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2006 valus from NIST. For more physical constants, stp://physics.nist.gov/cuu/Constants/

Speed ofight in vacuum
Boltzmann constant
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Relative standard uncertainty

Avogadro constant
Relative standard uncertainty

Molar gas constant

Electron mass

Proton mass

Proton/electron mass ratio
Elementary charge

Electron gfactor

Proton gfactor

Neutron gfactor

Muon mass

Inverse fine structure constant
Planck constant

Pl anck constant
Bohr radius

Bohr magneton
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ge = 12.002 319 304 3622(15)
0o = 5.585 694 713(46)
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me = 1.883 531 30(11) x 1& kg
a'l=137.035999679(94)
h=6.626 068 96(33) x 18 J s

ov k+1.084571628(53)x 1¥Js

a0 =0.529 177 208 59(36) x Om
g5 = 927.400 915(23) x 186 J Tt
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From OAD: sin=opp/ hyp
A cos= adj/ hyp

sif+cog=1
C From OAB: tan= opp/ adj
la tar? + 1 =seé
= (and with OAD) tan=sin/ cos
.......................... sec=hyp/ adj= 1/cos
................ . From OAC: = ad|/ opp
cos a A |/ +1 =cs@
(and with OAD) = cos/ sin
G csc=hyp/opp=1/sin
N
$ tan a
N .
sina
a Ccos a D B .
ok SeC a ™

Copyright 2001 Inductive Logic. All rights reserv
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1 | ntroducti on

Mathematical Physics, or Physical Mathematics?

Is There Another Kind of Physics? Mathematical Physics is devoted to the natural emergence of
mathematics from our curiosity about the unseearound us. All physics is mathatical, but Mathematical
Physics illustrates that math is not abstract, or capricious, but an inescapable part of the natural world.
Despite its humble beginnings rooted in conceptual understanding and the praatieras, snany find that
MathematicaPhysics holds a beauty and fascination all its own.

As with all AFunkyo notes, we emphasize the physica
we stress a coordinafeee, geometric approach to vector openadi

Why Physicists and Mathematicians Argue

Physics goals and mathematics goals are antithetical. Physics seeks to ascribe meaning to mathematics
that describe the world, to fiunderstando iysical physi cal
meaning, and view them inupely abstract terms. These divergent goals set up a natural conflict between the
two camps. Each goal has its merits: the value of physics is (or should beyidetit; the value of
mathematical abstraction, separfitam any single application, isegerality: the results can hsed ona
wide range of applications.

Why Funky?
The purpose of the AFunkyodo series of documents 1is
geometric, and pictorial understandingmwfp or t ant physics topi cs. We focus ¢

covered well in most texts. The Funky seri#erapts to clarify those neglected concepts, and others that
seem likely to be challenging and unexpected (funky?). The Funky documentseacedhfor serious
students of physics; they are not fApopularizationso ¢

Physics includemat h, and web6re not shy about it, but we als

| Without a conceptual understanding, math is gibberish.

This work is one bseveral aimed at graduate and advanaedergraduate physics students. Goup
web page (inthe pageheaderpr t he | atest versions of the Funky Seri
looking for feedback, so please let us know what you think.

How to Use This Document

| This work is not a text book.

There are plenty of those, and they cover most of thegapiite well. This work is meant to be used
with a standard text, to help emphasize those things that are most confusing for new stubdentstadard
presentations dondét make sense, come here.

You should read all of this introduction to familiarizeurself with the notation and contents. After that,
this work is meant to be read in the order that most suits you. Each section s@algsalane, though the
sections are ordered logically. Simpler material generally appears before more adwpitsedou may
read it from beginning to end, or skip around to whai
a diverse set ofery short topics, meant for quick reading.

I f you dondét wunder stand keepmadinggi ng, rlead it age
Donét get stuck on one thing. Often, | the follo

The index is not yet developed, so go to the wele paghe front cover, and tegéarch in this document.
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Thank You

| owe a big thank you to many professordath SDSU and UCSD, for their generosity even when |
wasndt a real student : Dr . Her bert Sh &ooksy, DIDr . Peter
George Fuller, Dr. Tom OO6Neil, Dr. Terry Hwa, and ottt
Scope

What This Text Covers

This textcovers some of the unusual or challenging concepts in graduate mathematical physics. It is
also very suitable for uppslivision undergraduate lel; as well. We expect that you are taking or have
taken such a course, and have a good text bBakky Mahematical Physics Concepapplements those
other sources.

Wh at This Text Doesnot Cover

This text is not a mathematical physics course in iteelf,a review of such a course. We do not cover
all basic mathematical concepts; only those that are veppriient, unusual, or especially challenging
(funky?).

What You Already Know

This text assumes you understand basic integral and differentiallusaland partial differential
equations. Further, it assumes you have a mathematical physics text fatktloé your studies, and are
usingFunky Mathematical Physics Concefissupplement it.

Notation
Sometimes the variables are inadvertently nottemiin italics, but | hope the meanings are clear.
?7? refers to places that need more work.

TBS To be suppkd (one hopes) in the future.

I nteresting points that you may skip are fasides, 0 showr
may dso be included as asides.

Common misconceptions are sometimes written in dark red déigledabxes.

Formulas: We write the integral over the entire domain
dimensions:

1-D: ﬁdx 3-D: ﬁx
Evaluation between rhiits: we use the notatioriupctiori® to denote the evaluation of the function
betweera andb, i.e.,
[f()]2 [ f(b)i f(a). For example, Ug!3x@dx=[x¥o'=13-03=1
We write the probability of an event as fAPr(event).

Column vectors: Sinceit takes a lot of room to write column vectors, but it is often important to
distinguishbetween column and row vectors, | sometimes save vertical space by using the fact that a column
vector is the transpose of a row vector:

; (ab,c, d)T

LRSS
- O: O:D: O: O
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Random variables: We use a capital letter, e X, to represent thpopulationfrom which irstances of
a random variablex (lower case), are observed. In a seXsig,a representation of the PDF of the random
variable, pdf(x).

We denote that a random ialsle X comes from a population PDF a6 C pdfy, e.g.:X C &(n). To
denote thak is a constant times a random variable from/pag write:X C k pdfy, e.g.X C k (n).

For Greek letters, pronunciations, and use (aieky Quantum ConcepitsOther méh symbols:
Symbol Definition

" for all

$ there exists

' such that

iff if and only if

’ proportional to. E.ga” bme a ras prdportional tdo

n perpendicular to

\ therefore

~ of the order of (someti mes ak§{
1 is defined as; identically equal to (i.equal in all cases)

Y implies

- leads to

A tensor product, aka outer product

A direct sum

In mostly older texts, German type (font: Fraktur) is used to provide still more variable names:
German German

Latin Capital Lowercase  Notes

A A a Distinguish capital from U, V
B B b

C C c Distinguish capital from E, G
D D d Distinguish capital from O, Q
E E e Distinguish capital from C, G
F F f

G G g Distinguish capital from C, E
H H h

[ | i Capitalalmost identical to J

J J j Capital almost identical to |
K K k

L L |

M M m Distinguish capital from W
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N N n

0] o) 0 Distinguish capital from D, Q
P P p

Q Q q Distinguish capital from D, O
R R r Distinguish lowercase from x
S S S Distinguish @apital from C, G, E
T T t Distinguish capital from |

U U u Distinguish capital from A, V
\ vV v Distinguish capital from A, U
w W w Distinguish capital from M

X X X Distinguish lowercase from r
Y Y y

Z Z z
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2 Randd®dmofTaopi cs

| Always Lie

Logic, and logicaldeduction, are essential elements of all science. Too many of us acquire our logical
reasoning abilities only through osmaosis, without any concrete foundation. Unfortunately, two of the most

commonly given examples of logical reasoning artl lbarong. Ifound one in a book about Kurt Gédel (1),
the famous logician.

Fall acy #1: Consider the statement, A al ways i e.
either true or false. Ri ght amd waearyisnotlifiiliesa |iwsa yssi mpel lyl fte
truth;o it is Al dondt always Ilie, 0 equival ent il
be true, it must be false, and it must be one of my (exceedingly rare) lies.

Fallacy #2: Consider thstatementi The bar ber shaves everyone who doe
shaves the barber?0 Wrong answer: ités a contradictioc
himself. The original statement is about people who nsBat’e themselves; says nating about people
who do shave themselves. If A then B; bunift A, then we know nothing about B. The barlbeesshave
everyone who does not shave himself, and he also shaves one persdoeaditave himself: himself. To
be a contradictiontheclamw ul d need to be somet hi ng@nlylthosewho fiThe bart

donodt shave themselves. 0

Logic matters.

What 6s Hyperbolic About Hyperbolic Sine?

2 4 \2= y
. - y 1 Y
e area = a2
iyt
& area=a2 /:
Y sina \ /  [sinha
a Lx
cosa f Tunit + cosha

From where do the hyperbolic trigonometric functions getrthnames?By analogy with the circular
functions. We usually think of the argument of circular functions as an andBait in a unit circle, the area
covered by the angkeis a/ 2 (above left):

a 2 _a
area=—pr- = r .
pr > (r B
Instead of the unit cirel x> + y? = 1, we can consider the area bounded by+eis, the ray from the origin,
and the unit hyperbolax?i y?>= 1 (above right). Then theandy coordinates on the curve are called the
hyperbolic cosineandhyperbolic sing respectively. Niice that the hyperbola equation implies the well
known hyperbolic identity:

x = cosha, y =sinha, ¥ ¥ E Y cosh sirth

Proving that the area bounded by #axis, ray, and hyperbola satisfies the standard definition of the
hyperbolic functionsequires evaluating anezhentary, but tedious, integral: (?7? is the following right?)
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a 1 X
area=> =xy R ydx Use: =% 1-
5 y r:-I.] y y

a=xyx¥ 41 2,’5\/% 1-dx

For the integral, let

x= seg ,dx = tag seqg g Y y ¢ %c g1-=t
RS 2 X X Xsinzq

-1dx = ﬁ ég 1t = o
VX X = ec¢q angsec g ql lﬁq spd @ a—qﬁ

1cos’
We try integrating by partéout fail):

U =tang dv =secgtan ¢ g Y Vg =sec
ﬁxtanzqsec dU =sec tar; ql-x s§d g g
This is too hard, so we try reverting to fundamental functions sin¢)cos( ):
U =sing dv =cos® gsind g Y dU =os dg, ¥ %:cog q
2~XSin2qdq=2UV -2 U sin ¢ —Xcos'ﬁ gcos @ ¢ Use:sirX Sec @an Xy
Y cos’q coé 1 co$ g

=xy -fjseoqd g =y (Hsecq tan|)|1)27 xy% I}qx Vg o+
=Xy —In‘x ¢ 1‘- I

a=Xxy -xy Im‘x +7 1‘ —In‘ % \/§_+1‘ ]
e? =x m

Solve forxin terms ofa, by squaring both sides:

2= Rx X 1 # 1-2>(=x N, >?+]) 1- 2x@ ¢

e — |

ea

X
J“Q )
9
i

e +1 =2xd

a

(+e?)
e

+62% 2x Y X &osha ‘=

The definition for sinh follows immediately fram

costt- sinf =x®> y> E Y y V& 1 -

)2
sinhatl y = @Lea*- ¢ %‘) 1 /—éa 2 & 1 \/ € 2 & (ea__ © a) 8 &t
g C 2 8 \ 4 4 4
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Basic Calculus You May Not Know

Amazingly, many calculus cowgs never provide a precisefde ni t i on of a Al imit, 0 de:s
both of the fundamental concepts of calculus, derivatives and integrals, are defined as limits! So here we go:

Basic calculus relies on 4 major concepts:
1. Functions
2. Limits

3. Derivatives
4. Integrals

1. Functions: Briefly, (in real analysis) function takes one or more real values as inputs, and produces
one or more real values as outputs. The inputs to a function are calledihgents The simplest case is
a reatvalued function ofa realvalued argument e.gf(x) = sinx. Mathematicians would writéf (R* Y
RYH Mfiesadafimap (or function) from the real numbers to
more than one output may be considered a veethred function.

2. Limits: Def i ni tmiotnd offfvaltdd fanctioneokalsingle argumeht,R'Y RY:
L is thelimit of f(x) asx approaches, iff for everyU> 0, there exists @a(> 0) such thaf(x) i L| <Owhenever
0 <Ki al <0. In symbols:

L=lim f(X) iff "e & @uchthat |f &) LJ- ewhenever O|x &
X- a

This sayshat the value of the functilmtad o e s n 6t mat toftan the functiorf imnottdefinechat s t

a. However, the behavior of the functioear ais important. If you can make the function arbitrarily close

to some numbel,, by restrictingthefunt i onés argument t o athenhaslthe nei ghbor
limit of f asx approaches.

Surprisingly, this definition also applies to complex functions of complex variables, where the absolute
value is the usual complex magnitude.

2 -
Example: Show tha lim -2 =4,
x-1 X-1

Solution: We prove the existence fjiven anyUby computing the necessaiyfrom U Note that for

2
1,22 56 ). The definition of a limit requires that
2 -
-2 4{ < whenever 0|x [t «
x-1
We solve forx in termsof J which will then definaiin terms ofd Since we dond6t care wha
atx =1, we can use the simplified formx2( 1). Whenx = 1, this is 4, so we suspect the limit = 4. Proof:
. . e e
[2(x+1) -4 & Y & ¥ 2- e<  Y|x ]I.—Z- < or 15 x-1—2<.

So by settingi= U2, we onstruct the requireiifor any giverl) Hence, for every there exists &satisfying
the definition of a limit.

3. Derivatives: Only now that we have defined a limit, can we defirkegvative:

f(x+ B) (X%

f'(X)t lim
) Dx -0 Dx

4. Integrals: A simplified definition of arintegral is an infinite sum of areas under a function divided
into equal subintervalg-igure2.1, left):
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N

~b . b' a" 3 |

f Ulim 2228 3p -9+

N (x) dx Jim =2 a= %b a)N
Dx

(simplified definition).

1-O: O

i=1

For practical physics, this definitiaafine. For mathent&al preciseness, the actual definition of an integral
is the limit overany possible saif subintervalgref??] so long as the maximum of the subinterval size goes

to zero. Thisnaximumsizé s cal l ed At he norm ofk|:the subdivision, o
b N
r"j f(x) dxt HDI)iqun oa f(x) (precise definition.

i=1

Figure 2.1 (Left) Simplified definition of an integral afe limit of a sum of equall spaced
samples. (Right) Precise definition requires convergence for arbitrary, but small, subdivisions.

Why do mat hematicians require this more precise dei
f(x) is 1 if x is rational, and zero if irrednal. This meand(x) toggles wildly between 1 and 0 an infinite
number of times over any interval. However, with the simplified definition of an integral, the follaneng
bothwell defined:

3.14
ﬁ f(x) dx=3.14, and : ﬁ@( Jdx =0  (with simplified definition ointegral).

In contrast with themathematally precise definition of an integral, both integrate andefined (There
are other types of integrals defined, but they are beyond our scope.)

The Product Rule
Given functiondJ(x) andV(x), the product rul¢aka theleibniz rule) says that for diffeentials,
d(UV)=UdV + du. (2.1)
WhenU andV are functions ok, we have:
d[UMV(R] = U(Y V(3 dx+\ X U X d.

This leads to integration by parts, whichmisstly known as an integration tool, but itaiso an important
theoretical (analytic) tool, and the essence of Legendre transformations.

Integration By Pictures

We assume you are familiar with integration by parts (IBP) as a tool for performing ireleftetrals
We start with a brief overvievand then discuss a specific example in detail. IBP takes-&iniah integral
into an expression withdifferentintegral, which may be easier to perform analytically:

ﬁf(x)dx :uﬁv U\ V-dLﬁWhere U UxV V). (2.2
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are parametric functions of The abovecomes directly from the product ru21): U dV = d(UV) -V du

, and integrate both sides. nserting | imits of integration makes for
meaning Figure2.2a), but a slightly tedious equation:

b Y (b) () ()
Qf(x)dx T\)(a)Udv [8V],_, m—)VdU U D Ul;a\(l)la-m V du

(a . (a)
big rectangle smbrectangle

where U U3V M x 1

The figure plotdJ vs.V, wherew e 6 v e & damalVsodeincreasingparametric functions of. In practice,
the RHS 0f(2.2) is usually writtenin terms ofx as:

AUV dx=[ VO, - X WX o 23)
dv aJ

Note thatx is the original integration variable (ndd or V), soall the limits of integration are the originak
atox="h.

In practice, our job is to integrat&) dx by finding functionsU(x) andV(x)
such that the resulting integral on the RH$208) is simpler than the originé{x) dx.

As a specific example, consider:

n”xsin x dx.
f(x)

2.7
Figure2.2b illustratesthe definite integralfl'] f(x) dx to scale, with uniform representative intervas

U U
U(b)V(b) 3.0 3.0
U(b) 25 25
5 2.0 2.0
Udu
1.5 1.5
U(a)" - 1.0 f(X) 1.0
U av - .
U@Ve@ o8| N e/
, \ 0g5= ~ X 0.0, ‘l‘ v
V ! V b 0.0 0.5 1.0 1.5 2.0 2.5 3.0 =1.0 -0.5 0.0 0.5 1.0 1.5 2.0
@ Vi) ool vl
(a) (b) (©)

Figure 2.2 (a) Schematic identification of significant features of IB{®) To scale: lhe original
integral can be reconsidered apdn integral ofJ dV, the areas are equdll andV are parametric
functions ofx; dVis a function otk anddx. As shown, vihen the dx areuniform,thedV arenot.

This integral is not immediate, so we day integration by parts, though there is no guarantee that it will
work. In this example, therare three ways of choosibgx) andV(x):

U(x)=xsinx, dV dx = YdU ( xcosx sink dx V(3
U(X)=x dV sirexdx YdU dx M X cosx = -
U(x)=sinx, dV  xax YdU cosxadx V(3 /2

More complicated integrals will have more choicesigr) andV(x). Itis hard to know ahead of time which
choice (or choices) will succeed. However, looking at the RHR.8f, we see that inultipliesV andthe
derivative ofU. Looking d& our 3 choices above, on the RHS of the arrows, we find the two factiigs
that we would be faced with integrating:

1 the first choice has an ugtiJ, andV dU cannot be easily integrated,;
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1 the second choice hdbl = dx, which literally couldnot be simpr, andVv dU integrates easily;

9 thelast choice hadU = cosxdx, whi ¢ h i \$dioéannotha ehsily iltagrated
Thus our best guess is the second choice (often, the sirdplésta good choice) Figure 2.2c illustrates
ﬁJ dV to scale;U andV are parametric functions &f dVis a function ofk anddx. Then:

ﬁ(Sin xdx  Xcesx [Rosxdx XCOSX -Sin.
L 1 L 1L
uv vV du

We check by differentiating the RHS above, which yields the original integrand.

Note that whe the dxin Figure2.2b are uniform, thelV in Figure2.2c are not. However, all th#/ go
to zero when thexdo, so the integral df dVis still valid.

Theterm[U(x)V(x)]Ziscalled the fiboundary term,® or sometimes the

U
U(b) 1 U(b)- .
Uuu <ov
Uu =diWdu
UuU <oV U
Ua) = 0 JocdaciivcaniaziilAN Y
V(b) =0 integration v(a) V(a)=V(b) =0 Vinax
(@) direction (b)

Figure 2.3 Two more casesfantegration by parts(a) V(x) decreasing to 0.b) V(X) progresing
from zero, tdfinite, and back to zero.

More advanced cases of Integration By PartsFigure 2.3aillustrates another common casgiein
which theboundarntermUV is zero. In thisexampleUV = 0 atx = abeauselU(a) = 0, andatx = b because

V(b) = 0. This meand/(x) decreaseasx increases. Viewed aﬁ) dVv, all thedV < 0. The shadediarea

is therefore negativeViewed (sideways) aﬂ/ dU, all thedU > 0 and he shaded area is positive. Thus:

ff(9dx =URV ¥ e when [ U} o,

in agreement witli2.3).

Figure2.3b shows the case whek®/ = 0 atx = a andb, becaus®ne ofU(x) or V(x) startsandends at
0. Forillustration, we chos®(a) = V(b) = 0. Then théoundaryterm is zero, and wagainhave:

b , R b
[UV(R)],_, =0 N nzau v = n:av du .

For V(x) to start and end at zend(x) must grow withx to some maximumymay, and then decrease back to
0. For simplicity, we assumé(x) is always increasing. ThédUintegral is the blue striped artathe left

of the curveand is > 0. ieU dVintegral is the areanderthe curves. We break thedVintegral into two
patts: path 1, leading up t¥max and path 2, going back wa fromVmaxto zero. The integral from O ¥ax
(path 1) is the red striped area; the integral fkgsa back down to O (path 2) is the negative of the entire
(blue + red) striped area. Therethlue shaded region is the differerfeed):

(1) the (red areabelowpath 1 (wheralVis positive, becausé(x) is increasing), minus
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(2) the (blue + red) arebelow path 2,wheredV is negativebecause/(x) is decreasing Thus

ﬁJdV Q:

,\\,/ max

o ~ o Vg Viax
Ny dv = m:O U d\/I +V=QnaxU dv I_V:E]U d\/I e lf'flVI

L ] L
e — |
pathl+ patH pathl path2 pathl path2

b
= -fj V dU.
=a
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Theoretical Importance of IBP

Besides being an integration tool, an important theoretical consequence of IBP is that the variable of
integration is changed, frodVto dU. Many times, one differentizs unknown, but the other is known:

Givenan integral, integration by parts@Nsyouto exchange differential
that cannot be directly evaluated, even in principle, in favor of one that can.

The classic example of this is deriving the Eilagrang equations of motion from the principle of
stationary action. The action of gritamic system is defined by

S TCCEOX

where the lagrangian is a given function of the trajeaitly Stationary action means that the action does
not change (to first order) for small changes in the trajectory. l.e., given a snigtilovain the trajectory,

U a):
dS=0 FjUa @g @ d S % od_;" +q‘§1c.

The quantity in brackets involves both) and its time derivativedq(t). We are free to varv ()
arbitrarily, but that fully determineg(q(t) . We cannot vary bothh @nd dg separately. We also know that

U €) = 0 at its endpoints, but(t) is unconstrained at its endpoints. Therefore, it would be simpler if the
quantity in bracketsverewritten entirely in terms ol (f), andnot in terms ofdq . This is easy:

._d ~ EuL iLd 7]
Usedg=— d: 3 0 & =qd—— @
dt NE.q A dt ufjm

Now in the second ternlBP allows us to eliminate the time derivativeloft) (which is unconstrained)
in favor of the time derivative ofiL/ @ (whichwe can easilyind, snce L(q, §) is giver). Therefore, this

is a good trade. Integrating th& grm in brackets by parts gives:

b ad_ |t g d
LetU =, du t v —amdt Vot
Hq gat A g dtakq '
ﬁ%ddth:uv Vi g g - proas th
g ot Sy 4 ug&auq%'
ooV Voo

The boundary term is zero becauis§) is zero at both endpoints. Thariation in actiori $ now:
~6lL d o "
dS=ne— —— @dt & qf) .
Ngy ap &

The only wayll $ 0 can be satisfied fanyu ) is if the quantity in brackets is identically 0. Thus IBP has
led us to an importartheoreticalconclusion: the Euletagrange equation of motio

This fundament al result has nothing to do with
for hard integrals any more.
Delta Function Surprise: Coordinates Matter

Rarely, one needsto n s i d e rfunetibtnen c@@inalies oth¢han rectangular. Thepordinate
free3 D -fuliction is writtenl®(r 1 ro ) . For eGregnfupctioms, whose definiion depends on a
t*-function, it may be convenient to use cylindrical or sphédoardinates. In these cases, there are some
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unexpected consequences [Wyl p280]. This section assumes you understand the basic principle of a 1D and
3 D -fuiaction. (See the introduction to the delta functio@unrky Quantum Concepfs

Recall the dehing property ofi’(r - ro ) :

ﬁd3rd3(r-r') 4 ro( "forall”) \% ucﬁ ar V() f(H.

The above definition is fAcoordinate free, o i.e. it me
in everycoordinate system. As witBreenfunctions, it is often helpful to think of thefunction as a function
of r, which is zeroeverywhere except for an impulse located & As we will see, this means that it is

properly a functionof andr 8 epar at el y, and?3rsrd ¢dike Geenfonetiongare)t t en as 0
Rectangular coordinates: In rectangular coordinates, howewse now show that weansimply break
up(x, y, 2) into 3 components. Bywriting{ré) i n rectangul ar coordinates, an
above, weget:
. o o] o
-r' 1 ' ! - 4 ~ X - v 7 "
r-r' yx x,y v,z 2 Ynudx_my_gﬁg(xxy y-zYZ1

\ Fx-x\y-y,z 2 &x ¥ @y §-(d ¥ -
In rectangular coordinates, the above shows thatow&ve tanslation invariance, so we can simply write:
Py, 9= ) @ (¥

In other coordinates, we dmthave translation invariance. Recall the 3D infinitesimal volume element
in 4 different systems: coordinabese, rectangular, cylindrical, and spicat coordinates:

d3r:dxdydz:rdrd’ dz =fsin gdrd qd.

The presence afanddi mpl y t hat wh efonctierin nodrectangutaihceordidles, ive must
include a prefactor to maintain the defining integrall. We now show this explicitly.

Cylindrical coordinates: In cylindrical coordinates, far> 0, we have (using éhimprecise notation of
[Wyl p280]):

r-r' r f £z z'% Y
fjdr Ozpﬁf Cdzf B v, £ 2) 1=
\ d3(r- r', f-'2 2" Fl: (rdr)-( d¥-(zfzhr O

Note the 1If" prefactor on the RHS. This may seem unexpected, because tfecfmedepends on the
location ofii¥( ) in space (hence, no radial translation invariance). The rectangutdinade version of’( )
has no sucprefactor. Properly speaking®( ) i s n 0 tri & iti§ afunctioniobamdr' separately.

In nonrectangular coordinateg’( ) does not have translation invariance,
and includes a prfactor which @pends on the position G¥( ) in space, i.e. depends oi .

At r' = 0, the prefactor blows up, so we need a different-prea c t or . Wedd | ike the def
be 1, regardless of, since all values of are equialent at the origin. This meamnge must drop the
U(fi 76) , and r -aptdr @ caecelthh eons@mmt we get when we integraté: out
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o} 2 o
Sdr TRF dzRA(r-r, ENf 7) 1= r 0=
r(] 0 - @ m
Y Ar-r, -8 2) 2 (W(zdZ: r O,
2pr
assuming that r”jdrdr(;: 1.

This last assumption is somewhat unusual, becaudgftimetion is usually thoughtfas symmetric about

0, wherethebove radial integral woul d on-+5y défdnatibn, The as
whose entire nozero part is located at "0 Furthermore, notice the factor of rl/in
U(riv 0,z71 20 ) . Thi s f r=dtaodrhasind effestsvheh P. Nartetheless, it is needed because

the volume elementdr df dzgoesto zeroas- 0,andthe X/inU(ri 0,zi z6) compensates for t
Spherical coordinates: In spherical coordinatesve have similar considerations. First, away from the
origin,r6 > 0:

'r‘jdr fﬁjpd fisin F@-r' -4 g)fi=f ¥

AUty g-'g E) F=—— ¢ 1d)-( J-g & & 'FO0.f[Wyl8.9.2p280
2 '

r'“sing

Again, the prefactor depends on the position in space, and properly spedkings a function of, ré d,

anddd separately, noitrd sadimfdl. y &Atf amet oom gofm,raloedd | i ke
be 1, regardless ¢ford. Sowe dropth&(f1 f6 J(dT1 d6 ) , and r-éagdrta caecelthb anstant e

we get when we integrate ofiandd:

p 2p
d

r"jdroﬁro fi’sin @@ 0, -4 q¢)fif r'o

\% ACr-0, g-'g E) ;L:l—z t) d r' o,
4pr

assuming that |’f“a dradr( ¥ 1.

Again, this definitionuses the modified(r), whose entire noaeropart is located at*0 And similar to the
cylindrical case, this includes ther3factor to preserve the integralrat 0.

2D angular coordinates: For 2D angular coordinatetand , we have:

~F 2g, .
d IS d- g, VfEF Yo
fde  {§Ain @ o q) q
Y dq g f) B ( dd g)d 7 0.
sing
Once again, we have a specialecaendd = 0: we must have the dé&fining in
Hence, we again compensate for thérdm thef integral:
~F 2g, .
d IS d- g, VfEF 'O
fde {§Ain @ 4 q) q
. 1
Y d*( g0, £)f= C0s
(g ) >psin q( ) q

Similar to the cylindrical and sphieal cases, this includes a 1/(sinfactor to preservéne integral atf = 0.

4/27/202111:49 AM  Copyright 20022021 Eric L. Michelsen. All rights reserved. 230f 322


https://elmichelsen.physics.ucsd.edu/

elmichelsen.physics.ucsd.edu/ Funky Mathematical Physics Concepts emichels at physics.ucsd.edu

Spherical Harmonics Are Not Harmonics

SeeFunky Electromagnetic Conceptsor a f ul | di scussion of har moni cs .
solutions in 1, 2, and 3 dimensionidere is a brief overview.

Spherical harmonics are the arguparts of solid harmonics, but we will show that they are not truly
ihar monhagnenicb s A function which satisfies Laplacebs et

p? Hr) 9, with r typically in 2 or 3 dimensions.

Solid harmonics are 3D harmonics: they sdva pl acedés equation in 3 di mensi
form of solid harmonics separates into a product of 3 functions in spherical coordinates:

F(r.g, § =R(P( () f(:Ar' I}r'(I i))I?n(cos Y @sinm  Pfcosm) £

where R)= At +Bil ¥ isthe radial part,
P(g) = R, (cos g is the polar angle part, the associdtedendre functions
Q(f)=(G sinm 7 +[) cosm )f is the azimuthal part .

The splerical harmonics are just the anguldy f) parts of these solid harmonics. But notice that the
angular part alone does not satisfy the 2D Laplace equation (i.e., on a sphere of fixed radius):

2

1 pd, po, 1 M8 H M - ‘
p? == %2 T e = Ny but for fixedr
rzwf;aé p Zsing qu gg o r2sin? qu ¥
l pﬂ

@smqu c?m _qgsm gnu f g

However,direct substitution of dgerical harmonics into the above Lagaaperator shows that the result is
not0 (we letr = 1). We proceed in small steps:

2
Q(f) = Csinm f +Dcosm £ Y % Q)F=rR Q.

For integem, theassociated Legendre functiondPn(cosd), satisfy, for giver andm:

ua e A 1(1+1) 2 o
r?sing pq(; N7 8 (cos g é@ 2 gm (cos «

Combining these 2 resslf = 1):

Ma. uo

0 (P9)Q 1) = g qggm“—; M POa)

=(1(1 3§ m#)R.(coyR(9 n-R, (cos R( )f
= 1(1 BPy(cog R ()

Hence, the spherical harmonicsams ol ut i ons of Lapl aceds equati
i.e.theyar@moti har moni cs. 0
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The Binomial Theorem for Negative and Fractional Exponents

You may be familiar with théinomial theorem for posiive integer exponents, but it is very useful to
know that the binomial theorem also works for negative and fractional exponents. We can use this fact to

easily find series expansions for things I'rjl_e%— and V1+x {1 *)1/2_
- X

First, | et d&lecaseofposiiw integereexpsnentsp

30

[For completeness, we note that we can write the general form wi'ttegm:

(art) = Dartg MY gog MW 3 4oy 1 gy
1 1("2 1 P ...n! .

th —
m term——(n_ m)! m

a"p™, ninteger >0; m integer, 0 ¢n 1]

But we 6r e interastet in theoiterative procedure (recursion relationfirfiding the ( + 1) term
from them™ term, because we use that to generate a power series expansion. The process is this:

1. The first term fn= 0) is alwaysa® = a", with an implicit coeficient Co = 1.

2. To find Cre1, multiply Cry by the power ofiin them™ term, qii m),
3. divideitbymn+ 1), [the number of t h@mﬂr;%tcrgr m wedre fin

4. lower the power odby 1 goni m), and
raise the power df by 1 to m+ 1).

This procedure is valid for afl, even negative and ftonaln. A simple way to remember this is:

For any reah, we generate then(+ 1)" term from them™ term
by differentiating with respect ta, and integrahg with respect td.

The general expansion, fanyn, is then:

n(n-1)(n -2)..(n m 1)+6{1_mBn

m!

m" term=

rreal; minteger?2 (
Notice that for integen > 0, there ar@+1 terms. For fractional or negatimewe get an infinite series.

Example 1: Find the Taylor series expansion f}— . Since the Taylor series is unique, any method
- X

we use to find a poweeses expansion will give us the Taylor series. So we can use the binomial theorem,
and apply the rules above, wih= 1,b = (i X):

2 - -

)13( X2 Mﬁ( %°

_ o1 (D2 v (D)
Rl R 1565 0

10
=1« # .+ XM ..+

Notice that all the fractions, all the powers of 1, and all the minus signs cancel.

1/2

Example 2: Find the Taylor series expansion ¢t+ X {1 % °. The first term i@2 = 1'%
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(1+x)l/2 412 ‘le_il-llle 18161 1522 1 8 B8 16 523

@ 2220 ¢ 2B LE1a%o

where git  p2)( p 4)..(2 on)

When Does a Divergent Series Converge?

Someti mes, a di ver gGamsiderths iefinitesesiesiconver ges. 0
1+x ¢ + X
When is it convergent? Apparently, whenq 1. What is the value of the serieswken 2 72 AUndefined
you say. But there is a very important sense in which the skrgsgonverge fox= 2 , and iitds valu
1! How so?

Recall the Talpr expansioraroundx = 0 (you can use the binomial theorem, sadier sectioh

. X=(1 ) E xR L Xt

Thisis exactly the original infinite series above. So the series sums to ¥)/(IThisexpressions defined
forallx, 1. And its valudor x= 2 isi 1.

imaginary
'\ £ real
region of._ | ./
convergence
(@)

Figure 2.4 Domain of 1/(1i X) in the complex planeThe function is analytically continued around
the pole ak = 1, which defines meaningful values of tliadétion even wheris outside the region
of convergence.

Why is this impotant? There are cases in physics when we use perturbation theory to find an expansion
of a numbeKor function, as in QFTin an infinite series. Sometimes, the series appealisé¢oge. But by
finding the analytic expression corresponding to the sanie can evaluatedahanalytic expression at values
of x that make the series diverge. In many cases, the analytic expression provides an important and
meaningful answer to a garbation problenevenoutsidethe original region of convergencéhis hgpens
in guantum mechanics, and quantum field th€ery., [M&S 2010 p291t])

This is an example adnalytic continuatiorin complex analysis Figure 2.4 illustrates the domain of
our function 1/(T' x) in thecomplexplane. A Taylor series is a special case of a Laurent series, amthany
afunctionhasa Laurent expansiahis analytic. If we know the Laurent series (or if we know tredues of
an analytic function and all its derivativesaaty onepoint), then we know the function everywhere, even for
complex values ox. Here, he original series is analytic arourd 0, with a radis of convergence of.1
However, theprocess ofextending a functiorthat is defined in some region to be defined in a larger
(complex) region, is callednalytic continuation (see Complex Analysis, discussed elsewhere in this
document).This gives our faction meaningful values foralli 1, %=2c Fhusamsalytic continuation
through the complex plane allows us to fihop over o the
x>1 (and forx <7i1).
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TBS: show that the sum of the integérs 2 + 3 + ... =1 1/12. ??

Algebra Family Tree

Doodad | Properties Examples
group Finite or infinite set of elements and operato| rotations of a square by? 90°
(+), with closure, associativity, identity eleme| -4ntinuous rotations of an object
and inverses. Possibly commutative:
a-b=c w/a, b, cgroup elements
ring Set of elements and 2 binary operators integers modn
(+ and *), with: _ polynomialsp(x) modm(x)
c 0 mmgroupunder+e
A left and right dis
alb+c)=ab+ac, @+b)c=ac+bc
usually multiplica
integral | A ring, with: integers
domain, [A- commut ative mul ti p polynomials, even abstct polynomials,
oo |A multiplicative i de yithabstractvariable and coefficients
domain |A no zerYcadcellationsisovalid): ([f r om a Afiel do
ab=0onlyifa=0o0rb=0
field firings with mul ti pl i|integerswith arithmetic modulo 3 (or any
identity)o prime)
A ¢ o mmagrougunderagldition real numbers
multiplication.
A distributi ivetsss, mu
Allows solving simultaneous linear equations
Field can be finite or infinite
vector Asield of scalars physical vectors
space Agroupof vectors under +. real or complex functions of space:
Allows solving simultaneougector equations | f(x, y, 2)
for unknown scalars or vectors. kets (and bras)
Finite or infinite dimensional.
Hilbert vector spacever field of complex numbers | real or complex functions of space:
space with: f(x, v, 2
A a c obilijear gretpreduct, quantum mechanical wave functions
<avibw> = (@*) b<vjw>,
vw> = <wjv>*
a, b scalars, and, w vectors
A Mat h e meguiré ictd be mfite
di mensional; physici

Convoluted Thinking

Convolution arises in many physics, engineering, statistics, and other mathematicaAamasnples,
we here consider functions of time, but the concept of convolution may apply to functions of space, or
anything else.Given two functionsf(t) and g(t), the convolution of(t) andg(t) is a function of a time
displacementyt, defined by Figure2.5):

(f*g)(DYy 1ﬁu dt f( ¥d O )t wheretheintegral covers some domain of intst.
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gaz
t t

f(t)
@
O S S » «
o ) oty A\ 9(0d;-Y
9oty fQ increasing
(f* )(oa) U S \(f:* Y
(b) g 0. (C) g 1

Figure 2.5 (a) Two functions,f(t) andg(t).

b) (f*g) (topp, to <cP.

« X * U
@ @ (Froa)
©) (f*g) (t)p, ti >p.

(d) f*g) (t2kp, t2> tmEpThe convolution is the magenta shaded area.

When< 0, the
are fAbacking

t wo

away from each

functi dies 0an & by &c>H0jdhie gwd fumctiodh e aa c h
ot her o

ot

(above middle and

As noted at the beginningpivolution is useful with a variety of independent varialesides time

E.g., for functions of spacfx) andg(x), f*g( gpisafinct i on

Notice that convolution is

(1) commutative: frg=g* f

(2) linearin each of the two functions:
f*kg=k( f* g) {kfy g
f*(g+h) =f*g # h

and

The verb
f*g. Some

ito convol veo
r ef e¥® nfcaers

means

Two Dimensional Convolution: Impulsive Behavior

A translation invariantinear system (TILS) is completely described by its impulse response.

of spatial displ acement

fi t fand § to form thé dorevolutiomn v ol ut i o |

awdty.dil uti on:

For

example, for small anglesquivalent to narrow fields of view, an optical imaging system is approximately a
TILS. In optics, the impulse response is called the Point Spreadi¢rurmt PSF. To illustrate the use of

convolution in a TILS, consider an optical imag€iglre2.6).

B Optical yT@ ao
v imager P

| ) (X
Tu/' (TLS) | y’VT ) %)
(a) object image (b) XU image

Figure 2.6 (a) Optical imager is a TILSb) Example image of 3 point sources, with a representative
image pint. Each source is spad out by the imager according to the PSF. The red arrow is the

vector K1 u).

The imager has finite resolution, so a point object is spread over a region in the image. For a point object
at the origin with intensity, the ima@ has intensity distritiad over space according to:

I(x,y)=0 OSK x Y.
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x andy are position coordinates, such as meters or microradians. We define the object coordingates (
be those of their image points (a@ can ignore magnification). Then translation ingade says that for a
point object aty, v):

I(X,y)=0 ©SH X 4y Y.

For incoherent sources, intensities add, so multiple point sources produce an image intensity that is the sum
of the individual imagesHigure 2.6b). Therefore, the PSF is real, and representsntkasityresponse
function (rather than field amplitude). At each point on the imzag@:(
I(x,y)=OQPSRx-4 y ¥ @PSEx @ yy OPEF xju-yj
3

=8 PSHx-y, y
i=1

For a continuous object, each infinitesimal region of size dv) around edt point (, v) is essentially a
point source. The image is the infinite sum of i ma g
becomes a continuous integral:

1(x,y) = ﬁobj@tdu dvquyy PSEx uy v -O PS (2.9)

Thisi s the definition of a 2D convol WtPSkE n. Some refer e

In general, for a TILS:

A convolution is an infinite sum of responses to a continuous input.
Translation invariant linear syems are fully described by their inipei response (aka PSF). Thé
output of such a system is the convolution of the input with the PSF.

All of the above is true for arbitrary PSF, symmetric or not. Some systems exhibit symmetry, e.g. many
optical systera are axially symmetric. In such a symtric case, the arguments to the PSF may be negated,
though we find such expressions misleading.

For coherent systems, the PSF is generally complex, and it denotes the magnitude and phase of the light
at the image Hative to the object. Such a PSF reganets the fieldmplituderesponse function (rather than
intensity).

In vector notation, the convolutid®.4) can be written:

1(x) = ﬁobj@td 200(u) PSRx u) - O *PSL

Structure Functions

The term Acorrel ati on o ohwhish atewsed iMdstohomyr (Lt cormelatienn i ngs, L
between random varialdeand (2) correlation between functions (of space or of time). In both meanings,
correlations are used to compare two things. For example, we might compare light, as a furiotienaof t
point A in space with that at point B, ila(t) compared tdg(t). If these intensities vary randomly in time,
we might ask, how are the two related?

Correlations between random variables: The correlation of two random variables (RVs) describes
to what extent the two RVs diigearly related to each other. The correlation is quantified withreelation
coefficient}, where} = 1 means the two RVs are actually identicais proportional to the covariance of
the RVs. Two uncorrelated RVsweno linear relationship (though theyay be related in other ways), and
} = 0. (Sed~unky Mathematical Physics Concefiis details.)

In many systems, there are an infinite number of RVs, one at each point in space. For example, above a
telescope, ataech atmospheric space poitthere maype a randomhlvarying temperaturé(t, x), index of
refraction N(t, x), or optical phase (t, x). The variations are ovaime It is common that there are
correlations between the RVs at different points in spaa® two very nearby pointg,is nearl: the two
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RVs are almost identical. For far separatignis,near 0, because the two RVs are essentially unrelated. In
general, at two points; andxz, and near some tirmg, using optical phase as an exampies two-point
structure functions [Quirr eq. 1]:

Dy (0, x2)  ([Ftxy) - x)) ﬁ”dq (tx) (&)

T ~seconds

The averaging duration is of the order of the exposure time, typically some seconds [Fried 1966/%ec
The weather typically changes much slower, of order at least @sinufor translation invariant, isotropic
systems, the above depends only onsihatial distance [ X1} X2|. This defines atructure functiorof a
single variable, the distance

D/()* (F0) - b0 1)

T ~seconds

Since the system is translation invaridbt,can be evaluated at any choicexef Because the system is
isotropic,D. can be evaluated anhyr such thatr|| =r.

A structure functiorD(r) gives the correlation (linear relationship) for a timaying physical
quantity between two space points separated by a distance

Correlation Functions

The correlation between two fations is a measum@ how linearly related they are. The functions are
often functions of time, or functions of space. A measure of their linear relationship is given by the integral
of their product:

o

Ci ? ﬁ ndt f(t) g( or

Co' O F3dY o Gy [ AN 6.

It is often useful taompare the two funan with some offset in one of them. Then the correlation is a
function of this offset:

o

Cu®)* {atft JoaO o Ce®) P ACAT 1) g,

For two unrelated zermean functions, the correlation function is zero.

It is frequently useful to compute the coatédn of a function vth an offset version of itself, called the
autocorrelation function. For example, at a fixed instant in time, consider the temperatuiations
throughout the 3D atmosphef&x). Then:

CrrM* fj fj AXT& r¥Tk).

We expect thatearby temperatures asénilar, and that distant temperatures are unrelated. J{REés
zeramean, we expect the autocorrelation function to be large for small offset, and small for large offset. The
distance at which the autocorrelation becomeslgsal measure of thgize of atmospheric volumes with
similar temperature. A 2D or higher autocorrelation function is not necessarily isotropic. For example, the
temperature may vary differently in the vertical direction than in horizontal ones.
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3 Vect or s

Small Changes to Vectors
Projection of a Small Change to a Vector Onto the Vector

dr rir " p!

dr Ir-rior r-TE e

drf dlrl rl |r.|

(Left)y A small change to a vector, and its projection onto the vector.
(Right) Approximate magnitude of the difference between a big and setadir.

It is sometimes useful (in orbital mechanics, for example) to relate the change in a vector to the change
i n the vect dhediagramabgve (left) ledds to a somewhat unexpected result:

dr GE r or (multiplying both sides by and using r=t
r@ =dr
And since this is truéor any small change, it is also true for any rate of change (just dividg:by

r@® er

Vector Difference Approximation

It is sometimes useful to approximate the magnitude of a large vector minus a small one. (In
electromagnetics, foexample, this is used to compute the-flald from a small charge or current
distribution.) The diagram above (right) shows that:

r-rf g r-rEO o] rf b

Why (r, d, f) Are Not the Components of a Vector

(r, d, f) areparameterf a vector, but natomponents That is, the parameters ¢,f) uniquely define
the vector, but they are not component s, begause you
involving magnetic dipoles (ref Jac problem on mag dipole fie@)mponentsof a vector arelefinedas
coefficients of basiseactors. For example, the components (X, y, Z) can multiply the basis vectors to
constructv:

v=xk yEx
There is no similar equation we can write to constwictr om i t 6 s s p her if)c Bositior o mponent
vectors are displacemts from the origin, and there are fo, ( defined at the origin.
Put another way, you can always add the components of two vectors to get the vector sum:
Let w =(a b ¢ rectangular components. Then v w Fa ¥ (b WE( c9z
We cand6t do dodrdinatesi n spheri cal

Let  w=(y,qy {)sphericalcomponents. Then Vv w ([ tF @ W@y )

However, at a point off the origin, the basis vectbr§ ( are well defined, and can be used as a basis
for general vectors. [In differeiat geometry, vectors referenced to a point in spaeecalledtangent
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vectors because they are fitangento to the space, i n
elsewhere in this document.]

Laplaciands Pl ace

What is the physical meaningf the Laplacian operator? And how can | rememberlLtq@acian
operator in any coordinates? These questions are related because understanding the physical meaning allows
you to quickly derive in your head the Laplacian operator in any of the commatirates.

Let 6s t-laylstep loak astheagtiorf the Laplacian, firstin 1D, then on a 3D differential volume
element, with physical examples at each step. After rectangular, we go to spherical coordinates, because they
illustrate all the princips involved. Finally, we apply the concepts to cylicalrcoordinates, as well. We
follow this outline:

1. Overview of the Laplacian operator

1D examples of heat flow

3D heat flow in rectangular coordinates

Examples of physical scalar fields [temperatpressure, electric potential (2 ways)]

3D differential volume elements in other coordinates

o g M w N

Description of the physical meaning of Laplacian operator terms, such as

pr, * 2K —%2—-”@ 2 (AT
pr 4] rg. s LE r fr_

Overview of Laplacian operator: Let the Laplacian act on aalar field T(r), a physical function of
space, e.g. temperature. Usually, the Laplacian represents the net outflow per unit volume of some physical
guantity: something/volume, e.g., somethin§/nThe Laplacian operator itself involves spatial seeond
derivatives, and so carries units of inverseaa say .

1D Example: Heat Flow: Consider a temperature gradient along a line. It could be a perpendicular
wire through the wall of a refrigeratdfigure3.1a). It is a 1D system, i.e. only the gradiedngthe wire
matters.

wall wall current.
metal wire carrying wire
refrigeratorll warmer room refrigeratorll warmer room
h 4 h
i i i
g e+
S 2 heat flow
T, | © s
o+ | heatflow 9 -—
o : - g—
£ [}
-oq—'a) _ R ! !
(a) X (b) ' X

Figure 3.1 Heat condition (a) in a pas®i wire, and (b) in a hegtenerating wire.

Let the left and right dies of the wire be in thermal equilibrium with the refrigerator and room, at 2 C
and 27 C, respectively. The wire is passive, and can neither generate nor dissipate heat; it cadumtly con
it. Let the 1D thermal conductivity He= 100 mWcm/C. Considethe part of the wire inside the insulated
wall, 4 cm thick. How much heat (power, J/s or W) flows through the wire?

25C

—  H25m\\.
4cm

P= k% £100 mw-cm/Q
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There is no heat generated or dissipatethe wire, so the heat that flows into the right side of any
segmat of the wire (differential or finite) must later flow out the left side. Thus, the heat flow must be
constant along the wire. Since heat flow is proportiondltdx, dT/dxmust be constant, and the temperature
profile is linear. In other words, (Ejnce no heat is created or lost in the wire, fieat heatout; (2) but
heat flow ~dT/dx; so (3) the change in the temperatgradientis zero:

d &dT § _PT

dxge& g e
(At the edges of the wall, the 1D approximation breaks down, and the inevitabli@earity of the
temperature profile in thedirection is offset by heat flow out the sides of the wire.)

Now consider a current carrying wire which generates heat all aoleggth from its resistancEifure
3.1b). The heat that flows into the wire from the room is added to the heat generated in the wire, and the sum
of the two flows into the refrigerator. The heat generated in a lelxgthwire is

Poen = I2r dx  where r resistance per unit length, anfl 7 <ons.

In steady state, the nettflaw of heat from a segment of wire must equal the heat generated in that segment.
In an infinitesimal segment ¢engthdx, we have heabut = heatin + heatgenerated:

¢ dT daT
Py=P, Y — = 1%r dx
out ~ gen dx . dx i
ar LI 127 dx
dx a+dx an
2
d adT 8 127 dx v 9T 2,
dX(;, * dx

The negative sign means that when the temperature grélpsitive (increasing to the right), the heat
flow is negative (to the left), i.e. the heat flovojgposite the gradient. Many physical systems have a similar
negative sign. Thus thé%erivative of the temperature is the negative of heat ouffi@inflow) from a
segment, per unit length of the segment. Longer segments have more net outfratégeiore heat).

3D Rectangular Volume Element

Now consider a 3D bulk resistive material, carrying some current. The current generates heat in each
volume element of material. Consider the heat flow inxttigection, with this volume element:

z

Outflow surface area
flow Iisthe same as inflow

The temperature gradient normal to yheface drives a heat flow per unit area, in \&/nfror a net flow to

the right, the temgrature gradient must be increasing in magnitude (becoming more negative) as we move
to the right. Thechange in gradient is proportional d®, and the heat outflow flow is proportional to the
area, and the change in gradient:

d 4dT

Pout- Fn = l?ge— 8)( dy dz Y Fou~ Fin _'dz T

dxdydz @

Thus the net heat outflow per unit volume, due toxtisentribution, goes like the"2derivative ofT.
Clearly, a similar argument applies to thendz directions, each also contributing net heat outflow per unit
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volume. Therefore, thotal heat otflow per unit volume from all 3 directions is simply the sum of the heat
flows in each direction:

P Po_ (ST AT W
dx dy dz 9 2w

We see that in all cases, the

| net outflow of flux per unit volume = change in (flux per unit area), per unit distance

We will use this fact to derive the Laplacian operator in spherical and cylindrical coordinates.

General Laplacian

We now generalize. For the Laplacian to mean anything, it must act on a scalar field whose gradient
drives a flow of some physical thing.

Example 1. My favorite isT(r) = temperature. TheBT(r) drives heat (energy) flow, heat per unit
time, per unit area:

heLUtl q =k TH) where k thermal conductivi
area
g?! heat flow vector
uT o
Then ~— ~ @, =radial component of heat flo
pr

Example 2: T(r) = pressure of an incompressible viscous fluid (e.g. honey). Dhiémn drives fluid
mass (or volume) flow, mass per unit time, per unit area:

mass t, j =k TH) where k sbme viscous friction coeffici
area
j * mass flow density vector
pToo. .
Then — ~ j, =radial component of mass flo
pr

Example 3: T(r) = electric potential in a resistive material. TH2R(r) drives charge flow, charge per
unit time, pemnit area:

Mlj =s T®) where s electrical conductivil
area
j 1 current density vector
prooo. .
Then — ~ j, =radial component of current densi.
pr

Example 4: Here we abstract a little more, to add meaning to the common equations of
electromagnetics. L€E(r) = electric potential in a vacuum. Th&T(r) measures the energy pemitu
distance, per unit area, required to push a fixed charge dgtisityugh a surface, by a distancelof normal
to the surface:

energy/distance r & (r) where
area

r ‘*lectric charge volume densi..

ThenOr/ G- net energy per unit radius, per unit area, to push charges of deosttthe samelistance
through both surfaces.
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In the first 3 examples, we use the word Aflowodo to
unit area. In the last example,he fAfl owd i s energy expenditure per u
requirementofiper wunit aread is essential, as we soon show.
Laplacian In Spherical Coordinates

To understand the Laplacian operator terms in other coordinates, we need to taczdotot two
effects:

1. The outflow surface area may be different than the inflow surfieze a

2. The derivatives with respect to anglesaf ) need to be converted to radéchangeper unit

distance
Wedll see how these t wo epfthe spherical teents of¢he lLapldcian opefatory as we

The cylindrical terms are simplifidans of the spherical terms.

Spherical radial contribution: We first consider the radial contribution to the spherical Laplacian
operator, from this volume element:

z
Outflow surface area dq =sinddf dd
: is differentially

larger than inflow
dd

iy
flow oy
dr g
The differential volume element has thickness which canbe made arbitrarily small compared to the
lengths of theiges. The inner surface of the element has &rddV. The outer surface has infinitesimally

more area. Thus the radial -acdcemtor iebfufteicotn, idmpuctl undoets thho
derivativeso effect.

The increased area of the outflsurface means that for the same ftlensity (flow) on inner and outer
surfaces, there would be a net outflow of flux, since flux = (flersity)(area). Therefore, we must take the
derivative ofthe flux itself, not the flux density, and then convertrgmult back to peunit-volume. We do
this in 3 steps:

flux = (ared)( flux-density {r2d WAF O
(ared)( y 4 V)%; 0
d(flux) _pyo WA KB
=—(r<d A
i Tl ey 6

outflow _ d(flux) 1 ({2, \& U6 1 R
= = Py )& 0 =
volume ( areqdr erWpr(r cH 9.2 H(:ir ) _rge|

The constantW factor from the area cancels when converting to flux, and back taléogity. In other
words,we can think of the fluxes as psteradian.

We summarize the stages of the spherical radial Laplacian operator as follows:
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% T(r) ==X r2_trg)
repr o

M1 = radial flux per unit area

pr
rzﬁT =radial flux, per unit solid-angle—(area)( flow per unit areg
r d W
M2 o change in radial flux per unit length, per undtlgl-angle; positive is increasing flu
Hr u
L M2 By 2 change in radial f it length '
— I =T1= ge in radial flux per unit length, per uniea
repr 2
= net outflow of flux per unit volume
)
o u,
radial flow

per unit area

radial flux
per steradian

|
change in radial flux per

unit length per steradian
L

1
change in radial flux per
unit length, per unit area

Following the steps in the example of heat flow,Tig) = temperature. Then

£T =radial heat flow per unit area, Wat

r2 2T = radial heat flux, W/solid-angle _Watts
r steradian

rz—ul' =change in radial heat flux per unit length, peitsolid-angle
91

1

r2

TEl= Bl

r2_Hr = net outflow of heat flux per unit volume
91

Spherical azimuthal contribution: The sphericaf contribution to the Laplacian has no am®nge,
but does require converting derivatives. Consider theme element:

4
l Outflow surface area

is identical to inflow

flow
X df

The inflow and outflow surface areas are the samd,therefore areahange contributes nothing to the
derivatives.

However, we must convert the derivatives with respefiinto ratesof-change with respéto distance,
because physically, the flow is driven by a derivative with respect to distandbe $phericafl case, the
effective radius for the aflength along the flow is sin d, because we must project the position vector into
the plane of rotan. Thus, QC) is the rateof-change perr(sind) meters. Therefore,

rate-of-change-per-meter. 1 H
rsingu f
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Performing the two derivative conversions, we get

1 p 1
p2T(r) =——H = Mg
T rsing u fr sin qu (f)

,1 LT = azimuthal flux per unit area
rsing pu f
B 1 Ly g change in (azimuthal flux per unit area) periead
porsin g f
1 w1 Lo g change in (azimuthal flux per unit area) per tugistance

rsinqu_fr sin a f
= net azimthal outflow of flux per unit volume
ST S S
rsing pAsin gu f r2sin?gp A

azimuthal flux
per unit area

e —
change in (azimuthal flux

per unit area) per radian
L ]

change in (azimuthal flux per
unit area) per unit distance

Notice that ther? sir? d in the denominator is not a physical area; it comes from two derivative
conversions.

Spherical polar angle contribution:

z flow
Outflow surface area
Y, is differentially

Ly dd larger than inflow
. VA \

The volume element is like a wedge of an orange: it gets wider (in the northaisphere) asf
increases. Therefore the outflow area is differentially larger than the inflow area (in the northern

hemisphere). In particulatarea:(rsinq) dr, but we only need to keep tlledependence, because the

factors ofr cancel, justike dwdid in the spherical radial contribution. So we have
area” sing.

In addition, we must convert t#0 do a rateof-change with distance. Thus the spherical polar angle
contribution hadothareachange and derivativeonversion.

Following the steps of converting to flux, taking the derivative, then converting back tdefsity, we
get
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P2, T(r) = smq——“rt)
smqr Mg r

W, Flux per unit area
r ug

1u

sing—-—-T = Efiux, per unit radius ~2€8( flux per unit arej
r uqg

dr

ismq——“T = change |r( '1:7 -flux per unit radu)s , per radian
Mg Mg
1u smq——p‘l' = change |r( E&y-flux peunit radm% per unit distanc
rug Hg
t i smq——“T = changein éy -flux per unit area), per unit @isce
singrpg 'r pg

= net outflow of flux per unit volume

i} isinq—l—ul' -1 Lsmq—p‘l’
simgrpqg I Hg g 2sing Hg Hg

& flux per
unit area

&flux, per
unit radius

e — |
changen (§flux per
unit radius), per radian
L ]
change in ¢ -flux per unit
radius), per unit distance
]

change in d':——ﬂux per unit
area), per unit distance

Notice that the? in the denominator is not a physical area; it comes from two derivative conversions.

Cylindrical Coordinates
The cylindrical terms are simplifications of the spherical terms.

. f andz outflow flow
Radial outflow
. . surface areas are

surface area is . .
. i identical to
differentially larger

than inflow Aow inflow dz
flow dr 47 .

Cylindrical radial contribution: The picture of the cylindrical radial contribution is essentially the
same as the spherical, but fiéeh e i g h tskab iexactly hoastant. We still face the issues of varying
inflow and outflow surface areas, and converting derivatives to rate of change per unit distance. The change
in area is due only to the arc lengtti/, with thez (height) fixed. Thus we \ite the radial result directly:
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1 S .
B2 T(r) ?5 r—ruul'(r) (Cylindrical Coordinates)

ﬁT =radial flow per unit area

r 2T = radial flux per unit angle—(fIOW per unit area)(arez
pr df dz
L change in (radial flux per unit angle), per uréidius
L &
lﬁr—ul' =changenm (radial flux per unit area), per unit radius
rge
= net outflow of flux per unit volume
RN P
ALY
radial flow
per unit area
“radalflox
per radian

S —
change in radial flux per
unit length per radian

]

L
change in (radial flux pe
unit area), per unit radius

Cylindrical azimuthal contribution: Like the spherical case, the inflow and outflow surfaces have
identical areas. Therefore, theontribution is similar to the sphieal case, except therens sind factor;
r contributes directly to the atength and ratef-change per unit distance:

2 1pupl
P T(r) —rm—;r(r)

}iT =azimuthal flux per unit area
r uf
. change in( azimuthal flux per unit arfa per radia
phro pf
Eif—l—uL;l' = change in (azimuthal flux per unit area) per tutlistance
rpfr

= net azimuthal outflow of flux per unit \ome

.I—I
azimuthal flow
per unit area

e —
change in azimuthal
flow per radian

e —
change in (azimuthal flux per
unit area) per unit distance

Cylindrical z contribution: This is identical to the rectangular case: the inflow and outflow areas are
the same, and the derivatiis already per unit distance, ergo: (add cylindrical volume element picture??)

4/27/202111:49 AM  Copyright 20022021 Eric L. Michelsen. All rights reserved. 40 of 322


https://elmichelsen.physics.ucsd.edu/

elmichelsen.physics.ucsd.edu/ Funky Mathematical Physics Concepts emichels at physics.ucsd.edu

p2,1(r) == —tr()
iz p

H T = vertical flux per unit area

Ly change in (vertical flux per unit area) per udistance
bz @
= net outflow of flux per unit volume
B W
e @, uz’
vertical flux

per unit area

e — |
change in (vertical flux per
unit area) peunit distance

Laplacian of a Vector Field

It gets wor se: tbAdfE®@§ 9 isa vestc fieldtben in fectangularadordinates:
P’E:* DB ZE)  ’EjD Ek .

This arises in E&M propagation, and not much in QM. However, the abquality is only true in
rectangular coordinates [I have a ref for this, but lost it??]. This ditkegence of the gradient of a vector
field, which is a vecto In oblique or nomormal coordinates, theadientanddivergence must be covariant,
and include the Christoffel symbols.

Vector Dot Grad Vector

In electromagnetic propagation, andesihbere o ne enc o prtoadrusc ttohe fiddotvect or
thegradient operator, acting on a vector field. What isuh® operator? Herey(r) is a given vector field.
The simple view is that(r) -B is just a notational shorthand for

S H po
v(r)O b — Vi— V45
() %XUX y N z zug

%—fy— Hy—

b OB(E yE ) Lo & B
ecausev(r)O B (=3 Wy E g %;( vid +_zp ¢ X

I O_':_Ol

by the usual rules for a dptoduct in rectangufecoordinates.

There is a deeper meaning, though, which is an important bridge to the topics of tensors and differential
geometry.

We can view the vb operator as simply the dptoduct of the vector fiela(r)
with the gradient of a vector field.

You may think of the gradient operator as acting atalar field, to produce a vector field. But the
gradient operator can also act on a vector field, to produce a tensor fielde Bes how it wor ks:
probably familiar with derivatives of a vecteld:
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Let A(x Y, 2 be a vector field. TheHézge“iE &y ER, &is a vector fie
X ¢ M XU XU =
apA, o
& . 0
aA 0 ol ¥ 0
Writing spatial vectors as column vectors,Aziéy 8 , and A = 8
& 0 P
¢h =+ ah, o
S 2
Similarly, L) and A arealso vector fields.
0% R
By the rule for total derivatives, for a small displacemértdy, d2),
apA, A, pA, &x 03 5 aB 0 3 5
B @ 0ar (w6 a g
8 2 5 6Zn 0 Zao 3w S
dAlgiAy g—-‘uﬁdx +A—dy —'iudz == ﬂ & @y ogﬁ gx aeﬂ"ﬁdy*'aei gz
a%lpz"jux M n e W @ M 5 M W o5
¢ T ;&u&u&@izéaéﬁoaeé?%d.
Tix oy uzg BFmx ¢ Byl Fp.O

This says that the vectdA isa linearcombnat i on of 3A/&oA@ynn AlGext t Gwes gt e d
respectivelyby the displacement$x, dy, anddz The 3 x 3 matrix above is the gradient of the vector field

A(r). Itis the natural extension of the gradient (of a scalar field) to a vésdthr ft is a rank2 tensor, which

means that given a vectax dy, d2), it produces a vectodf) which is a linear combination of 3 (column)

vectors PA), each weighted by the components of the given vediody, d2).

Note thatbA andb-A are very different: the former is a ra@ktensor field, the latter is a scalar diel

This concept extends further to derivatives of r@rtiensors, which are rafitensors: 3 x 3 x 3 cubes
of numbers, producing a linear combination of 3 x 3 arraygyhted by the components of a given vector
(dx, dy, d2. And so on.

Note that in othecoordinates (e.g., cylindrical or spheric&) is not given by the derivative of its
components with respect to the 3 coordinates. The components interact, because the basis vectors also change
through space. That leads to the subject of differegéiametry, discussed elsewhere in this document.
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4 GreemcRU ons

We follow [Jac p??] and [ Br al in using the term @
Though we agree with Jacksonés | ogic, we do it most]

Green functions are a big topic, with lots of subtopikkny references describe only a subset, but use
words that imply they are coveriral of Green functions. If you are looking for a specific application of
Green functions, such as electrostaticsluy may want to skip ridbaotapphibéesse
to all Green functions.

Though Green functions are used to solve linear operator equations (such as differential equations), the
concepts involved apply to other applications, such aBthrn approximation, impulse response analysis,
and quatum propagators.

The Big Idea

Green functions are a method of solving linear operator equatiued asinhomogeneous linear
differential equatior)sof the form

L{f(x} = Is(_x)I where L{ }is alinear operato. 4.1)
source

s(x) is called t hWeuwesSeenfunaianswhen athertmetbods are hard, or to make a
useful approximation (the Born approximatioffhe big idea is to break up the sousfd into infinitesimal

pieces {-functions), solve each piece segtaty, and add up the solutions. SinceAhis linear, the sum of
solutions is also a solution, and is the solution to the original problem.

Sometimes, the Green function itself can be given physicahimgaas inE&M where it isessentially
Hu y g e nndige, batrwith accurate phase informatiar in Quantum Field Theorwhere it is the
propagator of a quantized fieldsreen functions can generate particular (i.e. inhomogeneous) solutions, and
soluions matching boundary atedonbgehebus sokitions (i.€. hwhere tliboightt t gene
hand side is zero). We explore Green functions through the following steps:

1. Extremely brief review of th&-function.

The tired, but inevitable, electromagnetic example.

Linear differential equations of ervariable (dimensional), with sources.
Delta function expansions.

Green functions of two variables (but 1 dimension).

o gk~ 0N

When you can collapse a Greemfat i on t o one variable (fAportable G
invariance)

7. Dealing with boundargonditions: at least 5 (6?77?) kinds of BC
8. Greenlike methods: the Born approximation

You will find nor ef er ences t o i Gr eaedn6osi nTvlgebunetormhdmogeneoud s e | f
boundary conditions, becaugstil then,those topics are unnecessarg aonfusing. We will see that:

The biggest hurdle in understanding Green functions is the boundary conditions.

Some references derive Green functions froméGce n6s Theorem, whichiderives f
That is only a special case. In general, Greentfons donotr el y on Green@8s Theor em.

We return to this point later, after discussing general boundary conditions.

Dirac Delta Function

Recall thatthe Dact-f uncti on is an fAi mpul se, 0 adefinddasf i ni tely n:
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a
d(x)=0, forx ,0, and ﬁ ak)dx 2, d Ofthe area underthed -fimeis 1).
= a

(Thisalso impliesd(0)- =, but we don dt) The bneauitg of iategratioh implieshhe deka.
function can beffset, and weighted, so that

ota
n) wd(x- b dx =w 'a C.
- a
Sincetherf uncti on is infinitely narrow, it can fApick outo
ota
n) d(x- b) f(¥ dx =f(h ‘a C. (4.2)
- a

This i s fcialtleerd ntgh ep-fictpre SeeQuitky @Quantutn K@ncepfer more on the delta
function. The units ofli( ) are K]'*.

The Tired, But Inevitable, Electromagnetic Example

You probably have seen Poi sson 6d at e pgpintachéchanger el at i ng
distribution creating the potentiah(gaussian units):

- Br(r) % pw) where Blectrostatic potential, r&harge den. (4.3)

We solved this by noting three things: (1a) electrostatic potefitial, o b e y ss ifitsiugre:r oot he pot ent
to multiple charges is the sum of thetgmtials of the individual charges; (1b) the potential is proportional to
the source charge; and (R)ve take the potential at infinity to be zetioe poéential due to a point charge is:
f(r)=qﬁ (point charge at . (4.4)
r-r
(We say much more about boundary conditions lat&éhg properties (1a) and (1b) above, taken together,
define alinear relationship:

Given: ry¢")- f¢), and () o),
then: ar ¢ )+ 5t - e 1) = 1(F) +( 7.

To solve(4.3), we break up the source charge distribufi@r) into an infinite number of little point
charges The set of points ispread out over space, each of chafged®. The solution forf is the sum of
potentias from all the point charges, and the infinite sum is an integral, so we fisd

# points 1 1

fr)= lim 3 Dddir—— & ) d3 :

(r) Am, 8 D i e aT
Note that the char ge 0 dilfunction:infiniteicloarg® derisityrbutdiniteptatal nt c har |

charge.Also, ! (r) for a point charge at & translationally invariant: it has the same form forall. We wi | |
remove this restriction later.

All of this followed from simple mathematical properties of Eq (1) that have nothing to do with
electromagniics. All we used to solve fof was that the lefhand side is a linear operator én(so
superposition applies), amee have a known solution when the rigfand side is a delta functi@tr :6

1 .
-B f(r)  =p@® and 2 _2p = (dr ).
linear ynk i linear |r T '| ' i
unknown  given "source" given point
operatorfynction function operatdnsvn™  "source”at
solution
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Since any given can be written as a sum of weighigélinctions, he solution fothatgiveny is a sum of
deltafunction solutions. Now we generalize teigctromagnetic exampte arbitrary (for now, 1D) linear
operator equations by lettimg x, - f,1D%- A,] - s, and call the knowi-function solutionG(x):

(Br0) pw  and 2B (a 9= -
N 'W' (¥ £ |r-r| given point

G(r-r’) ‘"source"at '
Given £{f&}=s(x) and L£{Gx-x) & (x X)
then &)= dx's(x) G(x- X).

This sssunes as above, that our linear operator, and any boundary conditions, are translationally invariant.

A Fresh, New Signal Processing Example

If the followingexample doesht make sense to you, ajdecantroltletry p it .
folk have long used a Green functibke concept, but with different words. A timevariant linear system
(TILS) produces an output which is a linear operation ®mjbut:

o(t) = M{i(t)} where M({ }is a linear operation taking input to outy.

I n this caseB{we amaendwe d(oaviésno siotl évseathdrrmart thedeidei g h t

of the equation) However,waregi ven a measur ement ( oimputserespondeat i on)
calledh(t). If you poke the system with a very short spike (itg/ou feed an impulse into the systgift) =
U(t) ), the systenresponds withn(t):

h(t) = M{a(t)} where I }is the system's impulse respo.
h(t) acts like a Green function, giving the system response at toreedelta function at= 0. Note thath(t)
is spread out over timend usually of (theoretically) infinite duratiorn(t) fully characterizes the system,

because we caxpresany input function as a series of impulgegth the deltafunction expansion below)
and sum up all the responses. Therefore, we find the tiatpany input,(t), with:

o]

o= i)t t)dt.

Caution: many references do not distinguish between a Green fu@gtipand an impulse response
h(x). The two are similar, but they differ because:

£{G(x)} = d(x), but  h(xY sM{ 4%} .

The U-function is in a different place for a Green function vs.impulse response. For example, in

electromagnetics, sources (charges and currents) are the stimulus that result iE feldB) . Maxwel | &8s

equations have linear operators acting orrélalt(fields) to give you the stimulus. A TILS does the regers
it producesaresultwhich is a linear operation on its inpgtimulus).

We can see a relationship between a Green function and an impulse response I8y takiiigexists)
of both sids of the second equation:

MY} =d(¥.

Thus theimpulse response for an opera®r is the Green function for the opera®r'®. In particular,

guantum field theory calls the field fAprtapsagat or o
impulse response.

4/27/202111:49 AM  Copyright 20022021 Eric L. Michelsen. All rights reserved. 45 of 322

of

a


https://elmichelsen.physics.ucsd.edu/

elmichelsen.physics.ucsd.edu/ Funky Mathematical Physics Concepts emichels at physics.ucsd.edu

Linear differential equations of one variable, with sources

We wish to solve fof(x), givens(x):
£{f(q} =R, where £{ } is a linear operator.

We ignore boundary conditions for now (to be dealt with later). The differential equations ofeeBhav
space as their domain. Note that werastdifferentiatings(x), which will be important when we get to the
deltafunction expansion of(x).

Greenfunctions solve the above equation by first solving a related equation: if we can find a function

(i.e., a fAGreen:functionod) such that
£{G(X} = d(x), where  { Xis the Dirac delta functior
442

W G )=
eg. %74- ?(X) =d(x),

then we can use that Green function to solve our original equation. This might seenbeczidei(0) -
b, but it just means that Gr een f wericativesoFosexamplé,en have
supposes(X) is a step function:

G(¥ =0, x <00 d _
1 x>0;," Then 5(G(x)-o’(x).

Now suppose our source si(x}szrd(‘)xt-acléu{t} i raedthtioa invarfatt e or i gi n
[along with any boundargonditions], ther( ) can still solve the equation by translation:

L{f(} =s(® =(x 3, Y (3 @&x X isasolution
If s(x) is a weighted sum of delta functions at different places, then bet;{u‘ﬁeis linear, the solution is
immediate we just add up # solutions from all thé-functions:

c{feh=s) A walx 0 ¥ (x AwEx ¥

Usually the source(x) is continuous. Then we cdmweak ups(x) into infinitesimally small pieces (i.e.,
expand itas an infinite sum of delta functigrdescribed in a momen@nd sum the solutions for the pisce
The summation goes over to an intégaad a solution is

= K
{10 =59 A walx -
i=1

E{f(x)}:s(x) ﬁurcei X dxd( x § - and fl ¥ Sot‘tedk(SX G x

We can show directly thd¢x) is a solution of the original equation by plugging it in, and noting that
L{ } actsinthexd o mai n, arnodu gihgoo e(si .teh. , commuouxdes with) any ope
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L{ ()} :Lfﬁdx’ 0@ x-% g
= fax OL{ G x- B} movingL{ } inside the integral
= ﬁdx' X)d(x-X $X &) picks out the value of s(x). QEI

We now digress for a moment to understandithenction expansion.

Delta Function Expansion

As in the EM example, it is frequently quite useful to expand a given funstioras a sum ofi
functions:

N
s(X) ° a wd( X -x), where ware the weights of the basis delta funas.
i=1

[This same expansion is used to characterizeethigonse of linear syshsto inputi(t).]

w, = area
s(¥) & s(x)qpx
()
N=8
N =16
bl e
X 5
(a) (b) X
Figure 41 (@ Appr oxi mat i ng -fanctibns.n(b)Thée weight of iedcti-fundtion is
such that its integral approximates the integral of thengiwections(x) , over the interval fic

by thel-function.

In Figure4.1a, we approximatea(x) first with N = 8 G-functions (green), then with = 16 U-functions (red).

As we doubleN, the weight of each-function is roughly cut in half, but there are twice as many of them.
Hence, the integral of thiefunction approximatio remains about the same. Of course, the approximation
gets better al increases. As usual, we let the numbeli-dfnctions go to ifinity: N- .

In Figure4.1b, we show how to choose the weight of egdhnction: its weight is such that its integral
approximates the integral of the given functisfx) |, over the int efuncteod. Intheover edo |
limitof N- B, dppraximation becomes arbitrarily good.

In what sense is thefunction series an approximationdx)? Certainly, if we need the derivatigéx),
the deltafunction expansioseems to béerrible. However, if we wat the integral o§(x), or any integal
operator, such as an inner product or a convolution, then thefulettiion series is a good approximation
Examples:

For 509 dx or Ry dx or () X 6 x-d

N

then  s(x)° § wd(x -x) where w =§3 B
i=1

AsN- D, eeaxpand(x) in an infinite sum (an integral) gffunctions:
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=g
ng %

S(X):a wa(x - x) ¢x AdXEXE x X

which if you think about it, follows directly from the definition @(x), per(4.2).

[Aside: Deltafunctions are a continuous set ofrmmormal basis functions, much like sinusoids from quantum
mechanics and Fourier transforms. They satisfy all the usual orthonormal conditions for a continuous basis, i.e. they
areorthogonal andnormalized:

f dxd(x- g &x-h & b ]
Note that in the final solution of the prior section, we integsgéfetimes other stuff
fO) = dx €% & x- X,

and integratingpvers(x) is what makes thé-function expansion of(x) valid.

[Aside: It turns out that even systems that different& ¢ a n  4fuscton éxpaasion, but we need not
bother with that here.]

Boundary Conditions on Green Functions

Most problems require boundary conditionstlva solution to an equation.

Introduction to Boundary Conditions

We nowimposea simple boudary conditionon an equation we seek to salv€onsider a 2D problem
in the plane:

L{f(xy} =%y inside the boundary;
f (boundary)x 0, where the boundary is giv

We define the vectar [ x,{) andré x8 y6()and recall that

Mt &) (9, so that W) ko) (v oY
The boundary condition removes ttnanslation invariance of the gotem (Figure4.2). The deltdunction
response ofC{G(r )} translates, but the badary condition doesot |.e., a solution of
L{G(r)} =dr), and G (boundary)= 0 Y L{Gr(r-} e
BUT does NOT Y G boundaryr ) =0.

y ) boundary condition dot

boundary condition | -*. nottranslate withrd
f(boundary) = ( b/oundary 4

remains fixed ——
X (D) S x
t—/)%omain L—/
of f(x, y) (b)

Figure 4.2 (a) The domain of interegblue), and its boundargred) (b) A solution meeting the
BC for the source at (@) doesnottranslate to another poindand still meet the BC.

@
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| With boundary conditions, for each source point r', we need a diffGrenfunction!

The Green function for a source paittcall it Gr{r), must satisfjpoth
L{G (N} =d ¢ and  G.(boundary) =.

We can think of this as a Green function of two argumerasdr’, but reallyr is the argument, and is a
parameter. In other words, we haviamily of Green functionsGr4r), eachlabeled by the location of the
sour@ pointr'.

Note that finding 1D Green functions is an important prerequisite for 3D Green functions, because a 3D
problem sometimes separates into a 2D and a 1D problem. We give such an example in the section on 3D
Laplacian operator boundary conditions

One Dimensional Boundary Conditions

Example: Returning to a 1D example in Find the Green function for the equation

2
%f(r):s(r), on the interval [0,1], subject to BCf (0)f=1)( 0.
r

Solution: The Green function equation replaces the samceith G(r i r'):

d? ,
FGr-(r) =dr 1.

Note thatG/4r) satisfies thdvomogeneousquation on either side od :
d2
—G(r, r) 0.
dr2

The full Green function simply matches two homogeneous solutions, one to therfeffof and anot her t o
right o r6 , such that tré e c rde @& tc @ N U-fudction theeeq eFirst wedfind the
homogeneous solutiofgr) (notan impulsaesponse)

2

% h(r)=0 Integrate both sides:

r

%h(r) =C where Cis an integration constant. Integrate ag (4.5
h(r)=Cr 4D where G Dare arbitrary constants.

There are now 2 casefleft) r <r’, and (right)r >r'. Each solution requires its own set of integration
constants.

Left case: r<r' Y G . ()€r B
Only the left boundary condition appliesite<r ~ ': G,. 0)( 0 YD &
Right case: r>r ' Y G, 1n()Er R
Only the right boundary condition appliesteer 'G,. (1) 0 Y E F OF E.
So far, we have

Leftcase:G (<r ) €r Rightcases r( > ErF E.

The integration constan@andE are asyet unknown. Now we must match the taautions ar =r',
and introduce a delta function there. Thiinction must come from the highestrigative inL{}, in this
case the ® derivative, because @G/dr had a delta function, then th&' Aerivatived’G/dr? would have the
derivative of ak-function, which cannot be canceled by any other terb{ jn Since the derivative of a step
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(discontinuity) is ai-function,dG/dr must have atep so that?G/dr? has ai-function. And finally, ifdG/dr
has astepthenG(r) has a cusspharfmikta fiki nko or

We can findG(r) to satisfy all this by matchinG(r) anddG/dr of the left and right Green functions, at
the point where they meet=ro6 :

d . d
Left: —G, (r<r') € Right: —G..(r r") >E.
ar pe(r<r’) ig err( )

There must be a unit step in the derivative acressd :
uG
pr

+1 :_G
r'. p—

Y C ¥ E (4.6)

r'+

So we eliminateE in favor of C. Also, G(r) must be continuous (or elg&/dr would have di-function),
which means

G (r=r.) &.(r =) of'" C =C 4 C '],
yielding the final Green function for the given differential equatiad boundary conditions
Go(r<r) {r' Yr, G, ry ri=r'r{ =1).
Her ebs a @reeoftinctions fortdiffezestealues of:

G, (1) G, (1) G, (1)

0.5+ 054 0.5+
r'=0.3 =05 r'=0.8
O i | r 0 i | r O i i r
0.5+ -0.5+ 0.5+
0 1 0 1 0 1

Normalization is important, because tié&inction in E{G(r)} =d(r) must have unit magnitude.

To find the solutiorf(r), we need to integrate ovet therefore, it is conveéent to write theGreen
function as a true funan of two variables:

G(rir) G ¥ L{G(rir} = ), and G (boundary; )

wher e t he réandrbemphasizes¢h&(n ;r') is a function of, parameterized by. l.e., we can
still think of G(r; r') as a family of functions af where each family member is labeledby, and each f ami |
member satisfies the homogeneous boundary condition.

It is important here that the boundary conditiois 0, so that
arny sum of Green functions still satisfies the boundary condition.

Finally, the particular solution to the origal equation, which now satisfies the homogeneous boundary
conditiors, is:

ot r 1
f(r)= n)dr‘s(r')G(r;r') = 0tfﬁ']'s(r') (" :Ldr ¥ (r Dr-
G(rir),r>r’ Grr)r k'

which satisfies f (boundgr3 O

Summary: To solve £{G; (1)} =d(r +) in one dimension:
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1 We breakG(r) into left and right sides ofr'. Each side satisfies the homogeneous tamua
£{G, (r)} =0, with arbitraryintegrationconstants.

' We establish a first matching condition Gfr), which is usually that it must be continuous at

r.

1 Weestablish anothenatching condition to achieve tligunction atr'. This establishes set
of simultaneous equations for tlegrationconstants inhe homogeneous solutions.

1 We solve for the constants, yielding thedefir' and rightof-r' pieces of the complete Green
function,G(r; rg.

Aside: L is amusing to notice that we use solutions tohbmogeneougquation to construct the Green
function. We then use th&reenfunction to construct th@articular solution to the giver{inhomogeneous)
equation. So we are ultimately constructing a pantii ar sol uti on from a homogeneous soO
anything we learned in undgaduate dierential equations

When Can You Collapse a&reen Function to One Variable?

i Por t &fedn&unctions: When we first introduced th&reenfunction, we gnored boundary
conditions, and ouGreenfunction was a function of one variabte, I f our source wasno6t a
just shifted ouGreenfunction, and it was a function of justi(ré ) . Then we saw that with |
conditions,sHi t i ng d o e s n &Greenfunatiorkis a fuaatiath of twio eariablesandrd . I n general,
then, under what conditions can we writ€m@eenfunction in the simpler form, as a function of jusi (6 ) ?

When both thdéinearoperator and the boundaconditions are translatieinvariant,
the Greenfunction is also translatiemvariant.

We can say itbés fAportable. o

This is fairly common: differential operators are translatiorariant (i.e., they do not explicitly depend
on position), and BCs anfinity are translatiofinvariant. For gample, in E&M it is common to have
equations such as

- §f(r) =), with boundary condition A %

Because both the operatob?’and t he boundary conditions are transl :
introducer' explicitly as a prameter irG(r). As we didin (4.4) when introducingsreenfunctions, we can

take the origin as the location of the ddliaction to findG(r) , and use translation inv
aroundo the delta function:

G(r;r)1G,.(r) &(r r and L{G¢ r} o€ r )

with BC: G(@) =0

Non-homogeneous Boundary Conditions

So far, weobve dealt with homode(mea(us) thbererodary condi
the boundarywhich may be at infinity) But there are different kinds of boundary conditions, difiérent
ways of dealing with each kind.

[Note that in general, constr ai rbobundargohahything. oThegarelonét have
really just fAconstraintso or fAconditionsa 0findromaleixzaenthd e,
function, which is not a statement about any boundaries. But in most physical problems, at least onedmeslition
occur at a boundary, so we defectommon usageand limit ourselvebereto boundary conditionk.

Boundary Conditions Speifying Only Values of the Solution

In one common case, we are given a general (inhomogeneous) boundary comdiliaaong the
boundary of the region of interest. Our problem is now to find the complete sal(rficuch that
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L{c(r)} =s(r), and  c(boundary)=m (boundar.

One approach to find(r) is from elementary differential equations: we find a particular soldigrio the

given equation, that doesnét necessarily meet the bound
homogeneousolutions to achieve éhboundary conditions, while preserving the solution of the- non

homogeneous equatiohere are 3 steps:

(1) First solve forf(r), as above, such that
L{ f(r)} =s(r), and  f (boundary)= 0,
using a Green function satisfying:
L{G(r;r)}=d(r +) and G (boundary; ') =C

(2) Find homogeneous solutiohgr) which are norzero on the boundary, ngj ordinary methods (see
any differential equations text):

L{h(r)}=0, and h (boundary), .

Recall that in finding the Green function, we already had to find homogeneous solutions, since every Green
functionis a homogeneous solution everywhere except af-flnaction positiony'.

(3) Finally, we add a linear combination of homogeneous sokitioithe particular solution to yield a
complete solution which satisfies both the differential equation and the boundary condTtrarswe find
coefficientsA; sudh that

Ah(n+Ah(r) +. m(r), and [,{ Ah () Ah(rh } 0+ by superpositic.

Then our solution is(r):

c(r)=1f(r) A(r) Ahy(r) ..% because,
c{c(n} =£{f(r) Ah(r) Ah(r) .}
=£{f(r)} =s(r) and  c(boundary) m (boundar

Continuing Example: In our 1D example above, we have:

E{}:“—Z2 and G.¢ <) @E" ¥, G . rPrf=1,-
pr
satisfying BC: G, OFG. (1) =0 Y f@O £@ 6 si)

We now add boundary conditions to the original proble{®) = 2, andc(1) = 3, in adition to the original
problem. Our linearly independent homogeneous solutiongrane (4.5):

h(r)=Ar ho(r) A, (a constant.
To satisfy the BC, we need

h(0)+h(0) =2 Y A 2

h@®+hh@® 8 Y A %

Thusour complete solutigrsatisfying the gien BCsiis:

_et n @
c(r)—gr])dr s(r)G(r;r") Hﬂf Z. 4.7
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Boundary Conditions Specifying a Value and a Derivative

Another common kind of boundary conditions specifies a value and a derivative for our complete
solution For examplgin 1D:

c(0)=1 and c '(0) =&

Recall that oupreviousGreen functior(4.7) is notrequired tchave any particular derivative at zero. When
we findaparticular solutionf(x) , we hav e devivativelatzerd,\{O) wilt be.i Ahddngparticular,
different source functions(r), will produce differenf(r), with different values of '(0). This is bador our
new BCs In the previous case of Br) was zero at the boundaries forys(r). What we need with our
new BC isf(0) = 0 and '(0) = 0 for anys(r). We can easily achieve this by usindifferent Green functidn
We subjected our first Green function tetboundary condition§(0;r6) = G@;r@a)hd= 0 speci fical
to givethe same BC tf(r), so we could add our homogeneous solutindspendentlyf s(r). Thereforejn
2
our exampleﬁ{ } = ;—2 ,we now choose our Green function BC to be:
r

G(@O;r) © and %G (Oor ) 0= with £{G(r ) dd—:zG i ) dr( r

We can see by inspection that this leadstiew Green functiofFigure4.3):
G(r;r)=0 r <, and Gt )Yr=r-r r

G(r;r G(r;r) G(r;r)

0.5 0.5 / 0.5
1 r : b 0 /' r

0 1 0 1 0

Figure 4.3 Green functions for 3 different valuesrdf

The Z9derivatve of G(r;r6) i s everywhere 0, and thedfirfhedefrovalt
our new particular solutioffr) also satisfies:

1
f(r)= ﬁ)dr' s(r)G(r;r’) and f (0)=0,f '(0) B, s'(.
We completehe soluion using our homogeneous solutions to meet the BC:
h(r) = Ar ho(r) =A, (a constant)

h(0)+h(0) 2 VY A £
h'(0)+hy'(0) &5 Y A 5. Then

5 1
c(r):gﬁdr's(r')G(r;r‘) gﬁr ¥
é u

In general, the Green function depends not only on the particular operator,
but also on th&ind of boundary conditions specified.

The Green function doe®t depend on thgaluesof the given BCs.
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Boundary Conditions Specifying Ratios éDerivatives and Values

Another kind of boundary conditions specifies a ratio of the solution to its derivative, or equivalently,
specifies a linearombination of the solution and its derivative be zero. This is equivalent to a homogeneous
boundary conition:

or equivalently (ifc (0) , 0) c'(0) & (0) «
c(0)

This BC arises, for example, in some quantum mechanics problems where the normalization of the wave
function is notyet known; the ratio cancels any normalization factor, so the solution can proceed without
knowing the uimate normalization. Note that this is only a single BC. If our differential operatét is 2
order, there is one more degree of freedom that cansed to achieve some other conditiesnuch as
normalization. (This BC is sometimes giverbag0)i U (0) = 0, but this simply multiplies both sides by a
constant, and fundamentally changes nothing.)

Importantly, this condition is homogeneous: a lineambination of functions which satisfy the BC also
satisfies the BC. This is most easily seen fronfahe given above, right:

If d'(0) - ad(0) =9, and e'(0) we(0) 6
then c()=Ad() Be(r) satisfiesc '(0)ac (0) ®
becausec ‘(0)ac (0)=A(d '(0)-ad (§) E e '(0) & (D)

Therefore, if we choose a Green function which satisfies the dimermmgeneouBC, our particulasolution
f(r) will also satisfy the BC. There is no need to add any homogeneous solutions.

Continuing Example: In our 1D example above, with = d%/dr?, we now specifyhe BC:

@:2

<0) or c'0) x(® G

Green functions for this operator are always connected line segments (because tHéidivatives are
zero),sowe have

r<r': G(yr") €r DB, D 0,sothat (0) C
r>r': G(iyr") £ H
BCat0: C 2D 0=

With this BC, we have an unused degree of freedom, so we cboese implyingC = 2. We must
find EandF sothatG(r;r6) i s conGdrmyothsa,s am@G@ini tT hset elpatater condi ti
thatE = C + 1 =3, and then continuity requires

Cr'+D =£r' F Y 2" 1+3=F,+# r'4.- +So
r<r': Gry) =22 ¥ and r r>Gr(r; ") 3x '-1

G(r;r) G(r;r

4 4

2 | 2

04— o1 0 BRERE 0 e
0r=03 1 0 =051 0 rr=0.81

Figure 4.4 1D Green functions; the slope changes of +1 occu(@dobtted red lines), but are subtle
on this scale.
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Thenour complete solution izt
1
c(r)=f(r) :ﬁdr‘s(r')G(r;r').

Boundary Conditions Specifying Only Derivatives (Neumann BC)

Another common kindf BC specifies derivatives at points of the solution. For example, we might
have

c'(0)=0 and c'@ =

Then, analogous to the BC sffging two values forc( ), wefind a Greenfunction which hagerosfor its
derivatives at 0 and 1:

iG(r=0;r') 20 and EG( 1r =0
dr dr

Then the sum (or integral) of any number of sGekenfunctions also satisfies ttzeroBCs:
1
f(r)= ﬁ)dr's(r‘)G(r i) satisfies f'(0)=0 and f (1)

We can now form the complete solution, by addimgmogeneousolutions that satisfy thgivenBC:
c(r)=f(r) #HAh'(r) Ashy’(r) where ARQO) Ab@O) O
and AR+ Ah(® 2
Example: We cannot use our previous example wherg= d%dr?, because there is no solution to

2
OI—G(r;r‘):a’(r 1)  with gG(r er ) —(16(r 1r=) 0.
dr? dr dr

This is kecause the homogenous solutions are straight line segments; therefore, any solution with a zer
derivative at any point must be a flat line. Somugstchoose another operator as our exampis.

2D?? and 3D Green Functions

Green Functions Dondét Separate

In previous sections, we described 1D Green functions, which satisfy:
L£{G(x x)} d(x .

(We must change notation slightlr9 howmhaarthercosvan
meaning: distance from the origin.) A 3D Green tiotsatisfies:

c{Grir) ¢ ry (coordinate fre.

Note thai®is a (coordinatdree) spherically symmetric function, with no preferred direction. Wehanse
to write it as a product of three coordinate functions. For example:

L{G(xyz XY 2} d(x Ady § @z ¥ ( rectangular coordinatk.

To generalize Green functions to 3D in rectangular doatds, you might guess that we could multiply
three separate 1D Green functions together. For examplesdiparates inta, y, andz parts, does the
following hold?
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Let L{X(xx)} @(x %), andsimilarfor £,{Y(y;y) and,{ Z(z; %)
Does G k.,y,z;zy', z')?:X(x AXyY Zzy? le,

(Lo LNXDNY 922 % F(r3)7 -

We now show that doemtwork. As a concrete countexampe, consider the Laplacian operat&r?. In

1D, it 1 £ Aoplying duygueSs to 3D, we would have:
2
”—ZX(x; X) d(x %), andsimilarfor Y(y,y)andZ(z; z).
X
P?(XY2) T G :xvz) dex 3YZ @y 'y XZ (dzHz >
g&z woof

Ldx -x) dy ¥) (@ 3.

Green functionsdoots epar ate the way solutions |to

Let us explore some properties of an at8D Green function. A weknown 3D Green function for
the Laplacian, with BC of zero at infinity, is:

N 1
G(r;r " _—4p|r-r1'

For simplicity, we fixr' = 0y and drop the prefactor. For insight, we write it in rectangular coordinates:

i 1
G(r;0 - =
0, T =

X2 +y? 472

This is spherically symmetric, as required by the spherical symmetfy ahd the BCs, but has no other

obvious structure. It does not seemdotbr intoX(X)Y(y)Z(2). Nonetheless, we have:

&2 2, % 0 1.
H +—ﬁ + M L Q:l'ds(r).
2 VZ Zﬁ g 2 + y2 72 94,0

Lapl ace

By symmetry, the ttee directions each contribute the same amount to the sum, which is 1/3 of the total, so:

2 2

M _ Ay _1.8
o) = . =\ _ (r) .

This means the"2 derivative in asingledirection is immediately a™Border delta function; thig®( ) does

notresult from the produgif onel( ) in each direction.

3D Green functions are hard to understand. We give some examples in the following sections.

Green Units

Coordinates have units, operators have units, Green functions have units, and delta functions have units.

As always, ve can use dimensional analysis to sanltgck results, which we do later. As a 1D example:
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a2
[]=Llength), & GLr% [a(] L:=
e g
2
 G=a v ou?e 4t and [g k.
X

If Xis in metes, then so i€.

A 3D units example:
[X]=L(ength), & * pL?s [d(] L*: =
p%G =" Y L% £% and [¢
If the coordinates are in meters, th@iis in inverse maters.

Special Case: Laplacian Operator with 3D Boundary Conditions

In electrostatics, one often uses Green functions with the Laplacian opetatoE3, and boundary
conditions, to findr)t.he Télee dtarpd satcd tainc opcetrearttoiralal d (ows
common boundary condbins, that gives a solution in terms of integrals. This section assumes you are
thoroughly familiarwits ol vi ng Lapl aceds equation by sé&ymeyr ation of
Electromagnetics ConceptsBeware that some references defimedd functions only for this electrostatic
special case, and so present an overly narrow view of them.

source
volume
obsefver ; Gir r'
*r Jsurface . Ok
element, ) :
'\ @S : ;
i L n
space L L X .
@ (b) (©) ronS

Figure 4.5 (a) A 3D distribution of charges, admired from within. (bLB potential; the flux is
propor ti on(eForDirchleDBCk, @rm of along the normal coordinatefor r' on the
boundary surfac&.

Consider a distribution of source charges, dsignure4.5a. Wecontinue with the definition o6 from
earlier sections, and gaussian units:

P%G(r;r) ¢ r), and 2B 4p¢)
s

Some references include a factor dfL)(or (4") on thel-function in the defiition of G. That breaks the
generality of the Green method, and siynploves the factor frorg(r) into the Green function itself, but the
resulting integral4.8)i s i dent i cal r)isamquely tetemminedtby(r) end thaiBCs. Our
convention foiG is used in many referengeand we believe is objectively simpler in both theory and practice.

The Laplacian boundary condition trick starts wiéhr e etlmeéram which relates a certain kind of
volume integral to a surface integral. We give some ingight Gr e e n 6 s next sdionebmthen t he
result is: for any functions definédsidea v o | u'jeady(r'p (
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W

o 2 N : - e
A GFEeye) vy B (Pa% ow()-lgerﬁ)%? 'S —p@
=b

where ! normal coordinate, so, e.g../— yaE
Note that the primes denogeurcec o or di nat es . | n r')ebk thecelectrostatic pdtemltc s, we | e
inside the volumeandy (r') Y G(r, r Yo takingr as fixed. The operatdt' tells us howa function changes
as we move around the source coordingteithrh el d f i xed. Then 0 is explicitl)

FO) =R P9 Q) O iy Be 1 Fs
r inside s(r) (4-8)

volume

where p Vol houndary of the volume.

If r is outside the volume, itviolatdse t er ms of Greenébés Theorem, the volum
is meaningless. At this point, we have not given any BE&feso as with all Green functions, there are

manyG that satisfy the defining equatidth :ds(r F) . We must find BCs forG to make it unique.

Dirichlet BCs: There are 2 terms in the surface integra(48). For Dirichlet BCs, a (
given. Therefore, we makg&unique by choosin@(boundaryy )o= 0, so the second surface term vanishes.
Figure 4.5c illustratesG(n, r') along n, the normal coordinate toéhboundary surface. This BC f@&
guar ant e Bom(4Bateed (s t he given G(boundary).

Neumann BCs:dl in' = Ey is given everywhere on the boundary. This is equivalent to speciying
or the surface charge mity 0 everywhere on the boundary, because:

3—': =& Hps (gaussian unitc.

n

You might think we chooséG/dn' = 0 everywhere on the boundary, so the first tarthé surface integral
would vanish. This turns out to be a contradiction, so it fails to gigtutien ( [Jac 1999 p39] or [Bra p174],

but note they use differetitfunction conventions from each other, and from us). The contradiction appears

fromGas s 6 Law applied to the drrsidethevolumen of t he Green fu
P%G(r;r) - BBBAPET ) - Y@ i *E ™
G(rir ) B bdeE r ) @“\/@Gﬁ\ &s Volﬁ(n Yi' r or
@‘—Sﬁdzs £.
pvol

SodG/dn’ cannot be 0 everywhere. The simplest requirement to state (not necessarily to st/ is
constant=19 whereSI[ sur face area, which satisfies the above s
infinitely large, as is comonly approximated, this reduce to the singi@&dn = 0

The final soluti on t heisndefioen byeNeumbrm BGslgrupttoean ddditve t hat 0 (
constant. T h er e f o)rsech that theefirsteerneix thesstirfeice s1tegifal.8) is (zero.
Thenthat 0 satisfies:

FO) = BT )( 40 €)' O q”')ﬁdz
ome 0

Thi s gi ves r}idside the golumd as anrintedgrdl of the given Neumann BCs.

TheBCs we choose for th@reen fuction depend®only on thetypeof BCsf or 0
(Dirichlet or Neumann)but not on the boundanalues themselves.
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Derivation of Greenbdbs Theorem

This section is optionalG r e ethedreanrelates a certain kind of volume integral to a surface integral.
We start with a onelimensionalsection of 3D space, which may be easier takttdabout Figure 4.5).
Consi der any xd andy(xd; wausd prinoen te indichte coordinatesafircecharges. From
simple integration by partsje have

b 2 b bo ~ ‘
'r";F d—y dx' :—q: ad 2 y dX.
dx? dx |, aé%x = .
We could just as wey,dndlsaveap t he rol es of 0O and

b e ~
Foad o
a aé%x‘ - :

Subtracting the latter from the former cancels the integral on the RHS:

b d? d
2 _Fdx g
Qy dx2 ydx'

b&_ g2 > 6. a_d d 3
—V V3 X' = —F 5 F or
Qég 2 Ve ﬂ Eax 7 2
b g2 b _ d2 & d da [5 (49)
F—ydx = (0774 —+— FV - |5
) e ‘“axz & dx d a9
charge
density
We recognize the charge density in the first integral

pointx (notx) in the volume, by choosing such that?y/dx? = (¥(x i x); in other words, by choosing(x)
to be a Greefunction:

WG
Yy (xX)- G(x X) such that: — dk X'
™
For purposes ofx6Gri ese nadxd clhhsetloeenetmar iabl e . @Gwyeends
f unct K)amdg(x)isé it holds for this choice gf. Then the LHS 0f4.9) becones:
"pF d” dx' 2 X) dx 4.10
qu_'zyx —aﬁﬁdx ) (. (4.10
So(49becomes an expKk,ixmsgidethevolamegr al f or 0O (
° 1o}
D a G dF (6
F(X) =N G(x X)( 4p /) dX Xlg— N— |- 411
(9 =) 0% X)( 42} gef)dx, AxW o (4.11)

To generalize this to 3D, we throw in the resii@ vector identities, and upgrade each term in our
development by two additional dimensions. Start by deriving a&ir8D version of integration by parts:

N fE r)d3r A F[@2S'  where n £ unit vector pointing outwarc
n Vol ﬁlgr) ®uVOI (WEﬁ P 9

Let AC) €)=¥() D Y

i P fiF 49) d3r Oz, (rﬁi’j“ndzs

Use a vear identity for divergence:
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PY(F %) :=D'F D %F b Y

2 3. WAt 2a:
nvﬂaﬁ: B +F O (rﬁﬁﬁa S

As in our 1D war mup, Wwey, andasabtractvite pesult from the abbdve. sThedifst O
term on the LHS cancels, leaving:

N 2 N : A n M F82
SEAPYE) ) B () g7 O e firfF 48
Now choose (r')  &(r; r'), wherer is a constant inside thelume, and:
D2G(>rrY) &¢ r Y Y

FO) =R R (% € ) O ae“ﬁ)m =1 —“8
e o

The particulalGwe use depends on the BCs rjassmwnintheprevioes or i gi na

section.
Desultory Green Topics

Fourier Series Method for Green Functions

In some cases, we cannot find the Green function in cliosed but we can find a Fourier series for it.

This section assumes you are familiar with Fourier Series, and Green functions without Fourier Series. The

example below constructs a Green funcfimm a 2D Fourier Series for they parts, and for eachoarier
component, uses a variant of 1D {gffht construction (introduced in an earlier section) forzpart of that
component.

To illustrate the Fourier method for Green functions, we expourttie question [Jac Q2.23 and p128
9]. There are many agions for Q2.23 (which has no source charge) posted on the internet; most use
separation of variables and eigenfunctions. (We describe such a method genEtalkyiilectromagnetic
Conceptg We here derive one form of the Green function for suchoalem [Jac 3.168 p129m]. In
principle, this g)darbitrary dharge dendityeby ygsigdf8e nt i a | 0 (

Gz 2)

a-+

z
7

(@ x~ “z=constant (b) |

Figure 4.6 (a) A cube with specified boundary potentials. (b) Green function for-tieection,
requiring sinh functions.

The system is a cube of sidewith one corner at the origin, extending & &, a) (Figure4.6). The

and

cube has arbitrary charge densjtfr) inside. The two facesot=0andz=aar e at fi xevd potenti

and the ot her=04Finf thepetentiahinsiele tlretcub& As with many such problems, it is
slightly ill-posed: the potential along tRendy axes, and 6 otheimsilar edgesare specified as both 0 and

V. We can ignore this b/yare sepayatethhy a tinh distancé from thé rest af s
the cube, so the edges donét quite touch.

The geometry favors rect anglilrairc lislgesir edGrgwtzete ers .
the surface of the cube), so the BCs®are all zero. This means the three coordinate directions are all
equivalent foiG, and we could fin@ as a 3D Fourier series [Jac 3.167 p129]. However, the original problem
is given withz chosen as having different BCs thaandy, so we choose to treatlifferently thanx andy.
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We will Fourier expand the-y surfaces (2D), but write thedependence of each Fourier componentof
directly. This is desirable, becausevtr dimensioal series usually converge faster than higher dimension.

2D Fourier Series: Recall that a welbehaved 2D function of a rectangular region of space
xi [0,a],y [i0,d can be written as a series of sinusoids:

f(xy)= a An singég X gin %y +(§her cos() terms we won't need f.
ca - . -

I,m=1 |

basis function

We justify the lack of cos() shortly. Given the functigx y), we can find the coefficien&n, of its series
expansion from orthogonality of the Fourier basis functions:

r(] dy ﬁ( f( % ysm X gm —65 (4.12
The leading coefficient above is the inverse of the normalization of the basis function:

2
g dab

rady ﬁesma,rl g a@y et

3D Greenfunction: For t he pot enkY,3,lwe seékthe Green functive, which Ipoks
like this in rectangular coordinates:

P%G(xy,z%X Y, 2 =P r) Ex % (dy ¥-(a % (4.13

Inour parlance,wesay( ) i s t h&y p due toéhe pete ofisousce abyd 26 ) . As describe
in a previous sectiol; (as a whole) doasot separate intX(x)Y(y)Z(2). However, each Fourier component
of Gis a solution to Lapl ace,bssecadpmmneénicanbe separatedyntoher e e x ¢

X(X)Y(y)Z(2), while still including a discontinuity. In such a separation forEReoperator in rectangular

coordinates, at least one function is sis/and at least one is sinh/cosh. Because we chose to Fourier expand
x-y, they must be sin/cos, and therefdfg) must be sinh/cosh. Th@can be written:

Gxyzxyd H MK 9sn xgmf;f y 77 3 (4.14)

I,m=1 smh/cosh

Note that eeh pair of valuesx, y) has itsowndistinct Fourier series. We caligz part of each component
of the Green functioZin(z, Z). Note that eachm component has differentZm, which is why there is no
globalZ(2) that can be separated from the ressofThe units of the coordinates arg¥ [y] = [Z] = distance,
and[AmZm] are[x]'*.

As noted earlier, the BCs f or @), whiclvteen makeS()t he pr obl
unique. We must impose( ) = 0 everywhere on the boundary (all 6 faces):
G(boundaryx 'y 'z") =0, X'y 2.

Each Fourier component satisfiesa p| aceds equat i onx,ye z)endyisvzere onethee x c e p t a
boundaries. The BC dB demands a square sliceat constant ha& = 0 around its perimeter. This can
be satisfied wittX andY = sin( ), but not cos(). Thus:

X|m(x):smge£x 8 Ym (Y sin rpapy , 8 [, mintege.
The infinite Fourier sum iX andY compose ai(x i xX)U(y i y'), leaving onlyli(zi Z) to be constructed in
Zm. In rectangular coordinateX,, depends only oh andYi, depends only om. We rmbabn the A
both because other coor di naYnbersipaasghensal hdromocht separ at e
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Now to findG, fial |l 06 we mHhsahdAd &mmust providetdei(zi #) & (4.13), so we
start there. Th&m, must look likeFigure4.6b, because they amero atz= 0 andz = a, and each must have
a positive step in its derivative at Z. We already know thaiin(z) comprises only sinh/cosh, but because
G(boundary) = 0, it must be made of only sinh. Fi€igure4.6b:

Forz @' Zn(z 2 Aih(k, 2
Forz 2: Zn(z 2 Binh( k(a ) - where |k %xlal m

kim is chosen to cancel the sum of the eigenvalues XograndY(y), s described in the section on boundary
value problems Sinceknd e pends on tihde CcEZgixadfierennftnctidn.

It is customaryto combine these two pieces&; into a single form:
Zim(z 2) Esinh(k, z)sini{ k,( a ) where z mif{ ,z)z z mak .}

Remember that for purposes of derivatiais, a given constant, so in the above form, one factor is a function
of z, and the other is just a constant that depends. ofThis combined form looks clumsy, bist helpful
with deeper concepts of selfljointness which we do not pursue here.) The coeffi€lemuld be absorbed
into the Fourier coefficientdm, but we have to do the work sooner or later. Therefore, wodgep all
thezdependence tidily i&im, so we findC now:
92 = Ck, coshly z) sint{ ky, (@ - z)) 92 = Gk, sinh(k, z)cosh |, @ ¥
dz m " ' dz |, ., ! '

z<Z7
The unit step in derivative atgives:

1:dZ|_m _%

fm| ZOm - <Ckip gsinh(gn2)coslf by @ 2)  coshig, 2)sirfh, @ 9)

z',

Use: sinhg v} sistu cosik  cosln sinh

. ¢ -1
1= C nh 'a _—
Km > ( lﬁm( ‘ Z)) klm Slnh(kim )
Note thatC depends on the source poihtand is negative, as shownRigure4.6b. The complet&n is:
-1 . .
Z Z2) =————sinh n a . 4.1
m(Z D) g S 29 H(a 2) (4.15)

As expectedZm is not a 1D Green function, because it is mmaro everywhere inside the boundary.
However, itdoesprovide the discontinuity required . In fact:

W otz 20 K2 gn Lz zr A ze= F—tg o
Wz " |

2
(We could say, in generauyz—zzm(z; 2) :fﬁ.nz Zn Kz %) [km] =[4" so the sding of Zm gives it

units of distance .

For Am(X, y) we have:

S, A% m2g y? 8al po
e p "
I%:lAméﬁ 2 2 uZ ?ng}; g fg)’UZmo “x X}dy Y)-@ 2).-
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This means thé, have units of §]'2. To pick out a single coefficiedy , we multiply both sides by the
Fourier basis function, and integrate oversheregion, recalling the basis function normalizatioaZ4:

a |2 2 2 2 é .a
Ang o —‘; g iF, ﬁdys'nge—xg'”—ged(é Ndy Y @ 3

2
The only term that survives on the left is frquEZm(z: 2) =(z -2, which cancels th&) on the right:
V74

AV e = szl fn Thy 0§D

Z'y
(Equivalently, we could integrate both sides WftT ()dz.) We drop the primes frofhandn?, yielding:

Am(X, y)——S'”ae— X' g'” ? y'.
The final Green function combines the&g with Ziy, from (4.15):

G(xy.z2Yy32 =a S'”ae— X gm ? y Sirgl— &sin % eﬁhﬂﬁmﬁ):rl::((::éa z>))

I,m= 1
Using(4.8), thisG g i v erkin iritegral form for arbitary } (r) and Dirichlet BCs.

Green-Like Methods: The Born Approximation

In the Born approximation, and similar problems, we have our unknown function, nowygdledn
both sides of the equatiorSo both our unknown functid(x)  ¥(X), and our sourcg(x)  ¥(X):

1) L{r(}=m%.
The theory ofGreenfunctions still works, so that
Yy (9= NX)G(x; x) dX,

but t hisslveth® exgatiod, tbecause we still hayen both sides of the equation. We could try
rearranging Eq (1):

L{y (9} - Ax) D which is the same as
£{y (3} =0, with  £{y(x} L{ ¥x} - 9.
But recall thatGreenfunctions require aonzerasource functiors(x) on the righthand side. The method of
Greenfunctionsc andt sol ve homogen®olyeldequati ons, because
L{y (0} =¥ 0 - M) RENGEx Y dk =@dx 0.

Technically, thids a solutionbuti t nétwvery useful. SGreenf unct i ons d g(Rappeawonr K when
both sides. However, under the higconditions, we can make a useful approximation. If we have an
approximate solution,

cfy Qe O,
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then we can expangdin a perturbation series of corrections:
y(=y000 +P (9 +P(% .+
where y(l) is 1% order perturbation,y(z) is® order,.

Now we can usey©(x) as the source term, and uaemethod like Greenfunctions, to get a better
approximation toy (X):

£{y (9} = 19 v P0 g Dooaxn d

where Q x Risthe Green'sfunctionfof je. £{ G & ¥ ¥Fd & x'

(4.16)

yOx) + yI(x) is called theirst Born approximation of y(x). This process can bextendedo arbitrarily
high accuracy

In QM, A is the perturbed hamiltonian:
c=Hy (),

whereV(r) i s fAs mal II-EQ. v© is ammeact sollition to the unperturbeth®dinger equation, so
it can be shown that the Born approximat{dri6) reduces to:

y O = {06 %) dx

yP=R{ /00606 %) dt ... PO = pyaxy o

This process assumes that the Green function is fismal
Born approimation is valid whery (x) <<y ©)(x) everywhere, and in many other, less stringent but harder

to quantify, conditions. The extensidn higher order approximations is straightforward: the Born
approximation is valid whep®™(x) <<y ©)X(x). SeeQuirky Quantum Concepfer detailed information.

TBS: a real QM examphk

Green function as inverse operator??
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\"Z4

5 Complex Analytic Functi on:

Fora review of complex numbers and arithmetic, Qegrky Quantum Concepts

Notation: In this chapterz, w arealwayscomplex variablesy, y, r, d arealwaysreal variables. Other
variables are defined as used.

A complex function of a complex varialii@) is analytic over some domain if it has an infinite number
of continuous derivatives in that domain. It turns ouf(zf is once differentiale on a domim, then it is
infinitely differentiable, and therefore analytic on that domain.

A necessancondition for analyticity off(z) = u(x, y) + iv(x, y) nearz is that the CauchiRiemann
equations hold, to wit:

L y W VRS upvop 4w i N V=M Y
X M XMOXH gy HYyIH Yy M ooH X yH R )

A sufficient condition for analyticity off(z2) = u(x, y) + iv(X, y) nearz is that the CauchRiemann
equations hold, and the first partial derivativeg exist and are continuous in a neighborhoodyofNote
that if the first derivative of a complex functiggcontinuous, then all derivatives are continuous, and the
function is analytic. This condition implies

Pu=8& &
Pbu OW 0= Y “level line§ are perpendicula

f’jz f (2) dzis countour independent iff Z ) is single-vall

1

Note that a function can be analytic in some regions, but not otBargular points, orsingularities,
are not in the dmain of analyticity of the function, but border the domain [Det def 4.5.2 p156]. &,
singular at 0, because it is not differentiable, but it is continuous Rbl@sare singularities near which the
function is unbounded (infinite), but can bede finite bymultiplication by ¢i z)* for some finitek [Det
pl165] This impliesf(z) can be written as:

fD=a(z-3) " ®i(z @*" +atz gt @ 4 z+2 ..

The valueis called theorder ofthep o | e . All poles are singularities.
of infinite order, because the function is unbounded near the singularity, but it is not a pole because it cannot
be made finite by multiplication by arfgi z)*, for examplee'?. Such a singularity is called assential
singularity .

A Laurent series expaion of a function is similar to a Taylor series expansion, but the sum runs from

i to +b, instead of from 1 to DB. zln both cases, an
. (n)
Taylorseries: f ¢ ¥ f & )4 b(z -3)" where b L@
n!
n=1
. z 1 f(2)
L t . f -z)" h = —_—
aurent series i #n:a_ :an(z 3| where @ o ﬂroundz)(z_ %)kﬂ

[Detthm 4.6.1 p163] Analytic functions have Taylor seggpansions about every point in the domain.
Taylor series can be thought of as special cases of Laurent series. But analytic functions also have Laurent
expansions aboutadtated singular points, i.e. the expansion point is not even in the domaialyficity!

The Laurent series is valid in some annulus around the singularity, but not across branch cuts. Note that in
general, they andby could be complex, but in pracé, they are often real.

Properties of analytic functions:
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1. Ifitis differentiable once, it is infinitely differentiable.

2. The Taylor and Laurent expansions are unique. This means you may use any of several methods to
find them for a giveriunction.

3. If you know a function and all its derivatives at any point, then you know théidareverywhere
in its domain of analyticity. This follows from the fact that every analytic function has a Laurent
power series expansion. It implies that tladue throughout a region is completely determined by
its values at a boundary.

4. An analytic function cannot have a local extremum of absolute value. (Why not??)

Residues

Mostly, we use complex contour integrals to evaluate difficult real integrals, autnténfinite series.
To evaluate contour integrals, we need to evaluate residues. Hendradece residues. Thesidueof a
complex function at a complex poinf is thea;1 coefficient of the Laurent expansion about the paint
Residues of sindar points are the only ones that interest us. (In fact, residues of branch points are not
defined [Sea sec 13.1].)

Common ways to evaluate residues

1. The residue of a removable singularity is zero. This is because the function is bounded near the
singulaity, and thusa;» must be zero (or else the function would blow upat

1
_1Z_ z)
2. The residue of aimple poleatz (i.e., a pole of order 1) is

a;=1lim(z-z) (1.
z 3

- o Y a, =

Fora;, O,as z - 3, a

3. Extending the previous method: the residue of a pateaitorderk is

1 k-1 )
(k'l)!z-lm@ dzk-l(z '4)) fta,

which follows by substitution of the Laurentrigss forf(z), and direct differentiationWe show it
here, mting that poles of ordenimply thatax = 0 for k <im, sowe get:

fD=a(z-2)" @iz @*" . +atz gt a 4 z+¢ .:
(z- ) (2 =3 ®.(z @ ..+abtz @' @z -fazpst

aq=

K ! k+1)!
ddzk-l(z_ 2) (2 {kPay(z P %J’é( z @ (—;"')- oz gt
gkt )
ZI_|m70 dZI(_l(z- z) (3 { k1 a
. 1. de?
Y a'lz(k-]_)!zl_lmzo dzk'l(z '70)k f( 2

4. If f(2) can be written ad (2) = P@ , WhereP is continuous ato, andQ @z) , 0 (and is continuous
Z

Q(29
atzy), thenf(2) has a simple pole a, and
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Rest )= 0 lQP,((%)). Why? Neag, , Q ¢)fz &) Q'
(G o
Z g

Pz)  R®
z- ) QA2 A

5. Find the Laurent series, and hence its coefficient bizf)'t. This is sometimes easyf(f) is given
in terms of functions with weknown power series eapsions. See the sum of series example

later.
We will include reallife examples of most of these as we go.

Then: Red ¢ ¥ lim(z -g) f(z) =lim( z @)(
- B z 3

=3 z

Contour Integrals

Contour integration is an invaluable tool for evaluating both real and comale&d integrals. Contour
integrals are used alver advanced physics, and we could not do physics as we know it today without them.
Contour integrals are mostly useful foratuating difficult ordinary (realalued) integrals, and sums of
series.In many cases, a function is analytic except at afsgistinct points. In this case, a contour integral
may enclose, or pass near, some points ofamatyticity, i.e.singular points. It is these singular points that
allow us to evaluate the integral.

You often let the radius of the contour integraltg® f or some part of the contour

imaginary
CR
R
real
Any arc where
. 1
lim |f(2)]- ~ . €>0
Roe 7
has an integral d over the arc.
Beware that this 1is ften stat edfastenthanliziltesa | y as fian
contournt egr al of 0. 0 The pexmhehkd hyitismotsuffibientto bie t has to h

o

. 1 1 . -

simply smaller than 14|. E.g. ||—+1 < H , but the contour integral still diverges.
z

Jordanodéds | emma: ??.

Evaluating Integrals

Surprisingly, ve can use complex contour integrals to evaluate diffiealtintegrals. The maimeais
to find a contour which

(a) includes some known (possibly complex) multiple of the desired (real) integral,
(b) includes othesegments whose values are zero, and
(c) includes a known set of poles whose residues can be found.

Then you simply plug into the residue theorem:
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(ﬁ f(2) dz=2pi a Res f (z), where |z are the finite set of isolated singpiies.
n residues
We can see this by considering the contour integral around the unit cirelectoterm in the Laurent series
expanded about 0. First, consider tRéerm (the constant term). We seek the valuﬂlﬂz. dzis a small

complex number, representable as a vector in the complex ffaguere5.1a shows he geometric meaning
of dz Figure5.1b shows the geometric approximatianthe desired integral.

imaginary
A dz = d(e 1) dg ol """'\v\,\
unit dZ‘(.( ,\
\ circle N xccjjz2
‘\ v 4
1 1d
z ! 7 ’
B e
d real \\A\‘ - __',y))
@) | (b)

Figure 5.1 (a) Geometric desgption of dz (b) Approximation ofﬁ)dz as a sum of 32 small

complex terms (vectors).

We see thtaall the tinydzelements add up to zero: the vectors add-feddil, and circle back to the starting
point. The sum vector (displaoent from start) is zero. This is true for any large numbdgafo we have

ﬂ)dz=0.

Next, consider the * term, (ﬁ)% az, and a change of integration variablefto
g -

. r 5_1 ) 2p~_. - 2p
Let z=¢9, dz=it9¢: %892 de = Ne e 4 = ifp2 =

The change of varidé maps the complex contour and z into an ordinary integral of a real vari{ible.

Geometrically, ag goes positively (countezlockwise) around the unit circle (below left)! goes around
the unit circle in the negative (clockwise) direction (below migdles complex anglearg(1/z) =i d, where
z=¢€ 9 Aszgoes around the unit circlézhas infinitesimal magnitude=d ¢and argumerd + p/4. Hence,
the product of (17 dzalways has argument off + d + p/4 =p/4; it is always purely imaginary.
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Imaginary Imaginary Imaginary
Path ofz = €4 Path ofz =
around unit__|B €idaround D
circle unit circle Pa_th ofdz=
Ge'd around
unit circle  AlE
3 E B N real
e real y real NED)
fe
D B

Pahs ofz 1/z, anddzin the complex plane

The magnitude of (Z) dz = dy; thus the integral around the circle jg.2Multiplying the integrand by some
constantg; 1 (the residue), just multiplies the integral by that constant. And any contour integrahtloses
the pole 1zand no other singularity has the same value. Hence, for any contour around the origin

. ] (ﬁ)a_lz'1 dz
ﬂa_lz_ dZ=2,0 ( a_l) Y al -_-T

Now consider the other terms of the Laurent expansid(zof We already showed that theZ’ term,

which on inegration gives the produag dz, rotates uniformly about all directions, in the positive (counter

clockwise) sense, and sums to zero. Hencedherm contributes nothing to the contour integral.

Thea;z! dzproduct rotates uniformltwicearound aldirections in the positive sense, and of course, still

sums to zero. Higher powers n§imply rotate more times, but always an integer number of times around

the circle, and hence always sum to zero.

Similarly, a2z 2, and all more negative powers, retamniformly about all directions, but in thegative
(clockwise) sense. Hence, all these terms contribute nothing to the contour integral.

So in the end:

The only term of the Laurent expansion about O that contsliatéhe contour integral is the réise
term,a;; 2%

o

The simplest contour integral Evaluatel = ﬁ dx.

x> +1

We know from elementary calculus (bet tan u) thatl = "/2. We can find this easily from the residue

theorem, using thfollowing contour:

imaginary
Cr
R
i
CI CI
> »L>real
A
iCO denotes aldbcdehotes &a&ahd fAntegral over that

infinity, and we see that the sled contour integrag =1 + | + Ir. Butlr=0, becaus§RY P<1R2. Then
| =lc/ 2. f(2) has poles at & The contour encloses one polé.alts residue is
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1 1 1 1
Resf ()= r —2 ? lc #Qa Res 7, ) 3;5
7(22+1) Z|z=i : n
dz i
|:I_C £
2 2

Note that when evaluating a real integral with complextions and contour integrals, ties al way s
cancel, and you get a real result, as you must.

Choosing the Right Path: Which Contour?

The path of integitéon is fraught with perils. How will | know which patl thoose? There is no
universal answer. Often, many paths lead to the same truth. Still, many paths lead nowhere. All we can do
is useexperiencas our guide, and take one step in a new doectif we end up where we started, we are
grateful for wtat we learned, and we start anew.

We here examine several useful and general, but oft neglected, methods of contour integration. We use
some sample problems to illustrate these tools. This seaggmes a familiarity with contour integration,
and its se in evaluating definite integrals, including the residue theorem.

LT a2
sin x
Example: Evaluate I=8 >—dx.
0.5 X

The integrand is everywhere nonnegative, and somewhere positiveheahuhits ae in the positive
direction, sd must be positive. We abrve that the given integrand has no pdlgsas only a removable
singularity atx = 0. If we are to use contour integrals, we must somehow create a pole (or a few), to use the
residue theoremSimple poles (i.e.torder) are sometimes best, becathem we can also use the indented
contour theorem.

Imagina ;
ginary Imaginary

real N

Contours for the two exponential integrals: (left) positive (couclmekwise) exp(2);
(right) negative (clockise) exp(22)

To use a contour integral (which, a prioriay or may not be a good idea), we must do two things: (1)
create a pole; and (2) close the contour. The same method does both: expand the sin( ) in terms of
exponentials:

. 12
(2 eZ- e"Z) A j2z [i2z
5 sin® x 8 1e =d a2 ag
= =—=dx = A’idz =4 A dz -— dR + df.
N .2 P 2 A 2a Za °F

All three integralon the RHShave poles at= 0. f we indent the contour underneath the origin, then since
the function is bounded near there, the limit as 0 leaves the original integral unchanged (above left). The
first integral must be closed in the upper Hatine, to keep the exponeitinall. The second integral can
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be closed in either hafflane, since it ~ ¥#. The third integral must be closed in the lower ipddine, again
to keep the exponential small (above right). Note that all three contours must use an indentaticsethiaspre
the value of the original integral. An easy way to insure this is to use the same indentation on all three.

Now the third integral encloses no poles, so is zero. Ttigt@gral, by inspection of its Laurent series,
has a residue of zero, so Is@zero Only the first integral contributes. By expanding the exponential in a

Taylor series, and dividing &, we find its residue isi2 Using the residue theorem, we have:
.2
~° Sin® x 1., ./,
=0 5 dx:2g2p|(2)g,s

2 X

| = ﬁ: cos@x)- cosbx) hix

X2

Example: Evaluate [B&C p?? Q1]

This innocent looking problem has a number of funky aspects:
1 The integrand is two terms. Separately, each term diverges. Together, they converge.

1 Theintegrand is even, so if we choose a contour that includes the whole real line, the cagpaur int
includes twice the integral we seek (twlge

1 The integrand has no poles. How can we use any residue theorems if there are no poles? Amazingly,
we @n create a useful pole.

1 Atypical contour includes an arc at infinity, but c@$¢ ill-behaveddr zfar off the realaxis. How
can we tame it?

1 We will see that this integral leads to the indented contour theorem, which can only be applied to
simple pdes, i.e., first order poles (unlike the residue theorem, which applies to all poles).

Each of thes funky features is important, and each arises in practicaivadd integrals. Let us consider
each funkiness in turn.

1. The integrand is two terms. Sepaately, each term diverges. Together, they converge.

Nearzero,cosj & 1. T h eendpdinoaf either terrh ef the ietagral looks like
~anywherecos;ax dx ~ 'cmywherel dx= _J‘anywhere .
X 0 x Xl

Thus each term, separately, diverges. However, the differerfogtés We see this by power series
expanding cos:

X2 xt . a’x?  b*x
cosx )= T Y cosfx ) coesix ) > T+C(>?)+ anc

X2

cos@x)- cosbx): ij O(xz O( *2) v
tf

~anywherecos@x)- cosbx )d -&

X2

which is to say, is finite.

2. The integrand is even, so ifve choose a contour that includes the whole real line, the contour
integral includes twice the integral we seek (twicg).

Perhaps the most commintegration contour (below left) covers the real line, and an infinitely distant
arc from ibb bndrlecaltntegralli n t his case) is only from
includes more than we want on the real axis. If our integragxkis, the contour integral includes twice the
integral we seek (twicé). This may seem trivial, but the poittt notice is that when integrating from
b t dxis@till positive (below middle).
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imaginary f(x) even
R
—]1(,
real x>0 7

(Left) A common contour.
(Right) An even function has integral over the @@ twice that of O to infinity.

Note that if the inte@mnd is odd (below left), choosing this contour cancels out the original (real) integral
from our contour integral, and the contour is of no Beif the integrand has no even/odd symmetry (below
middle), then this contour tells us nothing about ourrdddntegral. In these cases, a different contour may
work, for example, one which only includes the positive real axis (below right).

f(x) odd f(X) asymmetric imaginary

dx5 0 L \

¥ real

(Left) An odd function has zero integral over the real line. (Middle) An asymmetritidanttas
unknown integral over the real line. (Right) A contour containing only the desired real integral.

3. The integrand has no poles. How camwe use any residue theorems if there are no poles?
Amazingly, we can create a useful pole.

This is the funkiesaspect of this problem, but illustrates a standard tool. We are givern\ahazd
integral with no poles. Contour integration is usuallgless without a pole, and a residue, to help us evaluate
the contour integral. Our integrand contains xps(nd that is related to exgp). We could try replacing
cosines with exponentials,

_ exp(iz) + exq iz)
2

but this only rearranges tladgebra; fundamentally, it buys us nothing. The trick here is to notice that we
can often add a made imaginary ¢rm to our original integrand, perform a contour integration, and then
simply take the real part of our result:

cosz (does no goo..

Given |:ﬁ;’g(>9 dx let  f(} gy +p)w Then IR&{ :ﬁ(f)z }<

For this trick to work,jh(z) must have no realalued contribution over the contour we choose, so it
d o e s n 0 tp theniatsgrsal we seek. Often, we satisfy this requirement by choibg)go be purely
imaginary on the real axis, and having zero dbation elsewhere on the contour. Given an integrand
containing cos(), as in our example, a natural choiceifdp) isi sin(z), because then we can write the new
integrand as a simple exponential:

cosi)- f (z)=coskg)+ sing) =expiz.

In our example, theorresponding substitution yields

2 ohn

=y COSX CODXy | e T SXPX)- exbx )
X |

Al

Examining this substitution more closely, we find a wonderfuisequence: this substitution introduced
a pole! Recall that
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3 HP o
. z . isinz 1
sinz=z — + Y a

i
3! 72 8:‘2_

We now have a simple poleat 0, with residue.

Z
3!

By choosing to add an imaginary term to the integrand, we now have a pole that we can world with to
evaluate aontour integral!

Itds | i ke magic. I n our example integral, our residt
isinaz- isinbz .da-b 5] .
5 =igs +. ¢ and  residue fa B.
Z (;Z =

Note that if our original integrand contained gninstead of cos), we would have made a similar
substitution, but taken thimaginarypart of theresult;

Given I:ﬁ:sin(x) dx let f( 2 tcos() +sin(2. Then | m{ :ﬁ 2 }i

4. A typical contour includes an arc at infinity, but cosg) is ill-behaved forzfar off the real-axis.
How can we tame it?

This is related to the previ ouxdasfaunicekboundedel-. Wedr e
behaved function, but this is only true wheis real.

When integrating cog) overa contour, we must remember that
cos@) blows up rapidly off the real axis.

In fact, cosg) ~ exp(Im{z}), so it blows up extremely quickly off the real axiswle 6r e goi ng to eval
a contour integral with co®(in it, we must cancel itdivergence off the real axis. There is only one function
which can exactly cancel the divergence of gos(nd that is 4 sin(@. The plus sign cancels the divergence
aboe the real axis; the minus sign cancelsétow There is nothing that cancé®verywhere. We show
this cancellation simply:

Let zl X +iy
cosz+isinz =expiz ) =expi(x i}) expk )exply )} and
lexp@x ) expt y )  expik )| &xp(y ) exply )-
For z above the real axis, this shrinks rapidly. Recall that in the previous step, weiaidgdl to our

integrand to give us a pole to work with. We see now that we alsitimesameadditional term to tame the
divergenceofcogf off the real axis. For the contour wedve c

5. We will see that this integral leads tdhe indented contour theorem, which can only be applied
to simple poles, i.e., fst order poles (unlike the residue theorem, which applies tall poles).

Webre now at the f i za0,busitisaght.onour\dentour, aot iesidaitifthe | e at
pole were inside the contour, we would use the residue theorem totevli@aontour integral, and from
there, webéd find the integral on the real axis, cut i

But the pole is not iside the contour; it isnthe contour. The indented contour theorem allowus t
work with poles on the contour. We explain the theorem geometrically in the next section, but state it briefly
here:

Indented contour theorem: For a simple pole, the iateg an arc of tiny radius around the pole, jof
angled, equalsi( )@residue). See diagram below.
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imaginary imaginary

Asr- 0,
ar ~ . .
) | N, f(2) dz=(g)(residug
} I N
T real S real

(Left) A tiny arc around a simple pole. (Right) A magnified view; wg let 0.

Note that if we encircle the pole completedy= 2p, and we have the special case of the residue theorem for
a simplepole:

ff (2) dz=2p i( residug.

However, the residue theorem is truedéirpoles, not just simple ones (see The Residue Theorem earlier).

Putting it all together: We now solvethe original integral using all of the above methods. First, we
addi sin(z) to the integrand, which is equivalent to replacing Dosith exp{z):

= cos:ax-2 codx | et uﬁ expiax ); expbx ). !
X i 0 X Y
Define Jt 3 explax)- expbX) 4y 5o 1 Re{ §
X

We choose the contour shown below left, with B, p-na@.
imaginary imaginary

R \Cr C,

C )
> »L. real | »L. real

There are no poles enclosed, so the contour integral is zero. The contour includes twice the desired integral,
sodefine:

expiaz)- exp{bz)

Z2

ForCgr (2| <1R’soasR- D, the i nt egrCathergsweedsat n, atd.the ardig r
radians in the negative direction, so the indented contour theorem says:

rli_mo r“é,f(z) dz= {p)i(a B H#a B.

f(2*

Then @ f (2)dz :Cﬁf(z) dz 2 J sy fiz dzC (5.1

Plugging into(5.1), we finally get

21+p(a -b) e Vo1 R %éb 3.

In this example, the contour integthappened to be real, so taking Re{J} is trivial, but in general,
t h er e 6ssn whyd mustdareal. It could well be complex, and we would need to take the real part of
it.

To illustrate this and more, weyaluate the integral again, now with the alternate contour shown above
right. Again, there are no poles enclosed, so théoconntegral is zero. Again, the integral o¥&s = 0.
We then have:
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Fif (2) dz= )ﬁﬁ)(/z/dﬁ A f(@dz+) 4y dz o
N , p
And I f(2 d= /12 -
n lim 7§ (2 d= {p/2)(a 49 ?-(ab)
The integral ovet; is downthe imaginary axis:
Let z=x +y & iy iy= then dz idy

QZ f(2) dz= Cﬁxp(iaz)z-zexg(ibz) dz:: exg -a)? -exp by dy

We dondt know whawe tdad nddlrifanttitasgiveagbnt, bus we sde that it is purely
imaginary, so will contribute only to the imaginary partiofBut we seek = Re{J}, and therebre

| = rli_mo Re{J} is well-defined

Thereforewe igrore the divergent imaginary contribution frata We then have
i (something + J%( a-po= Y IRdY E’O(zb B

as before.

Evaluating Infinite Sums
. N : |
Perhapstite simplest infinite sum in the world =g — .
n
n=1
integrals isto find an countably infinite set of residues whose values are the terms of the sum, and whose
contour integral can be evaluated by other means. Then

The general method for using contour

o _ . |
lc =2piQ Resf ¢,) =248 \ s =%,
e 2P

The hard part is finding thieinctionf(2) that has the rightesidues. Such a function must first have poles at
all the integers, and then also have residues at those poles equal to the terms of the series.

To find such a function,ansider the complex functioncot( k Clearly, this has poles at all real intege
Z, due to the sin( kfunction in the denominator of caf( Hence,

o ) e cospz,) @ _ cof 1z,)
For z, = n(integer), Rego C‘ét%) & R%spsin(pzn) E_ ,a:os( 714) ,

P _R2

where in the last step we uséd (2 =0 then Res——=

=3Q(2 Q(3)

Thus p cot(pz) can be usd to generate lots of infinite sums, by simply multiplying it by a continuous
function ofz thatequalsthe terms of the infinite seri@shenzis integer For example, for the sum above,

, if this is defined.

s=a iz we simply define
n=1 n

f(z :izpcot( /),  andits residues are Rész, ( 3)% n ..
- n
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[In general, to finda s(n), define
n=1

f(2)= g 9gpcot( p3 g andits residues are Rek z(9s .

z=n
However, now you may have to deal with the residues o0

Continuing our example, now we need the residue at0. Since co#) has asimple pole at zero,
cot@®)/Z2 has a 3 order pole at zero. We optimistically try tedious brute force farf&order pole withm =
3, only to find that it fails:

e 2 e g
Re? SO A _ jimgL O 5 pot zp8 jeipzcotpz N
20 22 2 0é2| dZZ f Gz 0 2la df U

el .
d écos psm o zp _hmadéfsmzaz' /z

p d ; _P
=Clim —&otpz - pesé p @ lim— R B—
22 0dz 12T PUZ-0ak s pz H2zo dZe sint 2
Use gY - VdU- Udv.
\Y v?2

o

sin’ pz( pos2 p )pg% sin2zp z g-& sinpz cow ;
Q -

Resm = —’qim
z=0 22 -

22z- 0 sin“pz

sinpz( [xos2 p )pg% sin2zp z ga copz p
5 lim ¢ -
2z sin®pz

Use LOhopital s rul e:

R S,ﬂ__p“m—lf? cospz( mos2zp ) psing p2 sin®z ) p
2 z- 03psin® rzcos pgc

- (pcos2z - Y2 qos z %l sin2z pz 823 sirpg
¢ - u

-p®cos z(cos2 p-) +sindp 2 sin2z P f—%psinZz ,ag sipz
(; -

=P lim -

220 3psin® @cos p
At this point, we give up on brute force, because w
L6éHopital és rule twice more to eliminate the zero the

But in 2 lines, we canifid thea;; term of tre Laurent series from the series expansiorsndindcos
TheZ coefficient ofcot(z) becomes the? coefficient off(2) = cot(2)/2

- 212+, 3 Z
cotz= 0% oL Z /2% g—e_ EL-Z"//Z 1022/2)(1 zzﬁé (° 28/? —2132

sinz z- 2/6 +..

cotpz® 1 pz Y COt _P

3 z=0 3

Now we take a contour integral over a circle centered atriga: (no good, because ¢otgblows up
every integer ! ?7?)
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imaginary
IC
real
AsRY BgY 0. :Hence
| 21 8 . %1 "1 -K,_ p?
Ic=0 2pigh - K, 5 @ Y Ko 2+g5 0, = é —0= =
é%-ln n &=l 8 nl%_ n1d 2 6

Multi-valued Functions

Many functions arenulti -valued (despite the apparent oxymoron), i.e. for a single point in the domain,
the function can have multiple values. shmpleexample is a squa®ot function: given a complex number,
there are two complex square roots of it. Thus, the square root furcctisavalued. Another example is
arctangent: given any complex number, there arénéinite number of complex numbers whose tangent is
the given complex number.

[picture??]
We refer now to finiced funct i on site regidn) andyticabute | oc al |
multi-v al ued. I f youodr auadets swa rceafnulv,i odwdhe fdrmel taissumpt i

introducing discontinuities in the function. Without analyticity, all our developments break down: no contour
integrals no sums of series. But, you can avoid such a breakdown, and preserve theGoolewed e vel oped,
by treating multivalued functions in a slightly special way to insure continuity, and therefore analyticity.

A regular function, or region, is analytic argingle valued. (You can get a regular function from a
multi-valued one by choosirgRiemann sheet. More below.)

A branch point is a point in the domain of a functiéfz) with this property: when you traverse a closed
path around the branch point, folling continuous values dfz), f(2) has a different value at the end point
of the @th than at the beginning point, even though the beginning and end point are the same point in the
domain. Example TBS: square root around the origin. Sometimes branthare also singularities.

A branch cut is an arbitrary (possibly curved) path oaating branch points, or running from a branch
point to infinity (fAiconnectingd the branch point to
never cross the branch cuts, you insure that theiitmeémains continuous (and thus analyteker the
domain of the integral.

When the contour of integration is entirelly in the
contour integration, and the residue theorem, are valid.

This solves the ptidem of integrating across discontinuiti€Branch cuts are like fences in the domain
of the function: your contour iintegral canbd6t cros
wherever you like, so long as the function remains continmohse n you donodt cross t
Conrecting branch points is one way to insure this.

s t
he

A Riemann sheefis the complex plane plus a choice of branch cuts, and a choice of branch. This defines
a domain on which a function is regular.
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A Riemann surfaceis a continuous joining of Riemann sheets,.)gi ng t he edges together
|l i ked sheets | ayered on top of each othervauend each s

analytic function may have. TBS: considg{z- a)(z -9 .

imaginary imaginary

real >—real

branch cut " *Zpranch cuts—"
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6 Comceptual Li near Al gebr a

Instead of lots of summation signs, we describe linear algebra concepts, visualizations, and ways to think
about linear operations as algebraic operations. This allowsfdststanding of linear algebra methods that
is extremelyhelpful in almost all areas of physics. Tensors rely heavily on linear algebra methods, so this
section is a good warup for tensors. Matrices and linear algebra are also critical for quantuhanes:

Caution In this sectionyector means acolumnaorow o f number s. I n ot her S e (
a more general meaning.

In this section, we use bold capitals for matriek®l and bold loweicase for vectorsaj.

Matrix Multiplication

It is often helpful to view a matrix as a horizontal concatenatiorobumn-vectors. You can think of it
as a rowvector, where each element of the regctor is itself a column vector.

6! !
Angc
éf :

e
e.. - -

or A e
&
e

e el )

Equally valid, you can think of a matrix as atil concatenation of rowectors, like a columwector
where each element is itself a raactor.

Matrix multiplication is defined to be the operation of linear transformation, e.g., from one set of
coordinates to another. The following propertidkofe from the standard definition of matrix multiplication

Matrix times a vector: A matrix B times a column vectar, is a weighted sum of the columnsBf

éBll B, By g S Be 2eB, g éB;

u e u,ze
Bv = 821 By, B év Ulvx g;é Lé{]éBzz uVZ+éBza
U Be UueB. U €8s

€3, B, BysU
2/

We can visualize this by laying the vector on its side abovediuennis of the matrix, multiplying each
matrix-column by tke vector component, and summing the resulting vectors:

ev” vY v’ B
eB, B, B, & @g3 3 sy € 8B, & eB, o eB,
Bv=gB, B, B, @ 0SB | +| B, | 4By U g B, gvicH, 4V EB,
€., B, By § HeB.| |B.| [Bs o€ HB: € EBln EBu
8831 B., B33l]u

The columns oB are the vectors which are weighted by each of the input vector comporients,

Another impotant way of conceptualizing a matrix times a vector: #stant vector is a column of
dotproducts. Thé" element of the result is the dptoduct of the given vectov, with thei™ row of B.
Writing B as a column of rowectors:
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e o er; & D&
et 0 IR - R -
B=¢ fp u- BV = &y FqEN
é U é 5 U g

g s a &s & Héav

This view derives from the one above, wherdayethe vector on its side above the matrix, but now consider
the effect on each row separately: it is exactly that of pamtuct.

In linear algeba, even if the matrices are complex, we do not comgutfze left vector in these dot
products. If theyneed conjugation, the application must conjugate them separately from the matrix
multiplication, i.e. during the construction of the matrix.

We use thiglot producttoncept later when we consider a change of basis.

Matrix times a matrix: Multiplying a matrix B times another matrif is definedas multiplying each
column ofC by the matrixB. Thereforeby definition matrix multiplication dstributes to the right across
the columns:

¢, . @ ¢ e e |
=S iyi, U ey | : :
Let C—gxéygz,gthen BC :Bxéygz 133x§$y582.
g H g | H ig
[Matrix multiplication also distributestohe | eft across t heasmuchys, but we dondt

Determinants

This section assumes youdve skgndmdhétcesdandtdatet
why they work.

The determinant operation on a matrix produces a scalar. & @t operation (up to a constan
factor) which is (1) linear in each row and each column of the matrix; arh{iBymmetric under
exchangef any two rows or any two columns.

The above two rules, linearity and antisymmetry, allow determinants to dlelp smultaneous linear
equations, as we show | ater under fiCramerés Rule. 0

1. The determinant is linear in each coluwector @nd rowvector). This means that multiplying any
column (or row) by a scalar multiplies the determinant by tteas. E.g.,

detka i bi c|=kdeta:bic|; and deta+di bi ¢ =deta bi q detd b

2. The determinant is antiymmetric with respect to any two columaactors (orow-vectors). This
means swapping any two columns (or rows) of the matrix negates its determinant.

The above properties of determinaimply some others:

3. Expansion by minors/cofactors (see below), whose derivation proves the determinant operator is
unigue (up to a constant factor).

4. The determinant of a matrix with any two columns equal (or proportional) is zero. (From anti
symmetry, swaphe two equal columns, the determinant must negate, but its negative now equals
itself. Hence, the determinant must fero.)

detbibic|= -detfbibic Y detbibic| =
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5. det/A|GdefB| =defAB|. This is crucially important. It also fixes the overall constant faufttie
determinant, so that the determinant (with this property) is a completely unique operator.

6. Adding a multiple ofany column (row) to any other column (row) does not change the determinant:

defla+kb b i d =deta: bl d efkb! b} @l bl

7. detA +Bj i A| ¢ @etB|| The determinant operatormtdistributive over matrix addition.
8. detkA| =k"detp|.

Theij-th minor, Mjj, of ann® nmatrix (A [ Aap) is the produch; times the determinant of thei ()3 (ni
1) matrix formed by crossing out tivth row and-th column:

j column
e 2
A M ¢ A A
p h ¢ M1 1n-1
¢ h ¢
. < é
ith row—— g - M deté
é ] u L
6. . U ¢
¢ u A A
€ u g n-11 nin &
A Ahn |

A cofactoris just a minor with a plus or minus sign affixed:

G =( 7)'*1 M € 1)-1 A delgA] without” row and™ columr.

Cramer 6s Rul e

ltés amazing how many textbooks describe Cramer s r
looking for this, and finally found itin [Arfcl8 ] . Cramerds rule is a turnkey met
linear equations. It is horribly inefficient, and virtually worthless above 3 however, it does have
i mportant theor et i c alsolvesfomkequatiensimonknewns: Cr amer 6 s rul e

Given Ax =b, where A is a coefficient matrix,
x is a vector of unknownsg,
b is a vector of constants,

To solve for the™ unknownx;, we replace thé" column of A with the constant vectds, take the
determinant, and divide by the determinanfofMathematically:

Let A=@ 'a, - 'a, g where aisthel® column ofA . We can solve fof

de alg a11 b arﬂ...g 3

X = - where a is the " column ofA
detA|
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This seems pretty bizarre, and one has to ask, why
properties of det ex miatimgahattals ather unkmowr®d san beosblwed andlogausly.
Start by simply multiplying by detp\|:

x det|A| = detxa, a, a,
from linearity of detf[ ]

adding a multiple of any column to

=detxa; #.a éa

W e 2p72 % another doesn't change the determii
=defxa, %2, *Xa i a ! .. & ditto (01 2) more times
=defAx ia, i ..ia, =defbia,: .ia, rewriting the first column

detb ia, i ... a,

Y — i i i
1 detA|

Area and Volume as a Determinant

(2.0) c a c

Determining areas of regions defined by vectors is crucial to geometric physics in many areas. Itis the
essence of the Jacobian matrix used in variable transformations of multiple integrals. What is thiharea of
parallelogam defined by two vectors? This is the archetypal area for generalized (obliquegrima)
coordinates. We will proceed in a series of steps, gradually becoming more general.
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First, consider that the first vector is horizontal (abof®.lelhe aread simply basé height: A =ad.
We can obviously write this as a determinant of the matrix of column vectors, thoughyeiscasitrived:

a

A:det0 =ad {O)c &=l

For a general parallelogram (above right), we can take theeligngle and subtrathe smaller
rectangles and triangles, by brute force:

A=(a 49(b & 2bc 22% 84 2 %éeatgﬁbad b ed- 2oc -d- a6
62 = & =

a c
b d

=ad -bc de4

This is simple enough in-B, but is incomprehensibly complicated in higher dimensions. We can
achieve the same result more generally, in a way tluat@for extension thigher dimensions by induction.
Start again with the diagram above left, where the first vector is horizontal. We can rotate that to arrive at
any arbitrary pair of vectors, thus removing the horizontal restriction:

. . e g ce
Let R =the rotation matrix. Then the rotated vectors a R go U and R q é
a e

a c
0 d

o _cée_gd a @3
de\‘RgO HRdg—ﬁeg@RO & ﬁ/@ﬁﬂdet

u

o

The final equality is because rotation matrices are orthogonal, with det = 1. Thus the determinant of
arbitrary vectors defining arbitrary parallelograms equals the determinant of the vectors spanning the
parallelogram rotated to have one didgizontal, which equa the area of the parallelogram.

What about the sign? I f we reverse the two vectors
differential geometry, D areas are signed: positive if we travel couateckwise from theifst vector to
the 29 and negative if we travel clockwise. The above areas are positive.

In 3-D, thesigned volumeof the parallelepiped defined by 3 vectard, andc, is the determinant of
the matrix formed by the vectors as columns (positiabd form a righthanded st, negative iabc are a
left-handed set). We show this with rotation matrices, similar to tBec2se: First, assume that the
parallelogram defined biyc lies in thex-y plane b, = c; = 0). Then the volume is simply (area of these)
3 height:

& |bid p % b G
V =(area of basy( height glet, ‘821) det @ b c
o -
0 O

Z

where the last equality is from expansion by cofactors along the bottom row. But now, as before, we
can rotate such a parallelepiped in 3 dimensions to get any arbitrary parallelepiped. As befotatjdhe
matrix is orthogonaldet = 1), and does not change the determinant of the matrix of column vectors.

This procedure generalizes to arbitrary dimensions: the signed-\wioene of a parallelepiped defined
by nvectors inn-D space is the determinizof the matrix of column véars. The sign is positive if the3
submanifold spanned by each contiguous subset of 3 veeiosgs( vavava, Vavavs, ...) is righthanded, and
negated for each subset of 3 vectors that ishiafided.

The Jacobian Determinant and Change of Variables

How do we change multiple variables in a multiple integral? Given
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ﬁ ﬁa, ﬁc) dadbdc and the change of variables to v, w
a=a(u v w, b=HuvWw, c=€tuyw The simplistic

A fiafo dadbde - { ¢AvHy Fuvw Cuviv dudvdw( wro

fail s, bec ausddwasseciatédwith eactnpoint fff) is different than the volumea
dbdcin the original integral.

dc
dw ; dw

Example of newcoordinate volume elementy dv dw), and its corresponding oeltbordinate
volume elementda db dc). The new volume element isractangular parallelepiped. The old
coordinate parallelepiped has sides straight to first ordeeiprilginal integration variables.

I n the diagram abovedudvaw is snalier thamthetoldbloe diimwalt e m@ o o u me
(dadbdc). Notet h at i v orklative enéasuresf volume in coordinate space; it has nothing to do
with ao fdonettrhe space, and Adi stanced need not even be

There is a concept of relative Avolumee. Pn any spa
Relative volume is defined as products of coordinate differentials.

The integrand is constand(first order in the integration variables) over the whole volume element.

Without some correction, the weighting &f) throughout the nesgoordinatedomain is different than
the original integral, and so the integrated sum (i.e., the integral¥ésedift. We correct this by putting in
the original-coordinatedifferential volume da db dc) as a function of thaeewdifferential coordinategju,
dv, dw. Of course, this function varies throughout the domain, so we can write

A fiefjo dadbde - { SAVH Fpvw Cuvv ¢, uv)w dudv
where My v W takes dudvdw ( dadbdc

To find V(-), consider how tha-b-c space vectomdak is created from the newv-w space. It has
contributions from displacements in all 3 new dimensiang, andw:

daki= 212 qu +P gy +Faw §E Similarly
FHu w8

dof= 2 du + P av +Haw BE
Eﬂ‘[ﬁ M wi =
The volume defined by the 3 vectodul; dw,Eand dw maps to the volume spanned by the

corresponding 3 vectors in the origirmab-c space. Tha-b-c space volume is given by the determinant of
the components of the vectats, db, anddc (written as rows below, to match equatiatove):
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Bau Pav —FHau _ap apa ¢

m Mow UR V HW W
vqum(-:~=detE du b dv —mdN=de—b”—b p_( Hu dv du.

m Mow UR V BW' H

K Pav —Hgu _CH CHG H

m Mow UR V HW W

where the last equality follows from linearity of the determinant. Note that all the partial derivatives are
functions ofu, v, andw. Hence,

pa
pu
V(uv,w) = detE
pu
pC
pu

N fiefo dadode - BEAAVA v Cuvig uv)w dudy

1J(u,v, W gthe Jacobiarg, and

QED.

Expansion by Cofactors

Let us construct thdeterminant operator from its twofadeng properties: linearity, and antisymmetry.
First, weobl | define a linear operator, then wedl | me
instructive.]

We first construct an operator which is lineathe first column. For the deternaimt to be linear in the
first column, it must be a sum of terms each containing exactly one factor from the first column:

eAr Az . A

e
Lot A=ET M2 B pen den (L) () AR )

oo ocoN

A Ae o An
To be linear in the first column, the parentheses above musnbdsetors from the first column (else
they would be quadratic in some components). Now to also be linear itf todunn,all of the parentheses
above must be linear in all the remaining columns. Therefore, to fill in the parentheses we need a linear
opeator on columns 2n. But that isthe same kind of operator we set out to make: a linear operator on
columns 1n. Recursion is clearly called for, therefore the parentheses should be filled in with more
determinants:

detA = Ajy(detM ;) +Ay( debl ,) -+ Arq dbt ) (sofa.

We nownote that the determinant is linear both in the columns, and in the rows. This meanshthat det
must not have any factors from the first ronthe first column ofA. HenceM: must be the submatrix of
A with the first row and first column striek out
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1stcolumn 1stcolumn
Istrow £ 5 A Ap A, o
é u
l:,l 2nd row [=gpan AZn u
U > 2
d My, g 1 A A, ﬂ M, etc
| A Ae An H

Similarly, M, must be the submatrix @& with the 29 row and first column stricken out. And so on,
throughM,,, which must be the submatrix Afwith then" row and first column stricken out. We now have
an opertor that is linear in all the rows and columnsfof

So far, this operator is not unique. We could multiply each term in the operator by a constant, and still
preserve linearity in all rows and columns:

detA =k A,(detM ) #,A del ) + kA { dbt ).

We choose theseonstants to qwvide the 29 property of determinants: antisymmetryhe determinant
is antisymmetric on interchange of any two rows. We start by considering swapping the first two rows:

DefineA d Awith A=z A).

e o Ae— —A o
swapqé'All Az An g swappec(: Ic: oy

éAZl A2n u ‘]é; AlZ : . An u

é . u é VE

é A o A é A M etc

é. . u e ... u

é U é U

: 1 Ahn Y] 'A\é An2 . : Ann Y]

Recall thatM strikes out the first row, ankl; strikes out the ® row, so swapping row 1 with row 2
replaces the first two terms of the determinant:

ButMa =My, andM & =Mi. So we have:

This last form is the same as detbut withk; andk, swapped. To make odeterminant antisymmetric, we
must choose constarksandk; such that terms 1 and 2 are antisymmetric on interchange of romas 2. a
This simply means th&t =1 k.. So far, the determinant is unique only up to an arbitrary factor, so we choose

the simplest such constante; = 1,k, =1 1.
For M3 throughM ,, swapping the first two rows @& swaps the first two rows &fl & through M &:

Since M3 through M, appear inside determinant operators, and such operators are defined to be
antisymmetric on interchange of rows, terms 3 thrauglso change sign on swapping the first two rows of
A. Thus, althe terms 1 through change sign ormgapping rows 1 and 2, and det=1detA &

4/27/202111:49 AM  Copyright 20022021 Eric L. Michelsen. All rights reserved. 86 of 322


https://elmichelsen.physics.ucsd.edu/





































































































































































































































































































































































































































































































































































































































































































































