solution to exist, we must have the 

determinant of the coefficient matrix = 0: 

( )2 2

2 2 2
det 0

M m k mL

mL mL mgL

 

 

+ −
=

−
. 

To avoid some tedious algebra, let us follow Taylor [Tay ??], and choose some simple numbers for our 

parameters, in some appropriate units: Let m = M = 1, k = 2, L = 1, and mg = 1.  Then we have: 

( ) ( )

( )

( )

2 2
2 2

2 2 2

2 2

2
2 2

2
1 2

2 2
0 det 2 4 2 .

1

4 2 0

4 16 4 2
2 2 , and 2 2

2

 
  

 

 

  

 −
= = − + − 

 − 

− + = 

 − 
= → = + = −

 

For each frequency, we get a vector a = (ax, aθ), by solving eq. (3) above.  (Without simple numbers, this is 

tedious).  Since eigenvectors are defined only up to a multiplicative constant, or equivalently, since our 

general solution allows for an arbitrary multiplicative constant, we can choose ax = 1.  Then we have: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
1

1

2
2

2

For 2 2 : 2 2 2 2 2 2 2 2 2 2 2 0

12 2 2 2 2 4 2 2 4
2 and

22 2 2 2 2

For 2 2 : 2 2 2 2 2 2 2 2 2 2 2 0

12 2 2 2 2 4 2 2 4
2 and

22 2 2 2 2

rationalize

rationalize

a a

a

a a

a

 



 







= + + − + + = + + + =

 + − + −
= −  = − = − =   + − − 

= − − − + − = − + − =

 − + − −
= −  = − = + =   − + + 

a

a

 

For this problem, we do not need to normalize the vectors.  The general solution for small oscillations is 

then: 

( ) ( )1 1 1 1 2 2 2 2( ) cos cost A t A t   = + + +η a a , 

or ( ) ( )1 1 1 2 2 2

1 1( )
cos cos

( ) 2 2

x t
A t A t

t


   



    
= + + +        − +     

, 

where A1, δ1, A2, δ2 are determined by initial (or other auxiliary) conditions.  Note that the two eigenvectors 

are orthogonal with respect to the mass matrix (not by a simple dot product).  We confirm this using our 

mass matrix, with the simple values chosen above for m, M, k, L, and g, which we used to find the 

eigenvectors.  The inner product is: 

( ) ( )1 2

12 1 2 2
1, 2 1, 2 0

1 1 2 1 2

T
   + 

= − = − =       +     

a Ma . 
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Summary 

• Small oscillations are important real-world phenomena.   

• They are analyzed as a matrix-vector generalization of the simple harmonic oscillator.   

• A system has n natural frequencies, where n is the number of degrees of freedom (degrees of motion).   

• Each frequency is a “mode” of oscillation, in which the generalized coordinates all oscillate 

sinusoidally, with the relative amplitudes fixed;  the phases can all be taken as 0, with some of the 

amplitudes negative.  In other words, all coordinates of a single mode go through zero simultaneously.   

• The general solution is a linear superposition of all n modes, where the zero-crossings are, in general, 

no longer simultaneous.   

• The motion has 2n arbitrary constants, which can be used to match 2n initial (or other) conditions. 
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Summary in notation similar to Fetter & Walecka [F&W]: 

( )

2

2

( )( )

1 1

Let displacements, mass matrix, potential matrix, ( ) normal coordinates

Eigenfrequencies: det 0 [F&W 22.45 p 97]

Eigenvectors: 0 [F&W 22.46 p 97]

Orthonormality:

s

n n
st

t

m  

 

 



 

  

= =

=    =    =    =

   − =

− =

= 

m v

v m

v m

( )( ) ( ) ( ) ( )

1

[F&W 22.47 p97]

Solution: [F&W 22.40 p97]:

( ) cos , 1,..., (coordinate); mode

st

n
s s s s

s

t C t n s     

=

   

= + = =

 

(1) (2) ( )

( )

( ) ( )

2
1

2
2 2

2

...

Modal matrix: ... [F&W 22.51 p98]

[F&W 22.55 p99] from orthonormality of .

[F&W 22.58,59 p99]

n

s

T s s

T
D

n

A 

  



  








 
 

=           =    
 
 

      = →  =  
   

 
 
 

= =  
 
 
 

A

A mA m 1

A vA

s

 

We construct all the solutions to the small-displacement motion from the eigenvectors.  The 

eigenvectors, ρ(s),  are constants (not functions of time).  However, strictly speaking, the “normal 

coordinates” are time-varying coefficients of the eigenvectors ρ(s): 

 ( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( )

( ) cos( ) ( ) ,

( ) cos( ), 1,..., (coordinate); mode

  F&W p101

n
s s s s s s

s

s s s s

t C t t

where t C t n s

       

   

=

= + 

 + = =


 

( ) ( ) ( ) ( )

( )

2 2 2 2
( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( ) ( ) ( )

1 1

Normal coordinates: ( ) ( ), ( ) ( ) [F&W 22.60,61 p99]

1
( ) ( ) [F&W 22.65,66 p100]

2

( ) cos ( ) [F&W 22.69 p101]

T

n
s s s s s s

s

n n
s s s s s s

s s

t t t t

L t t

t C t t

   

     

     

=

= =

= =

 
= −  = − 

 

= + 



 

A m A

 

If you think about it, the constant parts of the normal coordinates, C(s) and (s), appear to be a set of 2n 

Hamilton-Jacobi coordinates for the linearized system: they fully define the motion of the system, and are 

constants of the motion. 

Chains 

TBS. 
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( )

( ) ( ) ( )

( )

( )

22
1 0 1

1 1

1 1 1 1

1 1

N

, 0
2 2

:

2 0 (F&W 24.1+ p108+)

2 0 , (F&W 24.8 p110)

sin 1
D

sin

N N

i i i N

i i

inl i t
n

i i i i i i i i i

i i i i

m k
L T V

Assume solution Ae e

m k k m k k

m k
a a a

N

 

    



        

  
     





+ +

= =

−

+ − + −

+ −

= − = − − = =

=

− − + − = + − + =

 
+ − + =   

 

+
=

 

( )
( )

( )

2 2

2 2

4
0 1 sin , 1,...

2 1

(F&W 24.33+ p113+)

2 4
1 cos sin , # (F&W 24.43+ p115)

2

( ) is dispersion relation.

Fixed ends: , 1,... (F&W 24.55+ p117)
( 1)

2
sin ,

2

n

n

n
N n n N

ma N

ka
ka k wave

ma ma

k

n
k n N

a N

n a

c a l

 
  

 






 

=  + =  = =
+

 
= − = = 

 



= =
+

 
=  

 
( )

2 (2 1)
2 2 1

1 , low velocity
/

Alternating chains: : ,i nl i t i n l i t
n n

l N a c
m a

Assume Ae e Be e   




 − + −
+

= + = =

= =

 

Rapid Perturbations 

The effect of rapid perturbations on a slow mechanical system can sometimes be averaged to produce 

an effective small perturbation on the slow system [P&R p153-7].  As an example, consider this perennial 

favorite of qualifiers everywhere [P&R p156]: 

Question:  An inverted pendulum comprises a massless rigid rod with the mass at the top.  It has an 

unstable equilibrium point where the rod is exactly vertical.  If we oscillate the whole pendulum fast 

enough vertically, we can convert the equilibrium to a stable one. 

pivot

mass

vertical 

oscillation, ω
a

l
θ

g sin θ

 

[Note that this is hard to reproduce by balancing a rod on your hand, because the pendulum must 

accelerate downward faster than gravity to create the equilibrium.  Unless you hold the rod, it will leave 

your hand when you do this.] 

Discussion:  To analyze this problem, we note that the forces from the forced oscillations must 

necessarily be large compared to the unperturbed force of gravity.  If they were never larger than gravity, 

they could never overcome it, and the pendulum would fall.  The fast oscillation results in an effective slow 

force perturbation because it is fast, not because the perturbing force is small. 

The basic principle is that we can approximately separate the fast motion from the slow motion.  There 

will be a small oscillating motion of the pendulum due to the forced fast oscillations.  This fast motion is a 
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fast perturbation on the slow motion.  The average of the fast motion (position or momentum), over time 

scales of a period or more, is zero, since it is approximately sinusoidal.  However, the fast motion also 

produces a slow term which is proportional to the square of the fast position.  This squared term does not 

average to zero, and produces the perturbation in the slow motion.  Therefore, for the slow motion, we 

average over a full cycle of the fast motion to find the net slow effect.   

In short, the slow motion does not (significantly) affect the fast motion, so we solve for the fast motion 

first.  With the fast motion known, we include its effect in the slow motion, and solve for the slow motion. 

Solution:  Since the forced oscillations induce accelerations (similar to gravity), it is convenient to use 

the reference frame of the pendulum, and treat the oscillations as an oscillating force of gravity.  We use θ, 

angular displacement from the vertical, as our coordinate.   

( )

2

2

cos oscillation frequency, forced amplitude

cossin
rod length, & using small angle approximation

eff

eff

g g a t where a

g a tg
l

l l

  

 
 

= −  

−
=  

 

We now write θ as the sum of “fast” and “slow” components: 

( )
( )

( )

1 1

2 2 222
1 11

12 2

( ) ( ) ( ) slow motion, fast motion

cos cos cos
( ) ( )

t t t where

g a t g a t g a tdd
t t

l ldt dt

    

         
 

 +  

− − + −
+ = + =

 

We must solve for the fast motion first, since it is independent of the slow motion.  We approximate θ1 

as dominated by the form cos ωt, since it is a response to the forced oscillation.  Of the 4 terms on the RHS, 

we have: 

( )

2

1 1

2 2
1 1 1

is slow

cos is fast

is fast, but small, since is a perturbation

cos is constant + double fast, since ~ cos cos( ) ~ cos

g

a t

g

a t t t t



  

 

       

−

+

− 

 

For the fast equation, we discard the slow terms, since they are approximately constant over one fast 

cycle.  We also discard the cos2 term.  It can be rewritten as ½ + ½ cos 2ωt.  The constant is slow, and the 

double-frequency term produces at most a perturbation on our perturbation, which is neglected.  Our 

approximations are only valid if θ1 is small compared to θ-bar, so only one term survives the fast equation: 

2 2
1

2

cosd a t

ldt

  


−
= . 

We solve for θ1 directly by integrating twice, yielding the cosine form we demanded: 

1

cosa t

l


 = . 

For the slow equation, we average over one fast period.  The average of θ1 is zero, since it is 

sinusoidal, but the double-fast term produces a slow constant, which is a perturbation on the slow motion: 

( )
( )

2
2 2 2 2 21

2
12 2

cos
1

since cos
22

period

period

g a t
d g a a

a t
l l ldt l

   
  

   

−  
= = − =  

 

. 

This is the form of a harmonic oscillator, provided: 
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2 2
2 2

2
0 2

2

g a
or gl a

l l


−   . 

We can therefore increase stability be either increasing the frequency, or increasing the amplitude.  Also, 

shorter pendulums are more stable. 

[Aside: this system has a time dependent hamiltonian, and therefore does not conserve energy.] 

General Derivation 

We can derive the general fast-oscillation result for any Hamiltonian system, which gives more insight 

into the perturbation orders needed.  The derivation is straightforward, though somewhat tedious.  

Following P&R’s exposition, our perturbed system comprises a slow hamiltonian, H0(q, p), plus a large, 

but fast, perturbing potential, V(q)sin ωt: 

0( , ) ( , ) ( )sin [P&R 9.65 p153]

Define ( ) average (slow) position, ( ) average (slow) momentum

( ) perturbation position, ( ) perturbation momentum

H q p H q p V q t

Q t P t

t t



 

= +

 

 

 

Hamilton’s equations are then: 

( )

( )

,( , )
( ) ( ) ( ) ( ) ( )

,( , )
( ) ( ) ( ) ( ) ( )

H Q PH q p
q t Q t t Q t t

p p

H Q PH q p
p t P t t P t t

q q

 
 

 
 

 + +
= + =  + =

 

 + +
= + = −  + = −

 

 

We approximate the derivatives at (Q+ξ, P+η) in a 2D Taylor series, but we must first determine our 

small expansion parameter, and also our orders of expansion parameter, to know how many Taylor terms to 

include.  Since the perturbation is fast, ω is large, and 1/ω is small.  We may use this as our small 

expansion parameter.  This means that multiplication by 1/ω increases the expansion order by 1, and 

multiplication by ω decreases the order by one. 

We now determine the expansion orders of our dynamic variables, ξ, η, and their derivatives: 

2~ sin ~ , ~

~ ~

t      

  


 

We want the position and momentum perturbations, ξ and η, to be small (at least first order).  ξ is one order 

higher (smaller) than η, so we set η to be first-order.  This makes ξ 2nd-order, and the acceleration (ξ-

double-dot) zeroth order; this is as we expect since the perturbing force (potential) is comparable to the 

unperturbed forces (large).  Summarizing: 

is1 order in 1/ is 2 order is1 order is 0 orderst nd st th     . 

Our highest order dynamic variable is ξ, at 2nd order, so we perform our Taylor expansion to 2nd order 

in 1/ω.  This requires one Taylor term in ξ, and 2 terms in η (note the distinction between H and H0): 

( ) ( ) ( ) ( ) ( )2 2 3
0 0 0 0 2

2 3

, , , , ,1

2

[corrected P&R 9.73a p155]

H Q P H Q P H Q P H Q P H Q P
Q

p p q p p p

 
   

 + +    
+ =  + + +

       

The mixed derivative term is missing from [P&R] (it will average out later, or be dropped as 2nd order).  

The momentum equation is: 
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( ) ( )

( ) ( ) ( )

0

2 32
0 0 0 20

2 2

2

2

, , ( )
sin

, , ,( , ) 1

2

( ) ( )
[almost P&R 9.73b, but with correction] sin sin

H Q P H Q P V Q
P t

q q q

H Q P H Q P H Q PH Q P

q p qq p q

V Q V Q
t t

q q

    
 

  

  

 + +  + +  +
+ = − = − −

  

  
= − − − −

    

 
− −

 

 

(The 2nd term on the RHS is missing from [P&R 9.73b], but it will disappear in a moment when we 

average over the fast time-scale.)  The first terms in the above position and momentum equations are the 

slow, unperturbed motion.  We can now average over the fast motion, to find the net perturbation effect on 

the average slow motion.  Since both the perturbing position and momentum are zero-mean, the only terms 

that survive the averaging are those quadratic in the sinusoid, that is η2 and ξ sin ωt.  This gives: 

( ) ( )

3
20 0

3

3 2
0 0 2

2 2

( , ) ( , )1

2

, ,1 ( )
sin [P&R 9.74a & b, p155]

2

H Q P H Q P
Q

p p

H Q P H Q P V Q
P t

q p q q



  

 
= +

 

  
= − − −

   

 

To find the fast perturbations ξ and η, we subtract the average motion just above from the full 

equations 9.73a and b, and retain only the leading order terms.  This leaves (recall that η is 1st order, and ξ 

is 2nd order): 

( )2
0

2

th

,

( )
sin [ is 0 order] [P&R 9.75 p155]

H Q P

p

V Q V
t

q q

 

 


=



 
= −

 

 

If the average motion is slow compared to ω, we approximate the derivatives as constant over one period, 

solve for η directly by integrating, and then use η to solve for ξ: 

( )2
0

2 2

,1 ( ) 1 ( )
cos , sin [P&R 9.76 p155]

H Q PV Q V Q
t t

q q p
   

 

 
= =

  
 

We can now write the effective equations for the average motion from 9.74 above, using: 

( )
2 2

02

2 2 2

2 2
0

0 2 2

,1 ( ) 1 ( )
, sin

2 2

( , )1 ( )
( , )

4

H Q PV Q V Q
t

q q p

H Q PV q
Q H Q P

p q p

  
 



  
= =  

   

    
 = +  

    

 

This looks like Hamilton’s position equation for a modified hamiltonian.  Amazingly, the same modified 

hamiltonian satisfies the momentum equation (from above) as well: 

( )
( )

2 23 2
00

0 2 2 2 2 2

2 2
0

0 2 2

,( , )1 ( ) ( ) 1 ( )
,

4 2

( , )1 ( )
( , )

4

H Q PH Q PV q V Q V Q
P H Q P

q q qp q q p

H Q PV q
H Q P

q q p

 



     
= − − −          

    
 = − +  

    

 

Therefore, the perturbed slow system can be given an effective hamiltonian: 
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2 2
0

0 2 2

( , )1 ( )
( , ) ( , ) , and

4
effective

effective effective

H Q PV q
H p q H Q P

q p

Q H P H
p q



 
= +  

  

 
= = −
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7 Relativistic Mechanics 

See Funky Electromagnetic Concepts for an introduction to Special Relativity.  Recall: 

( )
1/ 2

2

, 1 /m where v v c

E mc

 



−
=         −

=

p v v
 

v and γ are redundant parameters: given one, we can immediately find the other in all cases.  From the 

definition of γ above: 

21 1/v c = − . 

Lagrangians and Hamiltonians for Relativistic Mechanics 

At relativistic speeds, the lagrangian is not T – V, even with a relativistic ( ) 21T mc= − .  It turns out, 

the relativistic lagrangian for a charged particle is: 

   2 2 2( , ) 1 / ( ), , , 1... [LL216.4 p48]

charge of particle, ( ) potential of particle ( ) for an electric field

i i i i i i i

i i

e
L q q mc v c V q q q q q i n

c

where e V q e q

= − − +  −     =     

  =

q A
 

(Recall that the {qi} do not necessarily compose a “vector,” but the  iq  do.)  The lagrangian is written in a 

particular frame of reference.  For non-magnetic interactions, just drop the magnetic term involving A  The 

canonical momentum is L= qp .  In rectangular coordinates: 

( )
1/ 2

2 2 2

2

1 2
1 /

2

1

2

x

L v dv e
mc v c A

x dx cc

dv

dx

− −    
= − − +    

     

= ( )

( )

( )

2

1/ 2
2 2 2

1/ 2
2 2 2

2

2

1 /

, ,

x

mc E V

can x y z kin

x
x y z x

v

L x e
mc v c A

x cc

e e
p p p m

c c





−

−

= −

+ + =


= − + 



 = = + = +p p v A p A

 

which is just the relativistic kinetic momentum plus the usual vector-potential term.  This final form is 

coordinate-free, and so valid in all coordinates.  pcan is a covariant vector, so could be written pk. 

The hamiltonian is, using    ,i iq q  =r v : 

2

, ,

( , ) ( , )i i i i i i

i x y z

e
H p q L q q L q q mv

c


=

 − = − = + p v v A
2mc e

c
+ − v A ( )V+ r . 

Now: 

( )
( )2 2 2 2

2 2 2
2 2 2 2 2 2

2 2 2 2 2 2

1 /

1 / 1 / 1 /

v c v cmc m m v m m c
mv v c c mc

v c v c v c
  

    

 + −    + = + = + = = =       − − −    
 

, 

which is kinetic + rest energy.  And since H is defined to be a function of pcan and r: 
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2
2 2 4 2

kinetic + rest

( ) ( )can

e
H mc V c c m V

c


  

 
= + = − + + 

 
r p A r , 

which is just the total energy, as one might have guessed. 

Interaction Hamiltonians 

It is sometimes convenient, especially in quantum theory, to separate the hamiltonian into a base 

hamiltonian (e.g., unperturbed hamiltonian) for the particle by itself, and an interacting part: 

0 intH H H= + .??  What is H0? 

Somehow, this leads to: 

( ) ( ) 0
int 0 0NB: ,k k

k kH e V e A v A A A A A= − = +  =   = −v A . 

Of course, we must ask, can we write this covariantly?  Not exactly, because the hamiltonian is the 

generator of time evolution in the lab frame.  Thus, it must be a frame-dependent quantity.  However, we 

can write it in an almost covariant form, that can be convenient for some applications.  To do so, we replace 

the particle’s 3-velocity with its 4-velocity.  Recall that the lab time t = γτ, where τ is the particle’s proper 

time: 

( ) ( ), , 1,
x dt d

v
d d


   

  

  
= = = = 

  

x
v v . 

The fact that v0 = γ > 1 means that the particle’s lab time, t, advances faster than the particle’s proper time, 

τ.  In other words, the lab measures the particle’s clock running slowly.  Similarly, the components vk tell 

how the particle’s lab position advances per unit of proper time (not lab time).   

With this 4-velocity, the particle’s interaction hamiltonian becomes: 

int

e
H v A




= . 

Though vμAμ is a Lorentz invariant, γ is still a frame-dependent quantity, and therefore so is Hint. 

For perturbation theory, the integral of Hint over (lab) time is often the relevant quantity: 

int intH dt H d e v A d
   =  =     , 

which is manifestly covariant (i.e., we can see it is covariant by inspection: the integrand is a product of 

Lorentz invariants).  Thus a transition probability (say, in quantum mechanics) is Lorentz invariant, as it 

must be, because observers agree on what fraction of particles are scattered by a target. 

Acceleration Without Force 

Consider a particle moving in the x-direction, and a force pushing it in the +y-direction.  The particle 

accelerates up, but it also decelerates in the x-direction, even though there is no force in the x-direction.  

That’s because the acceleration in y increases the particle’s magnitude of velocity (speed), and therefore the 

particle’s γ = 1/(1 – v2/c2).  The x-momentum doesn’t change, but when γ increases, vx must decrease to 

keep the same momentum: 

2increases, and and increase.

0 . increasing decreases!

y

y y

x
x x x x

dp
F v v

dt

dp
F p mv const v

dt
 

= 

= =  = = 

v
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Glossary 

Definitions of common terms: 

action the time integral of the lagrangian [F&W p66b].   

ansatz an educated guess that is legitimized later by its results. 
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arg A for a complex number A, arg A is the angle of A in the complex plane; i.e., A = |A|ei(arg A). 

cf “compare to.”  Abbreviation of Latin “confer.” 

classical non-quantum, or non-relativistic, or both.  Classical mechanics is non-quantum, and non-

relativistic.  Classical quantum mechanics is non-relativistic.  Classical Relativity is non-

quantum. 

configuration the instantaneous set of “positions”, qi, of a system.  This excludes any motion 

information, such as velocity or momentum [F&W p51t]. 

contrapositive The contrapositive of the statement “If A then B” is “If not B then not A.”  The 

contrapositive is equivalent to the statement: if the statement is true (or false), the 

contrapositive is true (or false).  If the contrapositive is true (or false), the statement is 

true (or false). 

converse The converse of the statement “If A then B” is “If B then A”.  In general, if a statement is 

true, its converse may be either true or false.  The converse is the contrapositive of the 

inverse, and hence the converse and inverse are equivalent statements. 

degrees of freedom I avoid this term, since it is used conflictingly by other authors.  E.g., [F&W] 

use it to mean both “number of generalized coordinates” [F&W p50b] and also, 

contradictorily, “number of independent degrees of freedom” [F&W p50t]. 

dynamic variables Variables that can change in time with the motion of the system.  In Lagrangian 

mechanics, the dynamic variables are q(t) and q-dot(t).  In Hamiltonian mechanics, the 

dynamic variables are q(t) and p(t). 

E-L Euler-Lagrange (pronounced oi’ler-Lah-gronj’). 

eigen- German for “natural.” 

ensemble a (usually hypothetical) set of identical systems, though each may be in a different state. 

generating function In Hamiltonian mechanics, a single function of two dynamic variables which 

defines a specific canonical transformation.  There are 4 forms of generating functions.  

Contrast with “generator”. 

generator In Hamiltonian mechanics, a function G(q, p) which defines a continuous family of 

canonical transformations, parametrized by a continuous parameter (ε), according to  

q = q + ε ∂G/∂p, and p = p – ε ∂G/∂q.  Note that ε = 0 specifies the identity 

transformation.  Contrast with “generating function”. 

Hamilton’s principle states that the actual trajectory of the motion makes the action of the motion 

stationary (not necessarily minimum) with respect to small variations in the trajectory. 

hamiltonian the function 

# degrees
of freedom

1

( , , ) ( , , )i i

i

H q p t p q L q q t
=

 − , which determines the dynamics of the 

system. 

holonomic constraints can be written as 1( ,..., , ) =constantj n jf x x t c= , with no velocities. 

inverse The inverse of the statement “If A then B” is “If not A then not B.”  In general, if a 

statement is true, its inverse may be either true or false.  The inverse is the contrapositive 

of the converse, and hence the converse and inverse are equivalent statements. 

lagrangian (here not capitalized, as [F&W], though some authors capitalize it [Gol].)  The function 

( , , )L q q t  whose Euler-Lagrange equations of motion are the actual equations of motion.  

Equivalently, the function whose time integral is the action of motion. 

LEM Lagrange equations of motion.  Syn: E-L equations of motion. 

LHS Left hand side (usually of an equation). 
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manifestly covariant we can see it is covariant by inspection, e.g., because all its terms are covariant. 

path the locus of points through configuration space of the motion.  The path does not include 

any time information (when the system was at any point).  Compare to “trajectory”. 

phase velocity (1) The rate of change of the instantaneous phase of a traveling sinusoidal wave, at a 

given point in space, in rad/s.  (2) The rate of change of position and momentum in phase 

space for a system. 

PT perturbation theory. 

RHS Right hand side (of an equation). 

state Mechanics: at an instant, the full information needed to determine the future behavior of 

the system [P&R p42m].  For dynamic particles, this is the configuration (positions) 

together with either (a) the velocities, or (b) the momenta [J&S p29m].  For autonomous 

systems, the “state” is just the configuration [P&R p1]. 

trajectory the configuration of the system as a function of time, qi(t) [J&S p2b].  Compare to “path”. 

Formulas 

sin( ) sin cos cos sin cos( ) cos cos sin sina b a b a b a b a b a b+ = + + = −  

( ), , ( , , ) ( , , ) , (general non-relativistic lagrangian)

1,... # coordinates .

i i i i i i i i

e
L q q t T q q t V q q t q A

c

i

= − +

=

 

# coordinates

1

( , , ) ( , , ), [F&W 20.12 p79b]i i i i i i i
ii

L
H q p t p q L q q t where p

q
=

  
  − 
  
 

 . 

Index 

The index is not yet developed, so go to the web page on the front cover, and text-search in this 

document. 
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