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ñI study mathematics to learn how to think. 

I study physics to have something to think about.ò 

 

ñPerhaps the greatest irony of all is not that the square root of two is irrational,  

but that Pythagoras himself was irrational.ò 
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2006 values from NIST.  For more physical constants, see http://physics.nist.gov/cuu/Constants/ . 

 

Speed of light in vacuum   c = 299 792 458 m sï1  (exact) 

Boltzmann constant   k = 1.380 6504(24) x 10ï23 J Kï1 

Stefan-Boltzmann constant   ů = 5.670 400(40) x 10ï8 W mï2 Kï4  

 Relative standard uncertainty ±7.0 x 10ï6  

Avogadro constant    NA, L = 6.022 141 79(30) x 1023 molï1  

 Relative standard uncertainty  ±5.0 x 10ï8 

Molar gas constant   R = 8.314 472(15) J mol-1 K-1 

Electron mass    me = 9.109 382 15(45) x 10ï31 kg 

Proton mass    mp = 1.672 621 637(83) x 10ï27 kg 

Proton/electron mass ratio   mp/me = 1836.152 672 47(80) 

Elementary charge   e = 1.602 176 487(40) x 10ï19 C 

Electron g-factor    ge = ï2.002 319 304 3622(15) 

Proton g-factor    gp = 5.585 694 713(46) 

Neutron g-factor    gN = ï3.826 085 45(90) 

Muon mass    mɛ = 1.883 531 30(11) x 10ï28 kg 

Inverse fine structure constant  a ï1 = 137.035 999 679(94) 

Planck constant    h = 6.626 068 96(33) x 10ï34 J s 

Planck constant over 2ˊ   ǩ = 1.054 571 628(53) x 10ï34 J s 

Bohr radius    a0 = 0.529 177 208 59(36) x 10ï10 m 

Bohr magneton    ɛB = 927.400 915(23) x 10ï26 J Tï1 

 

 

Reviews 

ñ... most excellent tensor paper....  I feel I have come to a deep and abiding understanding of relativistic 

tensors....  The best explanation of tensors seen anywhere!ò  -- physics graduate student 
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cos a

From OAD: sin = opp/ hyp

cos= adj / hyp

sin2 + cos2 = 1

From OAB: tan= opp/ adj

tan2 + 1 = sec2

(and with OAD) tan= sin / cos

sec= hyp / adj= 1 / cos

From OAC: cot = adj / opp

cot2 + 1 = csc2

(and with OAD) cot = cos/ sin

csc= hyp / opp= 1 / sin
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1 Introduction 

Mathematical Physics, or Physical Mathematics? 

  Is There Another Kind of Physics?  Mathematical Physics is devoted to the natural emergence of 

mathematics from our curiosity about the universe around us.  All physics is mathematical, but Mathematical 

Physics illustrates that math is not abstract, or capricious, but an inescapable part of the natural world.  

Despite its humble beginnings rooted in conceptual understanding and the practice of science, many find that 

Mathematical Physics holds a beauty and fascination all its own. 

As with all ñFunkyò notes, we emphasize the physical meaning of the underlying concepts.  For example, 

we stress a coordinate-free, geometric approach to vector operations. 

Why Physicists and Mathematicians Argue 

Physics goals and mathematics goals are antithetical.  Physics seeks to ascribe meaning to mathematics 

that describe the world, to ñunderstandò it, physically.  Mathematics seeks to strip the equations of all physical 

meaning, and view them in purely abstract terms.  These divergent goals set up a natural conflict between the 

two camps.  Each goal has its merits: the value of physics is (or should be) self-evident;  the value of 

mathematical abstraction, separate from any single application, is generality: the results can be used on a 

wide range of applications. 

Why Funky? 

The purpose of the ñFunkyò series of documents is to help develop an accurate physical, conceptual, 

geometric, and pictorial understanding of important physics topics.  We focus on areas that donôt seem to be 

covered well in most texts.  The Funky series attempts to clarify those neglected concepts, and others that 

seem likely to be challenging and unexpected (funky?).  The Funky documents are intended for serious 

students of physics; they are not ñpopularizationsò or oversimplifications.  

Physics includes math, and weôre not shy about it, but we also donôt hide behind it.   

Without a conceptual understanding, math is gibberish. 

This work is one of several aimed at graduate and advanced-undergraduate physics students.  Go to our 

web page (in the page header) for the latest versions of the Funky Series, and for contact information.  Weôre 

looking for feedback, so please let us know what you think. 

How to Use This Document 

 This work is not a text book. 

There are plenty of those, and they cover most of the topics quite well.  This work is meant to be used 

with a standard text, to help emphasize those things that are most confusing for new students.  When standard 

presentations donôt make sense, come here.   

You should read all of this introduction to familiarize yourself with the notation and contents.  After that, 

this work is meant to be read in the order that most suits you.  Each section stands largely alone, though the 

sections are ordered logically.  Simpler material generally appears before more advanced topics.  You may 

read it from beginning to end, or skip around to whatever topic is most interesting.  The ñShortsò chapter is 

a diverse set of very short topics, meant for quick reading. 

If you donôt understand something, read it again once, then keep reading.   

Donôt get stuck on one thing.  Often, the following discussion will clarify things. 

The index is not yet developed, so go to the web page on the front cover, and text-search in this document. 
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Thank You 

I owe a big thank you to many professors at both SDSU and UCSD, for their generosity even when I 

wasnôt a real student:  Dr. Herbert Shore, Dr. Peter Salamon, Dr. Arlette Baljon , Dr. Andrew Cooksy, Dr. 

George Fuller, Dr. Tom OôNeil, Dr. Terry Hwa, and others. 

Scope 

What This Text Covers 

This text covers some of the unusual or challenging concepts in graduate mathematical physics.  It is 

also very suitable for upper-division undergraduate level, as well.  We expect that you are taking or have 

taken such a course, and have a good text book.  Funky Mathematical Physics Concepts supplements those 

other sources. 

What This Text Doesnôt Cover 

This text is not a mathematical physics course in itself, nor a review of such a course.  We do not cover 

all basic mathematical concepts; only those that are very important, unusual, or especially challenging 

(funky?).   

What You Already Know 

This text assumes you understand basic integral and differential calculus, and partial differential 

equations.  Further, it assumes you have a mathematical physics text for the bulk of your studies, and are 

using Funky Mathematical Physics Concepts to supplement it. 

Notation 

Sometimes the variables are inadvertently not written in italics, but I hope the meanings are clear. 

?? refers to places that need more work. 

TBS To be supplied (one hopes) in the future. 

Interesting points that you may skip are ñasides,ò shown in smaller font and narrowed margins.  Notes to myself 

may also be included as asides. 

Common misconceptions are sometimes written in dark red dashed-line boxes. 

Formulas:  We write the integral over the entire domain as a subscript ñÐò, for any number of 

dimensions: 

3
1-D: 3-D:dx d x

¤ ¤ñ ñ  

Evaluation between limits: we use the notation [function]a
b to denote the evaluation of the function 

between a and b, i.e.,  

[f(x)]a
b  ſ  f(b) ï  f(a). For example,  Ú  0

1 3x2 dx = [x3]0
1 = 13 - 03 = 1. 

We write the probability of an event as ñPr(event).ò 

Column vectors: Since it takes a lot of room to write column vectors, but it is often important to 

distinguish between column and row vectors, I sometimes save vertical space by using the fact that a column 

vector is the transpose of a row vector: 

( ), , ,
T

a

b
a b c d

c

d

å õ
æ ö
æ ö=
æ ö
æ ö
ç ÷
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Random variables: We use a capital letter, e.g. X, to represent the population from which instances of 

a random variable, x (lower case), are observed.  In a sense, X is a representation of the PDF of the random 

variable, pdfX(x). 

We denote that a random variable X comes from a population PDF as: X Ç pdfX, e.g.: X Ç ɢ2(n).  To 

denote that X is a constant times a random variable from pdfY, we write: X Ç k pdfY, e.g. X Ç k ɢ2(n). 

For Greek letters, pronunciations, and use, see Quirky Quantum Concepts.  Other math symbols:  

Symbol Definition  

" for all 

$ there exists 

' such that 

iff  if and only if 

 ́ proportional to.  E.g., a  ́b means ña is proportional to bò 

 ̂ perpendicular to 

\ therefore 

~ of the order of (sometimes used imprecisely as ñapproximately equalsò) 

¹ is defined as; identically equal to (i.e., equal in all cases) 

Ý implies 

­ leads to 

Ã tensor product, aka outer product 

Ä direct sum 

 

In mostly older texts, German type (font: Fraktur) is used to provide still more variable names: 

Latin  

German 

Capital 

German 

Lowercase Notes 

A A a Distinguish capital from U, V 

B B  b  

C C c Distinguish capital from E, G 

D D d Distinguish capital from O, Q 

E E e Distinguish capital from C, G 

F F f  

G G g Distinguish capital from C, E 

H H h  

I I  i Capital almost identical to J 

J J j Capital almost identical to I 

K K k  

L L l  

M M  m Distinguish capital from W 
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N N n  

O O o Distinguish capital from D, Q 

P P  p  

Q Q q Distinguish capital from D, O 

R R r Distinguish lowercase from x 

S S  s Distinguish capital from C, G, E 

T T t Distinguish capital from I 

U U u Distinguish capital from A, V 

V V  v Distinguish capital from A, U 

W W w Distinguish capital from M 

X X x Distinguish lowercase from r 

Y Y  y  

Z Z z  

 

https://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu/  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

4/27/2021  11:49 AM Copyright 2002-2021 Eric L. Michelsen. All rights reserved. 14 of 322

  

2 Random Short Topics 

I Always Lie 

Logic, and logical deduction, are essential elements of all science.  Too many of us acquire our logical 

reasoning abilities only through osmosis, without any concrete foundation.  Unfortunately, two of the most 

commonly given examples of logical reasoning are both wrong.  I found one in a book about Kurt Gödel (!), 

the famous logician. 

Fallacy #1: Consider the statement, ñI always lie.ò Wrong claim: this is a contradiction, and cannot be 

either true or false. Right answer: this is simply false. The negation of ñI always lieò is not ñI always tell the 

truth;ò it is ñI donôt always lie,ò equivalent to ñI at least sometimes tell the truth.ò Since ñI always lieò cannot 

be true, it must be false, and it must be one of my (exceedingly rare) lies. 

Fallacy #2: Consider the statement, ñThe barber shaves everyone who doesnôt shave himself. Who 

shaves the barber?ò Wrong answer: itôs a contradiction, and has no solution. Right answer: the barber shaves 

himself. The original statement is about people who donôt shave themselves; it says nothing about people 

who do shave themselves. If A then B; but if not A, then we know nothing about B. The barber does shave 

everyone who does not shave himself, and he also shaves one person who does shave himself: himself. To 

be a contradiction, the claim would need to be something like, ñThe barber shaves all and only those who 

donôt shave themselves.ò 

Logic matters. 

Whatôs Hyperbolic About Hyperbolic Sine? 

x

sinha
area = a/2

y

y 
= 

x

x2ïy2 = 1

cos a

sin a

x2 + y2 = 1

x

y

area = a/2

1
 u

ni
t

cosha1 unit

a

 

From where do the hyperbolic trigonometric functions get their names?  By analogy with the circular 

functions.  We usually think of the argument of circular functions as an angle, a.  But in a unit circle, the area 

covered by the angle a is a / 2 (above left): 

2 ( 1)
2 2

a a
area r rp

p
= = =. 

Instead of the unit circle, x2 + y2 = 1, we can consider the area bounded by the x-axis, the ray from the origin, 

and the unit hyperbola,  x2 ï  y2 = 1 (above right).  Then the x and y coordinates on the curve are called the 

hyperbolic cosine and hyperbolic sine, respectively.  Notice that the hyperbola equation implies the well-

known hyperbolic identity: 

2 2 2 2cosh , sinh , 1 cosh sinh 1x a y a x y= = - = Ý - =. 

Proving that the area bounded by the x-axis, ray, and hyperbola satisfies the standard definition of the 

hyperbolic functions requires evaluating an elementary, but tedious, integral:  (?? is the following right?) 
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2

1

2 2

1

2

2
2 2 2

31 1 1 1

1
Use: 1

2 2

1 2 1

For the integral, let sec , tan sec sec 1 tan

sin
1 sec 1 tan sec tan sec

cos

x

x

x x x x

a
area xy y dx y x

a x x x dx

x dx d y

x dx d d d

q q q q q q

q
q q q q q q q q

q

= = - = -

= - - -

= = Ý = - =

- = - = =

ñ

ñ

ñ ñ ñ ñ

 

We try integrating by parts (but fail): 

2

2 3

11 1

tan sec tan sec , sec

tan sec sec tan sec
x xx

U dV d dU d V

d UV V dU d

q q q q q q q

q q q q q q q

= = Ý = =

= - = -ñ ñ ñ
 

This is too hard, so we try reverting to fundamental functions sin( ) and cos( ): 

( )

3 2

2
2

3 2 21 1
1 1

2

11 1

2

1
sin cos sin cos , cos

2

sin sin sin
2 2 2 cos cos Use: sec tan

cos cos cos

sec ln sec tan ln 1

ln 1 ln1

x x
x x

xx x

U dV d dU d V

d UV V dU d xy

xy d xy xy x x

xy x x

q q q q q q q

q q q
q q q q q q

q q q

q q q q

- -

-

= = Ý = =

= - = - = =

å õ
= - = - + = - + -æ ö

ç ÷

= - + - -

ñ ñ ñ

ñ

2 2

2

ln 1 ln 1

1a

a xy xy x x x x

e x x

= - + + - = + -

= + -

 

Solve for x in terms of a, by squaring both sides: 

( )

( )

2 2 2 2 2

2

2 1 1 2 1 1 2 1

1 2

2 cosh
2

a

a a

e

a a

a a

a a

e x x x x x x x xe

e xe

e e
e e x x a

-

-

= + - + - = + - - = -

+ =

+
+ = Ý ¹ =

 

The definition for sinh follows immediately from: 

( )

2 2 2 2 2

2
2

2 2 2 2

cosh sinh 1 1

2 2
sinh 1 1

2 4 4 4 2

a a
a a a a a a a a

x y y x

e ee e e e e e e e
a y

-
- - - -

- = - = Ý = -

-å õ+ + + - + -
¹ = - = - = = =æ öæ ö

ç ÷
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Basic Calculus You May Not Know 

Amazingly, many calculus courses never provide a precise definition of a ñlimit,ò despite the fact that 

both of the fundamental concepts of calculus, derivatives and integrals, are defined as limits!  So here we go: 

Basic calculus relies on 4 major concepts: 

1. Functions 

2. Limits 

3. Derivatives 

4. Integrals 

1.  Functions:  Briefly, (in real analysis) a function takes one or more real values as inputs, and produces 

one or more real values as outputs.  The inputs to a function are called the arguments.  The simplest case is 

a real-valued function of a real-valued argument e.g.,  f(x) = sin x.  Mathematicians would write (f : R1 Ÿ 

R1), read ñf is a map (or function) from the real numbers to the real numbers.ò  A function which produces 

more than one output may be considered a vector-valued function. 

2.  Limits:   Definition of ñlimitò (for a real-valued function of a single argument, f : R1 Ÿ R1): 

L is the limit  of f(x) as x approaches a, iff for every Ů > 0, there exists a ŭ (> 0) such that |f(x) ï L| < Ů whenever 

0 < |x ï a| < ŭ.  In symbols: 

lim ( ) iff 0, such that ( ) whenever  0
x a

L f x f x L x ae d e d
­

= " > $ - < < - <. 

This says that the value of the function at a doesnôt matter; in fact, most often the function is not defined at 

a.  However, the behavior of the function near a is important.  If you can make the function arbitrarily close 

to some number, L, by restricting the functionôs argument to a small neighborhood around a, then L is the 

limit of f as x approaches a. 

Surprisingly, this definition also applies to complex functions of complex variables, where the absolute 

value is the usual complex magnitude. 

Example:  Show that 
2

1

2 2
lim 4

1x

x

x­

-
=

-
.   

Solution: We prove the existence of ŭ given any Ů by computing the necessary ŭ from Ů.  Note that for 
22 2

1, 2( 1)
1

x
x x

x

-
¸ = +

-
.  The definition of a limit requires that  

22 2
4 whenever 0 1

1

x
x

x
e d

-
- < < - <

-
. 

We solve for x in terms of Ů, which will then define ŭ in terms of Ů.  Since we donôt care what the function is 

at x = 1, we can use the simplified form, 2(x + 1).  When x = 1, this is 4, so we suspect the limit = 4.  Proof: 

2( 1) 4 2 ( 1) 2 1 1 1
2 2 2

x x x or x
e e e

e e+ - < Ý + - < Ý - < - < < +. 

So by setting ŭ = Ů/2, we construct the required ŭ for any given Ů.  Hence, for every Ů, there exists a ŭ satisfying 

the definition of a limit. 

3.  Derivatives:  Only now that we have defined a limit, can we define a derivative: 

0

( ) ( )
'( ) lim

x

f x x f x
f x

xD ­

+D -
¹

D
. 

4.  Integrals:  A simplified definition of an integral is an infinite sum of areas under a function divided 

into equal subintervals (Figure 2.1, left): 
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( )
1

( ) lim (simplified definition)

Nb

a N
i

x

b a i
f x dx f b a

N N­¤
=

D

- å õ
¹ -æ ö

ç ÷
äñ . 

For practical physics, this definition is fine.  For mathematical preciseness, the actual definition of an integral 

is the limit over any possible set of subintervals [ref??], so long as the maximum of the subinterval size goes 

to zero.  This maximum size is called ñthe norm of the subdivision,ò written as ||ȹxi||: 

( )
0

1

( ) lim (precise definition)
i

Nb

i i
a x

i

f x dx f x x
D ­

=

¹ Däñ . 

 

Figure 2.1  (Left)  Simplified definition of an integral as the limit of a sum of equally spaced 

samples.  (Right)  Precise definition requires convergence for arbitrary, but small, subdivisions. 

Why do mathematicians require this more precise definition?  Itôs to avoid bizarre functions, such as: 

f(x) is 1 if x is rational, and zero if irrational.  This means  f(x) toggles wildly between 1 and 0 an infinite 

number of times over any interval.  However, with the simplified definition of an integral, the following are 

both well defined: 

3.14

0 0
( ) 3.14, and ( ) 0 (with simplified definition ofintegral)f x dx f x dx

p
= =ñ ñ . 

In contrast, with the mathematically precise definition of an integral, both integrals are undefined.  (There 

are other types of integrals defined, but they are beyond our scope.) 

The Product Rule 

Given functions U(x) and V(x), the product rule (aka the Leibniz rule) says that for differentials, 

( )d UV U dV V dU= + .  (2.1) 

When U and V are functions of x, we have: 

[ ]( ) ( ) ( ) '( ) ( ) '( )d U x V x U x V x dx V x U x dx= + . 

This leads to integration by parts, which is mostly known as an integration tool, but it is also an important 

theoretical (analytic) tool, and the essence of Legendre transformations. 

Integration By Pictures 

We assume you are familiar with integration by parts (IBP) as a tool for performing indefinite integrals.  

We start with a brief overview, and then discuss a specific example in detail.  IBP takes a non-trivial integral 

into an expression with a different integral, which may be easier to perform analytically: 

( ) ( ), ( )f x dx U dV UV V dU where U U x V V x =  = -  ¹  ¹ñ ñ ñ  (2.2) 
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are parametric functions of x.  The above comes directly from the product rule (2.1): ( )U dV d UV V dU= -

, and integrate both sides.  Inserting limits of integration makes for a simple illustration of the formulaôs 

meaning (Figure 2.2a), but a slightly tedious equation: 

[ ]
( )

( )
big rectangle sma

)

ll rect

( ( )

angle
( )( )

( ) ( ) ( ) ( ) ( )

( ), ( ) .

bV b U b

U axV a

b U b

aa U a
f x dx UV V dU U b V b U a V a

where U U x V V x

V dU V Ud

  -  

=
 = = -  ¹ -  -

    ¹  ¹  

ññññ
 

The figure plots U vs. V, where weôve chosen U and V to be increasing parametric functions of x.  In practice, 

the RHS of (2.2) is usually written in terms of x as: 

[ ]( ) '( ) ( ) ( ) ( ) '( ) .
b

dV d

b

a
U

b

x a a
U x V x dx U x V x V x U x dx

=
= -  ñ ñ  (2.3) 

Note that x is the original integration variable (not U or V), so all the limits of integration are the original x = 

a to x = b.   

In practice, our job is to integrate f(x) dx by finding functions U(x) and V(x)  

such that the resulting integral on the RHS of (2.3) is simpler than the original f(x) dx.   

As a specific example, consider: 

( )

sin
f x

x x dx   ñ . 

Figure 2.2b illustrates the definite integral 
2.7

1
( )f x dx ñ  to scale, with uniform representative intervals dx.   

U

(a) (b) (c)

f(x)

Vx

dx dV

V

U

V(a) V(b)

U(a)

U(b)

U(b)V(b)

ÚUdV
U(a)V(a)

ÚVdU

 

Figure 2.2  (a) Schematic identification of significant features of IBP.  (b) To scale: the original 

integral can be reconsidered as (c) an integral of U dV; the areas are equal.  U and V are parametric 

functions of x; dV is a function of x and dx.  As shown, when the dx are uniform, the dV are not.     

This integral is not immediate, so we can try integration by parts, though there is no guarantee that it will 

work.  In this example, there are three ways of choosing U(x) and V(x): 

( )

2

( ) sin , cos sin , ( )

( ) , sin , ( ) cos

( ) sin , cos , ( ) / 2

U x x x dV dx dU x x x dx V x x

U x x dV x dx dU dx V x x

U x x dV x dx dU x dx V x x

=    = Ý = +    =

=   =  Ý =    =-

=   =  Ý =     =

 

More complicated integrals will have more choices for U(x) and V(x).  It is hard to know ahead of time which 

choice (or choices) will succeed.  However, looking at the RHS of (2.3), we see that it multiplies V and the 

derivative of U.  Looking at our 3 choices above, on the RHS of the arrows, we find the two factors V dU 

that we would be faced with integrating: 

¶ the first choice has an ugly dU, and V dU cannot be easily integrated;  
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¶ the second choice has dU = dx, which literally could not be simpler, and V dU integrates easily;  

¶ the last choice has dU = cos x dx, which isnôt bad, but V dU cannot be easily integrated.   

Thus our best guess is the second choice (often, the simplest dU is a good choice).  Figure 2.2c illustrates 

U dV ñ  to scale;  U and V are parametric functions of x; dV is a function of x and dx.  Then: 

sin cos cos cos sin
UV V dU

x x dx x x x dx x x x  =- - -  =- +ñ ñ . 

We check by differentiating the RHS above, which yields the original integrand.   

Note that when the dx in Figure 2.2b are uniform, the dV in Figure 2.2c are not.  However, all the dV go 

to zero when the dx do, so the integral of U dV is still valid. 

The term [ ]( ) ( )
b

a
U x V x  is called the ñboundary term,ò or sometimes the ñsurface term.ò 

U

U(a) = 0

U(b)

V(a)

ÚU dV= īÚV dU

integration
direction

V(b) = 0

V
U(a)

U(b)

VmaxV(a) = V(b) = 0

ÚV dU> 0

Ú1U dV

1

2

U

V

(a) (b)

ÚU dV< 0

ÚU dV< 0

 

Figure 2.3  Two more cases of integration by parts: (a) V(x) decreasing to 0.  (b) V(x) progressing 

from zero, to finite, and back to zero. 

More advanced cases of Integration By Parts: Figure 2.3a illustrates another common case: one in 

which the boundary term UV is zero.  In this example, UV = 0 at x = a because U(a) = 0, and at x = b because 

V(b) = 0.  This means V(x) decreases as x increases.  Viewed as U dV ñ , all the dV < 0.  The shaded ñareaò 

is therefore negative.  Viewed (sideways) as V dU ñ , all the dU > 0 and the shaded area is positive.  Thus: 

[ ]( ) 0
b

a
f x dx U dV V dU when UV =  =-  =ñ ñ ñ , 

in agreement with (2.3). 

Figure 2.3b shows the case where UV = 0 at x = a and b, because one of U(x) or V(x) starts and ends at 

0.  For illustration, we chose V(a) = V(b) = 0.  Then the boundary term is zero, and we again have: 

[ ]( ) ( ) 0
bb

x a x

b

x aa
U x V x U d V dV U

= = =
= Ý =-ñ ñ . 

For V(x) to start and end at zero, V(x) must grow with x to some maximum, Vmax, and then decrease back to 

0.  For simplicity, we assume U(x) is always increasing.  The V dU integral is the blue striped area to the left 

of the curve, and is > 0.  The U dV integral is the area under the curves.  We break the U dV integral into two 

parts: path 1, leading up to  Vmax, and path 2, going back down from Vmax to zero.  The integral from 0 to Vmax 

(path 1) is the red striped area;  the integral from Vmax back down to 0 (path 2) is the negative of the entire 

(blue + red) striped area.  Then the blue shaded region is the difference (< 0): 

(1) the (red) area below path 1 (where dV is positive, because V(x) is increasing), minus  
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(2) the (blue + red) area below path 2, where dV is negative because V(x) is decreasing.  Thus 

0U dV <ñ : 

max max max

max

0

0

1 2

0 0

1 1 22

.

V

V V V

path path pathp

V V

V V

p p

b

x

t

a

a h athath

U dV U dVU

V dU

ddV U d U VV
= ==

+

=

=

= + = -

=-

ñ ññ ñ ñ

ñ
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Theoretical Importance of IBP 

Besides being an integration tool, an important theoretical consequence of IBP is that the variable of 

integration is changed, from dV to dU.  Many times, one differential is unknown, but the other is known: 

Given an integral, integration by parts allows you to exchange a differential  

that cannot be directly evaluated, even in principle, in favor of one that can.   

The classic example of this is deriving the Euler-Lagrange equations of motion from the principle of 

stationary action.  The action of a dynamic system is defined by: 

( ( ), ( ))S L q t q t dt¹ñ , 

where the lagrangian is a given function of the trajectory q(t).  Stationary action means that the action does 

not change (to first order) for small changes in the trajectory.  I.e., given a small variation in the trajectory, 

ŭq(t): 

0 ( , )
L L

S L q q q q dt S q q dt
q q

d d d d d
è øµ µ

= = + + - = +é ù
µ µê ú

ñ ñ . 

The quantity in brackets involves both ŭq(t) and its time derivative, ( )q td .  We are free to vary ŭq(t) 

arbitrarily, but that fully determines ( )q td .  We cannot vary both ŭq and qd  separately.  We also know that 

ŭq(t) = 0 at its endpoints, but ( )q td  is unconstrained at its endpoints.  Therefore, it would be simpler if the 

quantity in brackets were written entirely in terms of ŭq(t), and not in terms of qd .  This is easy: 

Use : 0
d L L d

q q S q q dt
dt q q dt

d d d d d
è øµ µ

=     = = +é ù
µ µê ú
ñ . 

Now in the second term, IBP allows us to eliminate the time derivative of ŭq(t) (which is unconstrained) 

in favor of the time derivative of /L qµ µ (which we can easily find, since ( , )L q q  is given).  Therefore, this 

is a good trade.  Integrating the 2nd term in brackets by parts gives: 

0
'

Let , . ,

( )

t f

VU

t

L d L d
U dU dt dV q dt V q

q

d

dt q

d
L

dt

L
t UV V d

d
U q t

qtq
q

d d

d d

=

=

µ

µ

å õµ µ
  = = = =æ ö

µ µç ÷

è øµ
= - =é ù

µê ú
ñ ñ

'

.

UV

d L

dt
d

q
tqd

å õµ
æ- ö
µç ÷

ñ
 

The boundary term is zero because ŭq(t) is zero at both endpoints.  The variation in action ŭS is now: 

0 ( )
L d L

S q dt q t
q dt q

d d d
è øµ µ

= - = "é ù
µ µê ú
ñ . 

The only way ŭS = 0 can be satisfied for any ŭq(t) is if the quantity in brackets is identically 0.  Thus IBP has 

led us to an important theoretical conclusion: the Euler-Lagrange equation of motion.   

This fundamental result has nothing to do with evaluating a specific difficult integral.  IBP: itôs not just 

for hard integrals any more. 

Delta Function Surprise: Coordinates Matter 

Rarely, one needs to consider the 3D ŭ-function in coordinates other than rectangular.  The coordinate-

free 3D ŭ-function is written ŭ3(r  ï rô).  For example, in 3D Green functions, whose definition depends on a 

ŭ3-function, it may be convenient to use cylindrical or spherical coordinates.  In these cases, there are some 
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unexpected consequences [Wyl p280].  This section assumes you understand the basic principle of a 1D and 

3D ŭ-function. (See the introduction to the delta function in Quirky Quantum Concepts.)   

Recall the defining property of ŭ3(r  - rô): 

3 3 3 3
( ') 1 ' ( " ") ( ') ( ) ( ')d for all d f fd d

¤ ¤
- = " "¹ Ý - =ñ ñr r r r r r r r r . 

The above definition is ñcoordinate free,ò i.e. it makes no reference to any choice of coordinates, and is true 

in every coordinate system.  As with Green functions, it is often helpful to think of the ŭ-function as a function 

of r , which is zero everywhere except for an impulse located at rô.  As we will see, this means that it is 

properly a function of r  and rô separately, and should be written as ŭ3(r , rô) (like Green functions are). 

Rectangular coordinates:  In rectangular coordinates, however, we now show that we can simply break 

up ŭ3(x, y, z) into 3 components.  By writing (r  ï rô) in rectangular coordinates, and using the defining integral 

above, we get: 

3

3

' ( ', ', ') ( ', ', ') 1

( ', ', ') ( ') ( ') ( ') .

x x y y z z dx dy dz x x y y z z

x x y y z z x x y y z z

d

d d d d

¤ ¤ ¤

-¤ -¤ -¤
- ¹ - - - Ý - - - =

Ý - - - = - - -

ñ ñ ñr r
 

In rectangular coordinates, the above shows that we do have translation invariance, so we can simply write: 

3( , , ) ( ) ( ) ( )x y z x y zd d d d= . 

In other coordinates, we do not have translation invariance.  Recall the 3D infinitesimal volume element 

in 4 different systems: coordinate-free, rectangular, cylindrical, and spherical coordinates:  

3 2 sind dx dy dz r dr d dz r dr d df q q f= = =r . 

The presence of r and ɗ imply that when writing the 3D ŭ-function in non-rectangular coordinates, we must 

include a pre-factor to maintain the defining integral = 1.  We now show this explicitly. 

Cylindrical coordinates:  In cylindrical coordinates, for r > 0, we have (using the imprecise notation of 

[Wyl p280]): 

2
3

0 0

3

' ( ', ', ')

( ', ', ') 1

1
( ', ', ') ( ') ( ') ( '), ' 0

'

r r z z

dr d dz r r r z z

r r z z r r z z r
r

p

f f

f d f f

d f f d d f f d

¤ ¤

-¤

- = - - - Ý

- - - =

Ý - - - = - - - >

ñ ñ ñ

r r

 

Note the 1/r ' pre-factor on the RHS.  This may seem unexpected, because the pre-factor depends on the 

location of ŭ3( ) in space (hence, no radial translation invariance).  The rectangular coordinate version of ŭ3( ) 

has no such pre-factor.  Properly speaking, ŭ3( ) isnôt a function of r ï r'; it is a function of r and r' separately.   

In non-rectangular coordinates, ŭ3( ) does not have translation invariance,  

and includes a pre-factor which depends on the position of ŭ3( ) in space, i.e. depends on rô. 

At r ' = 0, the pre-factor blows up, so we need a different pre-factor.  Weôd like the defining integral to 

be 1, regardless of f, since all values of f are equivalent at the origin.  This means we must drop the  

ŭ(f ï fô), and replace the pre-factor to cancel the constant we get when we integrate out f: 
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2
3

0 0

3

0

( ', ', ') 1, ' 0

1
( ', ', ') ( ) ( '), ' 0,

2

assuming that ( ) 1.

dr d dz r r r z z r

r r z z r z z r
r

dr r

p
f d f f

d f f d d
p

d

¤ ¤

-¤

¤

- - - = =

Ý - - - = - =

=

ñ ñ ñ

ñ

 

This last assumption is somewhat unusual, because the ŭ-function is usually thought of as symmetric about 

0, where the above radial integral would only be İ.  The assumption implies a ñright-sidedò ŭ-function, 

whose entire non-zero part is located at 0+.  Furthermore, notice the factor of 1/r in  

ŭ(r ï 0, z ï zô).  This factor blows up at r = 0, and has no effect when r Í 0.  Nonetheless, it is needed because 

the volume element r dr df dz goes to zero as r ­ 0, and the 1/r in ŭ(r ï 0, z ï zô) compensates for that. 

Spherical coordinates:  In spherical coordinates, we have similar considerations.  First, away from the 

origin, rô > 0: 

2
2 3

0 0 0

3

2

sin ( ', ', ') 1

1
( ', ', ') ( ') ( ') ( '), ' 0 . [Wyl 8.9.2 p280]

' sin '

dr d d r r r

r r r r r
r

p p
q f qd q q f f

d q q f f d d q q d f f
q

¤

- - - = Ý

- - - = - - - >

ñ ñ ñ
 

Again, the pre-factor depends on the position in space, and properly speaking, ŭ3( ) is a function of r, rô, ɗ, 

and ɗô separately, not simply a function of r ï rô and ɗ ï ɗô.  At the origin, weôd like the defining integral to 

be 1, regardless of f or ɗ.  So we drop the ŭ(f ï fô) ŭ(ɗ ï ɗô), and replace the pre-factor to cancel the constant 

we get when we integrate out f and ɗ: 

2
2 3

0 0 0

3

2

0

sin ( 0, ', ') 1, ' 0

1
( 0, ', ') ( ), ' 0,

4

assuming that ( ) 1.

dr d d r r r

r r r
r

dr r

p p
q f qd q q f f

d q q f f d
p

d

¤

¤

- - - = =

Ý - - - = =

=

ñ ñ ñ

ñ

 

Again, this definition uses the modified ŭ(r), whose entire non-zero part is located at 0+.  And similar to the 

cylindrical case, this includes the 1/r2 factor to preserve the integral at r = 0. 

2D angular coordinates:  For 2D angular coordinates ɗ and f, we have: 

2
2

0 0

2

sin ( ', ') 1, ' 0

1
( ', ') ( ') ( '), ' 0 .

sin '

d d
p p
q f qd q q f f q

d q q f f d q q d f f q
q

- - = >

Ý - - = - - >

ñ ñ
 

Once again, we have a special case when ɗô = 0: we must have the defining integral be 1 for any value of f.  

Hence, we again compensate for the 2 ́from the f integral: 

2
2

0 0

2

sin ( ', ') 1, ' 0

1
( 0, ') ( ), ' 0 .

2 sin

d d
p p
q f qd q q f f q

d q f f d q q
p q

- - = =

Ý - - = =

ñ ñ
 

Similar to the cylindrical and spherical cases, this includes a 1/(sin ɗ) factor to preserve the integral at ɗ = 0. 
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Spherical Harmonics Are Not Harmonics 

See Funky Electromagnetic Concepts for a full discussion of harmonics, Laplaceôs equation, and its 

solutions in 1, 2, and 3 dimensions.  Here is a brief overview. 

Spherical harmonics are the angular parts of solid harmonics, but we will show that they are not truly 

ñharmonics.ò  A harmonic is a function which satisfies Laplaceôs equation: 

2
( ) 0Ð F =r , with r  typically in 2 or 3 dimensions. 

Solid harmonics are 3D harmonics: they solve Laplaceôs equation in 3 dimensions.  For example, one 

form of solid harmonics separates into a product of 3 functions in spherical coordinates: 

( )( ) ( )

( )

( )

1

1

( , , ) ( ) ( ) ( ) (cos ) sin cos

( ) is the radial part,

( ) (cos ) is the polar angle part, the associatedLegendre functions,

( ) sin cos is the azimuthal part .

ll
l l l l l

ll
l l

lm

l l

r R r P Q A r B r Pm C m D m

where R r A r B r

P P

Q C m D m

q f q f q f f

q q

f f f

- +

- +

F = = + +

= +

=

= +

 

The spherical harmonics are just the angular (ɗ, f) parts of these solid harmonics.  But notice that the 

angular part alone does not satisfy the 2D Laplace equation (i.e., on a sphere of fixed radius): 

2
2 2

2 2 2 2 2

2

2 2 2

1 1 1
sin , but for fixed :

sin sin

1 1 1
sin .

sin sin

r r
r rr r r

r

q
q qq q f

q
q q q q f

µ µ µ µ µå õ å õ
Ð = + +æ ö æ ö

µ µ µ µ µç ÷ ç ÷

è øµ µ µå õ
= +é ùæ ö

µ µ µç ÷é ùê ú

 

However, direct substitution of spherical harmonics into the above Laplace operator shows that the result is 

not 0 (we let r = 1).  We proceed in small steps: 

2
2

2
( ) sin cos ( ) ( )Q C m D m Q m Qf f f f f

f

µ
= + Ý =-

µ
. 

For integer m, the associated Legendre functions, Plm(cos ɗ), satisfy, for given l and m: 

( ) 2

2 2

11
sin (cos ) (cos )

sin
lm lm

l l
P m P

r r
q q q

q qq

å õ+µ µå õ
= - +æ öæ ö æ öµ µç ÷ ç ÷

. 

Combining these 2 results (r = 1): 

( ) ( )

( )( )

( )

2
2

2 2

2 2

1 1
( ) ( ) sin ( ) ( )

sin sin

1 (cos ) ( ) (cos ) ( )

1 (cos ) ( )

lm lm

lm

P Q P Q

l l m P Q m P Q

l l P Q

q f q q f
q q q q f

q q q f

q f

è øµ µ µå õ
Ð = +é ùæ ö

µ µ µç ÷é ùê ú

= - + + -

=- +

 

Hence, the spherical harmonics are not solutions of Laplaceôs equation,  

i.e. they are not ñharmonics.ò 
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The Binomial Theorem for Negative and Fractional Exponents 

You may be familiar with the binomial theorem for positive integer exponents, but it is very useful to 

know that the binomial theorem also works for negative and fractional exponents.  We can use this fact to 

easily find series expansions for things like ( )
1/ 21

and 1 1
1

x x
x

+ = +
-

. 

First, letôs review the simple case of positive integer exponents: 

( )
( ) ( )( )0 1 1 2 2 3 3 01 1 2 !

...
1 1 2 1 2 3 !

n n n n n nn n n n nn n
a b a b a b a b a b a b

n

- - -- - -
+ = + + + +

Ö Ö Ö
. 

[For completeness, we note that we can write the general form of the mth term: 

( )
!

term , integer 0; integer, 0
! !

th n m mn
m a b n m m n

n m m

-= > ¢ ¢
-

.] 

But weôre much more interested in the iterative procedure (recursion relation) for finding the (m + 1)th term 

from the mth term, because we use that to generate a power series expansion.  The process is this:  

1. The first term (m = 0) is always anb0 = an , with an implicit coefficient C0 = 1. 

2. To find Cm+1, multiply Cm by the power of a in the mth term, (n ï m), 

3. divide it by (m + 1), [the number of the new term weôre finding]: 1

( )

1
m m

n m
C C

m
+

-
=

+
 

4. lower the power of a by 1 (to n ï m), and  

5. raise the power of b by 1 to (m + 1). 

This procedure is valid for all n, even negative and fractional n.  A simple way to remember this is: 

For any real n, we generate the (m + 1)th term from the mth term  

by differentiating with respect to a, and integrating with respect to b. 

The general expansion, for any n, is then: 

( )( )1 2 ...( 1)
, real; integer 0

!

th n m mn n n n m
m term a b n m

m

-- - - +
= ² 

Notice that for integer n > 0, there are n+1 terms.  For fractional or negative n, we get an infinite series. 

Example 1:  Find the Taylor series expansion of 
1

1 x-
.  Since the Taylor series is unique, any method 

we use to find a power series expansion will give us the Taylor series.  So we can use the binomial theorem, 

and apply the rules above, with a = 1, b = (ïx): 

( )( )
( )

( )
( )( )

( )
( )( )( )

( )
1 1 2 31 2 3 4

2

1 1 2 1 2 31
1 1 1 1 1 ...

1 1 1 2 1 2 3

1 ... ...m

x x x x
x

x x x

- - - - -- - - - - -
= + - = + - + - + - +

- Ö Ö Ö

= + + + + +

 

Notice that all the fractions, all the powers of 1, and all the minus signs cancel. 

Example 2:  Find the Taylor series expansion of ( )
1/2

1 1x x+ = + .  The first term is a1/2 = 11/2: 
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( )
() ( ) ( )

( )
( )

( )( )( )

1/ 2 1/ 2 1/ 2 1 3/ 2 2 5/ 2 3

12 3

1 1 1 1 1 1 1 3 1
1 1 1 1 1 ...

2 1 2 2 1 2 2 2 2 1 2 3

2 3 !!1 1 3
1 ... 1

2 8 48 2 !

!! 2 4 ... 2 1

m m

m

x x x x

m
x x x x

m

where p p p p or

- - -

+

å õ å õå õ
+ = + + - + - - +æ ö æ öæ ö

Ö Ö Öç ÷ ç ÷ç ÷

-
= + - + - + -

¹ - -

 

When Does a Divergent Series Converge? 

Sometimes, a divergent series ñconverges.ò  Consider the infinite series: 

2
1 ... ...

n
x x x+ + + + +. 

When is it convergent?  Apparently, when |x| < 1.  What is the value of the series when x = 2 ?  ñUndefined!ò 

you say.  But there is a very important sense in which the series does converge for x = 2, and itôs value is ï

1!  How so? 

Recall the Taylor expansion around x = 0 (you can use the binomial theorem, see earlier section): 

( )
1 21

1 1 ... ...
1

nx x x x
x

-
= - = + + + + +

-
. 

This is exactly the original infinite series above.  So the series sums to 1/(1 ï x).  This expression is defined 

for all x  ̧1.  And its value for x = 2 is ï1. 

real

(a)

imaginary

region of 

convergence

 

Figure 2.4  Domain of 1/(1 ï x) in the complex plane.  The function is analytically continued around 

the pole at x = 1, which defines meaningful values of the function even when x is outside the region 

of convergence. 

Why is this important?  There are cases in physics when we use perturbation theory to find an expansion 

of a number (or function, as in QFT) in an infinite series.  Sometimes, the series appears to diverge.  But by 

finding the analytic expression corresponding to the series, we can evaluate that analytic expression at values 

of x that make the series diverge.  In many cases, the analytic expression provides an important and 

meaningful answer to a perturbation problem even outside the original region of convergence.  This happens 

in quantum mechanics, and quantum field theory (e.g., [M&S 2010 p291t]). 

This is an example of analytic continuation in complex analysis.  Figure 2.4 illustrates the domain of 

our function 1/(1 ï x) in the complex plane.  A Taylor series is a special case of a Laurent series, and anywhere 

a function has a Laurent expansion it is analytic.  If we know the Laurent series (or if we know the values of 

an analytic function and all its derivatives at any one point), then we know the function everywhere, even for 

complex values of x.  Here, the original series is analytic around x = 0, with a radius of convergence of 1.  

However, the process of extending a function that is defined in some region to be defined in a larger 

(complex) region, is called analytic continuation (see Complex Analysis, discussed elsewhere in this 

document).  This gives our function meaningful values for all x Í 1, such as x = 2.  Thus analytic continuation 

through the complex plane allows us to ñhop overò the pole on the real axis, and define the function for real 

x > 1 (and for x < ï1). 
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TBS: show that the sum of the integers 1 + 2 + 3 + ... =  ï1/12. ?? 

Algebra Family Tree 

 

Doodad Properties Examples 

group Finite or infinite set of elements and operator 

(·), with closure, associativity, identity element 

and inverses.  Possibly commutative:  

 a·b = c w/ a, b, c group elements 

rotations of a square by n ³ 90o 

continuous rotations of an object 

ring  Set of elements and 2 binary operators  

(+ and *), with:  

Å commutative group under + 

Å left and right distributivity:  

    a(b + c) = ab + ac,    (a + b)c = ac + bc 

Å usually multiplicative associativity 

integers mod m 

polynomials p(x) mod m(x) 

integral 

domain, 

or 

domain 

A ring, with:  

Å commutative multiplication  

Å multiplicative identity (but no inverses) 

Å no zero divisors (Ý cancellation is valid):   

 ab = 0 only if a = 0 or b = 0 

integers 

polynomials, even abstract polynomials, 

with abstract variable x, and coefficients 

from a ñfieldò 

field ñrings with multiplicative inverses (& 

identity)ò 

Å commutative group under addition 

Å commutative group (excluding 0) under 

multiplication. 

Å distributivity, multiplicative inverses 

Allows solving simultaneous linear equations. 

Field can be finite or infinite 

integers with arithmetic modulo 3 (or any 

prime) 

real numbers 

complex numbers 

vector 

space 

Å field of scalars 

Å group of vectors under +.   

Allows solving simultaneous vector equations 

for unknown scalars or vectors.   

Finite or infinite dimensional. 

physical vectors 

real or complex functions of space: 

f(x, y, z) 

kets (and bras) 

Hilbert 

space 

vector space over field of complex numbers 

with:  

Å a conjugate-bilinear inner product, 

 <av|bw> = (a*)b<v|w>,  

 <v|w> = <w|v>*  

 a, b scalars, and v, w vectors 

Å Mathematicians require it to be infinite 

dimensional; physicists donôt. 

real or complex functions of space: 

f(x, y, z) 

quantum mechanical wave functions 

Convoluted Thinking 

Convolution arises in many physics, engineering, statistics, and other mathematical areas.  As examples, 

we here consider functions of time, but the concept of convolution may apply to functions of space, or 

anything else.  Given two functions, f(t) and g(t), the convolution of f(t) and g(t) is a function of a time-

displacement, ȹt, defined by (Figure 2.5): 

( )* ( ) ( ) ( ) the integral covers some domain of interestf g t d f g t wheret t t
¤

-¤
D ¹ D -         ñ . 
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f(t)

t t

g(t)

Ű

increasing 
ȹt

g(ȹt1-Ű)

f(Ű)

ȹt1

( f *g)(ȹt1)
Ű

g(ȹt2-Ű)

f(Ű)

ȹt2

( f *g)(ȹt2)
Ű

g(ȹt0-Ű)
f(Ű)

ȹt0 < 0

( f *g)(ȹt0)

(a)

(b) (c) (d)  

Figure 2.5  (a) Two functions, f(t) and g(t).  (b) (f *g)(ȹt0), ȹt0 < 0.   (c) (f *g)(ȹt1), ȹt1 > 0.   

(d)  f*g)(ȹt2),  ȹt2 > ȹt1.  The convolution is the magenta shaded area. 

When ȹt < 0, the two functions are ñbacking into each otherò (above left).  When ȹt > 0, the two functions 

are ñbacking away from each otherò (above middle and right).   

As noted at the beginning, convolution is useful with a variety of independent variables besides time.  

E.g., for functions of space, f(x) and g(x),  f *g(ȹx) is a function of spatial displacement, ȹx. 

Notice that convolution is  

(1)  commutative:  * *f g g f=  

(2)  linear in each of the two functions:  

( ) ( )

( )

* * * , and

* * * .

f kg k f g kf g

f g h f g f h

= =

+ = +
 

The verb ñto convolveò means ñto form the convolution of.ò  We convolve f and g to form the convolution 

f *g.  Some references use ñ½ò for convolution: f ½ g. 

Two Dimensional Convolution: Impulsive Behavior 

A translation invariant linear system (TILS) is completely described by its impulse response.  For 

example, for small angles, equivalent to narrow fields of view, an optical imaging system is approximately a 

TILS.  In optics, the impulse response is called the Point Spread Function, or PSF.  To illustrate the use of 

convolution in a TILS, consider an optical imager (Figure 2.6). 

Optical 
imager 
(TILS)

u

v

object image x, u

y

(a) (b) image

(x, y)
y, vx

 

Figure 2.6  (a) Optical imager is a TILS.  (b) Example image of 3 point sources, with a representative 

image point.  Each source is spread out by the imager according to the PSF.  The red arrow is the 

vector (x ï u). 

The imager has finite resolution, so a point object is spread over a region in the image.  For a point object 

at the origin with intensity O, the image has intensity distributed over space according to: 

( , ) ( , )I x y O PSF x y= Ö . 
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x and y are position coordinates, such as meters or microradians.  We define the object coordinates (u, v) to 

be those of their image points (so we can ignore magnification).  Then translation invariance says that for a 

point object at (u, v): 

( , ) ( , )I x y O PSF x u y v= Ö - -. 

For incoherent sources, intensities add, so multiple point sources produce an image intensity that is the sum 

of the individual images (Figure 2.6b).  Therefore, the PSF is real, and represents the intensity response 

function (rather than field amplitude).  At each point on the image (x, y): 

1 1 1 2 2 2 3 3 3

3

1

( , ) ( , ) ( , ) ( , )

( , )i i

i

I x y O PSF x u y v O PSF x u y v O PSF x u y v

PSF x u y v

=

= - - + - - + - -

= - -ä
 

For a continuous object, each infinitesimal region of size (du, dv) around each point (u, v) is essentially a 

point source.  The image is the infinite sum of images of all these ñpointò sources.  Then the sum above 

becomes a continuous integral: 

object
( , ) ( , ) ( , )I x y du dv O u v PSF x u y v O PSF=    - - ¹ Ãññ . (2.4) 

This is the definition of a 2D convolution.  Some references use ñ*ò for convolution: O*PSF.   

In general, for a TILS: 

A convolution is an infinite sum of responses to a continuous input.   

Translation invariant linear systems are fully described by their impulse response (aka PSF).  The 

output of such a system is the convolution of the input with the PSF. 

All of the above is true for arbitrary PSF, symmetric or not.  Some systems exhibit symmetry, e.g. many 

optical systems are axially symmetric.  In such a symmetric case, the arguments to the PSF may be negated, 

though we find such expressions misleading. 

For coherent systems, the PSF is generally complex, and it denotes the magnitude and phase of the light 

at the image relative to the object.  Such a PSF represents the field amplitude response function (rather than 

intensity). 

In vector notation, the convolution (2.4) can be written: 

2

object
( ) ( ) ( )I d u O PSF O PSF=   - ¹ Ãññx u x u . 

Structure Functions 

The term ñcorrelationò has two distinct meanings, both of which are used in astronomy: (1) correlation 

between random variables, and (2) correlation between functions (of space or of time).  In both meanings, 

correlations are used to compare two things.  For example, we might compare light, as a function of time, at 

point A in space with that at point B, i.e. IA(t) compared to IB(t).  If these intensities vary randomly in time, 

we might ask, how are the two related? 

Correlations between random variables:  The correlation of two random variables (RVs) describes 

to what extent the two RVs are linearly related to each other.  The correlation is quantified with a correlation 

coefficient ɟ, where ɟ = 1 means the two RVs are actually identical.  ɟ is proportional to the covariance of 

the RVs.  Two uncorrelated RVs have no linear relationship (though they may be related in other ways), and 

ɟ = 0.  (See Funky Mathematical Physics Concepts for details.) 

In many systems, there are an infinite number of RVs, one at each point in space.  For example, above a 

telescope, at each atmospheric space point x, there may be a randomly-varying temperature T(t, x), index of 

refraction N(t, x), or optical phase ʟ(t, x).  The variations are over time.  It is common that there are 

correlations between the RVs at different points in space.  For two very nearby points, ɟ is near 1: the two 
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RVs are almost identical.  For far separations, ɟ is near 0, because the two RVs are essentially unrelated.  In 

general, at two points x1 and x2, and near some time t0, using optical phase as an example, the two-point 

structure function is [Quirr eq. 1]: 
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The averaging duration is of the order of the exposure time, typically some seconds [Fried 1966 Sec III-IV].  

The weather typically changes much slower, of order at least minutes.  For translation invariant, isotropic 

systems, the above depends only on the spatial distance r ſ |x1 - x2|.  This defines a structure function of a 

single variable, the distance r: 
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Since the system is translation invariant, D  ʟcan be evaluated at any choice of x1.  Because the system is 

isotropic, D  ʟcan be evaluated at any r  such that |r | = r. 

A structure function D(r) gives the correlation (linear relationship) for a time-varying physical 

quantity between two space points separated by a distance r. 

Correlation Functions 

The correlation between two functions is a measure of how linearly related they are.  The functions are 

often functions of time, or functions of space.  A measure of their linear relationship is given by the integral 

of their product: 
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It is often useful to compare the two function with some offset in one of them.  Then the correlation is a 

function of this offset: 
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For two unrelated zero-mean functions, the correlation function is zero. 

It is frequently useful to compute the correlation of a function with an offset version of itself, called the 

autocorrelation function.  For example, at a fixed instant in time, consider the temperature variations 

throughout the 3D atmosphere, T(x).  Then: 
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We expect that nearby temperatures are similar, and that distant temperatures are unrelated.   Since T(x) is 

zero-mean, we expect the autocorrelation function to be large for small offset, and small for large offset.  The 

distance at which the autocorrelation becomes small is a measure of the size of atmospheric volumes with 

similar temperature.  A 2D or higher autocorrelation function is not necessarily isotropic.  For example, the 

temperature may vary differently in the vertical direction than in horizontal ones. 

References 

[Fried 1966] D. L. Fried, ñOptical Resolution Through a Randomly Inhomogeneous Medium for Very 

Long and Very Short Exposures,ò Journal of the Optical Society of America, Volume 56, 

Number 10 October 1966, p1372. 

[Quirr] Andreas Quirrenbach, ñThe Effects of Atmospheric Turbulence on Astronomical 

Observations,ò unpublished,  

https://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu/  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

4/27/2021  11:49 AM Copyright 2002-2021 Eric L. Michelsen. All rights reserved. 31 of 322

  

https://pdfs.semanticscholar.org/d6bc/66a77fdabd708e06c6c61fc96f6647101920.pdf, 

retrieved 2020-01-25. 

 

https://elmichelsen.physics.ucsd.edu/
https://pdfs.semanticscholar.org/d6bc/66a77fdabd708e06c6c61fc96f6647101920.pdf


elmichelsen.physics.ucsd.edu/  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

4/27/2021  11:49 AM Copyright 2002-2021 Eric L. Michelsen. All rights reserved. 32 of 322

  

3 Vectors 

Small Changes to Vectors 

Projection of a Small Change to a Vector Onto the Vector 
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(Left) A small change to a vector, and its projection onto the vector. 

(Right) Approximate magnitude of the difference between a big and small vector. 

It is sometimes useful (in orbital mechanics, for example) to relate the change in a vector to the change 

in the vectorôs magnitude.  The diagram above (left) leads to a somewhat unexpected result: 
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And since this is true for any small change, it is also true for any rate of change (just divide by dt): 

r rÖ =r r  

Vector Difference Approximation 

It is sometimes useful to approximate the magnitude of a large vector minus a small one.  (In 

electromagnetics, for example, this is used to compute the far-field from a small charge or current 

distribution.)  The diagram above (right) shows that: 

Ĕ' ' , '- º - Ö >>r r r r r r r  

Why (r, ɗ, f) Are Not the Components of a Vector 

(r, ɗ, f) are parameters of a vector, but not components.  That is, the parameters (r, ɗ, f) uniquely define 

the vector, but they are not components, because you canôt add them.  This is important in much physics, e.g. 

involving magnetic dipoles (ref Jac problem on mag dipole field).  Components of a vector are defined as 

coefficients of basis vectors.  For example, the components v = (x, y, z) can multiply the basis vectors to 

construct v: 

Ĕ Ĕ Ĕx y z= + +v x y z  

There is no similar equation we can write to construct v from itôs spherical components (r, ɗ, f).  Position 

vectors are displacements from the origin, and there are no ĔĔ Ĕ, ,r ɗ ű defined at the origin.   

Put another way, you can always add the components of two vectors to get the vector sum: 

( ) ( ) ( )Ĕ Ĕ Ĕ( , , ) rectangular components.Let a b c Then a x b y c z= + = + + + + +w v w x y z  

We canôt do this in spherical coordinates: 

( )( , , ) spherical components. , ,w w w v w v w v wLet r Then r rq f q q f f= + ¸ + + +w v w  

However, at a point off the origin, the basis vectors ĔĔ Ĕ, ,r ɗ ű are well defined, and can be used as a basis 

for general vectors.  [In differential geometry, vectors referenced to a point in space are called tangent 
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vectors, because they are ñtangentò to the space, in a higher dimensional sense.  See Differential Geometry 

elsewhere in this document.] 

Laplacianôs Place 

What is the physical meaning of the Laplacian operator?  And how can I remember the Laplacian 

operator in any coordinates?  These questions are related because understanding the physical meaning allows 

you to quickly derive in your head the Laplacian operator in any of the common coordinates. 

Letôs take a step-by-step look at the action of the Laplacian, first in 1D, then on a 3D differential volume 

element, with physical examples at each step.  After rectangular, we go to spherical coordinates, because they 

illustrate all the principles involved.  Finally, we apply the concepts to cylindrical coordinates, as well.  We 

follow this outline: 

1. Overview of the Laplacian operator 

2. 1D examples of heat flow 

3. 3D heat flow in rectangular coordinates 

4. Examples of physical scalar fields [temperature, pressure, electric potential (2 ways)] 

5. 3D differential volume elements in other coordinates 

6. Description of the physical meaning of Laplacian operator terms, such as 
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Overview of Laplacian operator:  Let the Laplacian act on a scalar field T(r ), a physical function of 

space, e.g. temperature.  Usually, the Laplacian represents the net outflow per unit volume of some physical 

quantity: something/volume, e.g., something/m3.  The Laplacian operator itself involves spatial second-

derivatives, and so carries units of inverse area, say mï2.   

1D Example:  Heat Flow:  Consider a temperature gradient along a line.  It could be a perpendicular 

wire through the wall of a refrigerator (Figure 3.1a).  It is a 1D system, i.e. only the gradient along the wire 

matters.   
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Figure 3.1 Heat condition (a) in a passive wire, and (b) in a heat-generating wire. 

Let the left and right sides of the wire be in thermal equilibrium with the refrigerator and room, at 2 C 

and 27 C, respectively.  The wire is passive, and can neither generate nor dissipate heat; it can only conduct 

it. Let the 1D thermal conductivity be k = 100 mW-cm/C.  Consider the part of the wire inside the insulated 

wall, 4 cm thick.  How much heat (power, J/s or W) flows through the wire? 

( )
25

100 mW-cm/C 625 mW
4 cm

dT C
P k

dx
= = = . 

https://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu/  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

4/27/2021  11:49 AM Copyright 2002-2021 Eric L. Michelsen. All rights reserved. 34 of 322

  

There is no heat generated or dissipated in the wire, so the heat that flows into the right side of any 

segment of the wire (differential or finite) must later flow out the left side.  Thus, the heat flow must be 

constant along the wire.  Since heat flow is proportional to dT/dx, dT/dx must be constant, and the temperature 

profile is linear.  In other words, (1) since no heat is created or lost in the wire, heat-in = heat-out; (2) but 

heat flow ~ dT/dx; so (3) the change in the temperature gradient is zero: 

2

2
0

d dT d T

dx dx dx

å õ
= =æ ö

ç ÷
. 

(At the edges of the wall, the 1D approximation breaks down, and the inevitable nonlinearity of the 

temperature profile in the x direction is offset by heat flow out the sides of the wire.) 

Now consider a current carrying wire which generates heat all along its length from its resistance (Figure 

3.1b).  The heat that flows into the wire from the room is added to the heat generated in the wire, and the sum 

of the two flows into the refrigerator.  The heat generated in a length dx of wire is 

2 2resistance per unit length, andgenP I dx where I constr r r= ¹ = . 

In steady state, the net outflow of heat from a segment of wire must equal the heat generated in that segment.  

In an infinitesimal segment of length dx, we have heat-out = heat-in + heat-generated: 
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The negative sign means that when the temperature gradient is positive (increasing to the right), the heat 

flow is negative (to the left), i.e. the heat flow is opposite the gradient.  Many physical systems have a similar 

negative sign.  Thus the 2nd derivative of the temperature is the negative of heat outflow (net inflow) from a 

segment, per unit length of the segment.  Longer segments have more net outflow (generate more heat). 

3D Rectangular Volume Element 

Now consider a 3D bulk resistive material, carrying some current.  The current generates heat in each 

volume element of material.  Consider the heat flow in the x direction, with this volume element: 

dxx

y

z

Outflow surface area 

is the same as inflow flow

 

The temperature gradient normal to the y-z face drives a heat flow per unit area, in W/m2.  For a net flow to 

the right, the temperature gradient must be increasing in magnitude (becoming more negative) as we move 

to the right.  The change in gradient is proportional to dx, and the heat outflow flow is proportional to the 

area, and the change in gradient: 

2

2

out in
out in

P Pd dT d T
P P k dx dy dz k

dx dx dx dy dz dx

-å õ
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ç ÷
. 

Thus the net heat outflow per unit volume, due to the x contribution, goes like the 2nd derivative of T.  

Clearly, a similar argument applies to the y and z directions, each also contributing net heat outflow per unit 
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volume.  Therefore, the total heat outflow per unit volume from all 3 directions is simply the sum of the heat 

flows in each direction: 

2 2 2

2 2 2

out inP P T T T
k

dx dy dz x y z

å õ- µ µ µ
=- + +æ öæ öµ µ µç ÷

. 

We see that in all cases, the  

net outflow of flux per unit volume = change in (flux per unit area), per unit distance 

We will use this fact to derive the Laplacian operator in spherical and cylindrical coordinates. 

General Laplacian 

We now generalize.  For the Laplacian to mean anything, it must act on a scalar field whose gradient 

drives a flow of some physical thing. 

Example 1:  My favorite is T(r ) = temperature.  Then ÐT(r ) drives heat (energy) flow, heat per unit 

time, per unit area: 

/
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heat t
k T where k thermal conductivity

area

heat flow vector
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q radial component of heat flow
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Example 2:  T(r ) = pressure of an incompressible viscous fluid (e.g. honey).  Then ÐT(r ) drives fluid 

mass (or volume) flow, mass per unit time, per unit area: 
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Example 3:  T(r ) = electric potential in a resistive material.  Then ÐT(r ) drives charge flow, charge per 

unit time, per unit area: 

charge /
( )

t
T where electrical conductivity

area
current density vector

s s¹ =- Ð ¹

¹

j r

j

 

Then ~ r

T
j radial component of current density

r

µ
=

µ
. 

Example 4:  Here we abstract a little more, to add meaning to the common equations of 

electromagnetics.  Let T(r ) = electric potential in a vacuum.  Then ÐT(r ) measures the energy per unit 

distance, per unit area, required to push a fixed charge density ɟ through a surface, by a distance of dn, normal 

to the surface: 

energy/distance
( ) electric charge volume densityT where

area
r r¹ Ð ¹r . 

Then ÖT/Ör ~ net energy per unit radius, per unit area, to push charges of density ɟ out the same distance 

through both surfaces. 
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In the first 3 examples, we use the word ñflowò to mean the flow in time of some physical quantity, per 

unit area.  In the last example, the ñflowò is energy expenditure per unit distance, per unit area.  The 

requirement of ñper unit areaò is essential, as we soon show. 

Laplacian In Spherical Coordinates 

To understand the Laplacian operator terms in other coordinates, we need to take into account two 

effects: 

1. The outflow surface area may be different than the inflow surface area 

2. The derivatives with respect to angles (ɗ or f) need to be converted to rate-of-change per unit 

distance. 

Weôll see how these two effects come into play as we develop the spherical terms of the Laplacian operator.  

The cylindrical terms are simplifications of the spherical terms. 

Spherical radial contribution:   We first consider the radial contribution to the spherical Laplacian 

operator, from this volume element: 

drx
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z

f

ɗ

Outflow surface area 

is differentially 

larger than inflow 

flow

dɋ

sinɗdf
dɗ

dɋ= sin ɗdfdɗ

 

The differential volume element has thickness dr, which can be made arbitrarily small compared to the 

lengths of the sides.  The inner surface of the element has area r2 dW.  The outer surface has infinitesimally 

more area.  Thus the radial contribution includes both the ñsurface-areaò effect, but not the ñconverting-

derivativesò effect. 

The increased area of the outflow surface means that for the same flux-density (flow) on inner and outer 

surfaces, there would be a net outflow of flux, since flux = (flux-density)(area).  Therefore, we must take the 

derivative of the flux itself, not the flux density, and then convert the result back to per-unit-volume.  We do 

this in 3 steps: 
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The constant dW factor from the area cancels when converting to flux, and back to flux-density.  In other 

words, we can think of the fluxes as per-steradian. 

We summarize the stages of the spherical radial Laplacian operator as follows: 
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2 2
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radial flux per unit area

( )( )
radial flux, per unit solid-angle

change in radial flux per unit length, per unit solid-angle; positive is increasing flux
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Following the steps in the example of heat flow, let T(r ) = temperature.  Then 

2

2
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2

radial heat flow per unit area, W/m

Watts
radial heat flux, W/solid-angle =
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Spherical azimuthal contribution:  The spherical f contribution to the Laplacian has no area-change, 

but does require converting derivatives.  Consider the volume element: 

df

Outflow surface area 

is identical to inflow 

x

y

z

f

ɗ

flow
 

The inflow and outflow surface areas are the same, and therefore area-change contributes nothing to the 

derivatives.   

However, we must convert the derivatives with respect to f into rates-of-change with respect to distance, 

because physically, the flow is driven by a derivative with respect to distance.  In the spherical f case, the 

effective radius for the arc-length along the flow is r sin ɗ, because we must project the position vector into 

the plane of rotation.  Thus, (Ö/Öf) is the rate-of-change per (r sin ɗ) meters.  Therefore,  

1
rate-of-change-per-meter

sinr q f

µ
=

µ
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Performing the two derivative conversions, we get 

2 1 1
( ) ( )

sin sin

1
azimuthal flux per unit area
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sin
T

r q f
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Notice that the r2 sin2 ɗ in the denominator is not a physical area; it comes from two derivative 

conversions. 

Spherical polar angle contribution:   

dɗ

Outflow surface area 

is differentially 

larger than inflow 

x

y

z

f

ɗ

flow

 

The volume element is like a wedge of an orange: it gets wider (in the northern hemisphere) as ɗ 

increases.  Therefore the outflow area is differentially larger than the inflow area (in the northern 

hemisphere).  In particular, ( )sinarea r drq= , but we only need to keep the ɗ dependence, because the 

factors of r cancel, just like dW did in the spherical radial contribution.  So we have 

sinarea q´ . 

In addition, we must convert the Ö/Öɗ to a rate-of-change with distance.  Thus the spherical polar angle 

contribution has both area-change and derivative-conversion. 

Following the steps of converting to flux, taking the derivative, then converting back to flux-density, we 

get 
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( )
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Notice that the r2 in the denominator is not a physical area; it comes from two derivative conversions. 

Cylindrical Coordinates 

The cylindrical terms are simplifications of the spherical terms. 

drx

y

z

f

Radial outflow 

surface area is 

differentially larger 

than inflow 

flow

r

df

flow

fand zoutflow 

surface areas are 

identical to 

inflow dz

flow

 

Cylindrical radial contribution:   The picture of the cylindrical radial contribution is essentially the 

same as the spherical, but the ñheightò of the slab is exactly constant.  We still face the issues of varying 

inflow and outflow surface areas, and converting derivatives to rate of change per unit distance.  The change 

in area is due only to the arc length r df, with the z (height) fixed.  Thus we write the radial result directly: 
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2 1
( ) ( ) (Cylindrical Coordinates)

radial flow per unit area

(flow per unit area)(area)
radial flux per unit angle
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Cylindrical azimuthal contribution:   Like the spherical case, the inflow and outflow surfaces have 

identical areas.  Therefore, the f contribution is similar to the spherical case, except there is no sin ɗ factor; 

r contributes directly to the arc-length and rate-of-change per unit distance: 

( )

2 1 1
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1
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1 1
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1 1 1

azimuthal flow
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r r rf f f
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Cylindrical z contribution:   This is identical to the rectangular case:  the inflow and outflow areas are 

the same, and the derivative is already per unit distance, ergo:  (add cylindrical volume element picture??) 
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2

vertical flux
per unit area

change in (vertical flux per
unit area) pe

( ) ( )

vertical flux per unit area

change in (vertical flux per unit area) per unitdistance

net outflow of flux per unit volume

zT T
z z

T
z

T
z z

T
z z

µ µ
Ð =

µ µ

µ
=

µ

µ µ
=

µ µ

=

µ µ

µ µ

r r

2

2

r unit distance

T
z

µ
=
µ

 

Laplacian of a Vector Field 

It gets worse: thereôs a vector form of Ð2.  If E(x, y, z) is a vector field, then in rectangular coordinates: 

2 2 2 2
x y zE E EÐ ¹ÐÐ =Ð +Ð +ÐE E i j k . 

This arises in E&M propagation, and not much in QM.  However, the above equality is only true in 

rectangular coordinates [I have a ref for this, but lost it??].  This is the divergence of the gradient of a vector 

field, which is a vector.  In oblique or non-normal coordinates, the gradient and divergence must be covariant, 

and include the Christoffel symbols. 

Vector Dot Grad Vector 

In electromagnetic propagation, and elsewhere, one encounters the ñdot productò of a vector field with 

the gradient operator, acting on a vector field.  What is this v ·Ð operator?  Here, v(r ) is a given vector field.  

The simple view is that v(r ) ·Ð is just a notational shorthand for 

( )

( ) ,

Ĕ Ĕ Ĕ Ĕ Ĕ Ĕ( )

x y z

x y z x y z

v v v
x y z

because v v v v v v
x y z x y z

å õµ µ µ
ÖÐ¹ + +æ ö

µ µ µç ÷

å õ å õµ µ µ µ µ µ
ÖÐ= + + Ö + + = + +æ ö æ ö

µ µ µ µ µ µç ÷ ç ÷

v r

v r x y z x y z

 

by the usual rules for a dot product in rectangular coordinates. 

There is a deeper meaning, though, which is an important bridge to the topics of tensors and differential 

geometry.   

We can view the v ·Ð operator as simply the dot product of the vector field v(r)  

with the gradient of a vector field.   

You may think of the gradient operator as acting on a scalar field, to produce a vector field. But the 

gradient operator can also act on a vector field, to produce a tensor field.  Hereôs how it works:  You are 

probably familiar with derivatives of a vector field: 
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Ĕ Ĕ Ĕ( , , ) be a vector field. Then is a vector field.

Writing spatial vectors as column vectors, ,

Similarly, are

yx z

x

x
y

y

z
z

AA A
Let x y z

x x x x

A

x
A

A
A A and

x x
A A

x

and
y z

µå õµ µµ
= + +æ ö

µ µ µ µç ÷

µå õ
æ öµ

å õ æ ö
µæ ö µ æ ö

= =æ ö æ öµ µæ ö æ ö
ç ÷ µæ ö

æ öµç ÷

µ µ

µ µ

A
A x y z

A

A A
also vector fields.

 

By the rule for total derivatives, for a small displacement (dx, dy, dz), 

x x

y

x x

x
y y

z

x

y y

zz z
z

z

y

A

z

A

dxA A

x x
dA

A A
dx dx

x x

A

A A

y y

A Ady
dA dy

y y

A AA

y xx

dz
y

dA
A dz

z y

d
x y z

å õå õ
æ öæ ö
æ öæ öå õ
æ öæ öæ öµ µ µ

¹ = + + = = +æ öæ öæ ö
µ µ µ æ öæ öæ ö

ç ÷ æ öæ ö
æ öæ öæ öæ ö

ç ÷

µ µå õ
æ öµ µ
æ ö

µ µæ ö
æ öµ µ
æ ö

µ µå õ
æ öµ µ
æ
æµ µ
æ

µ µæ
æµ µ
ææµ µ

µ

ç

æ öµ
æ öµµ ç ÷

µ

µ

µ

µ

µ

÷µ ç ÷

A A A
A

x

y

z

A

z

A
dz

y

A

z

dy

µå õ
æ öµ
æ ö
µæ ö
æ öµ
æ ö
æ

ö
ö
ö
ö

öµ
æ ö
µçö

+

÷

ö
ö

. 

This says that the vector dA is a linear combination of 3 column vectors ÖA/Öx, ÖA/Öy, and ÖA/Öz, weighted 

respectively by the displacements dx, dy, and dz.  The 3 x 3 matrix above is the gradient of the vector field 

A(r ).  It is the natural extension of the gradient (of a scalar field) to a vector field.  It is a rank-2 tensor, which 

means that given a vector (dx, dy, dz), it produces a vector (dA) which is a linear combination of 3 (column) 

vectors (ÐA), each weighted by the components of the given vector (dx, dy, dz). 

Note that ÐA and Ð·A are very different: the former is a rank-2 tensor field, the latter is a scalar field. 

This concept extends further to derivatives of rank-2 tensors, which are rank-3 tensors: 3 x 3 x 3 cubes 

of numbers, producing a linear combination of 3 x 3 arrays, weighted by the components of a given vector 

(dx, dy, dz).  And so on. 

Note that in other coordinates (e.g., cylindrical or spherical), ÐA is not given by the derivative of its 

components with respect to the 3 coordinates.  The components interact, because the basis vectors also change 

through space.  That leads to the subject of differential geometry, discussed elsewhere in this document. 
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4 Green Functions 

We follow [Jac p??] and [Bra] in using the term ñGreen function,ò rather than ñGreenôs function.ò  

Though we agree with Jacksonôs logic, we do it mostly because itôs easier to say and type. 

Green functions are a big topic, with lots of subtopics.  Many references describe only a subset, but use 

words that imply they are covering all of Green functions.  If you are looking for a specific application of 

Green functions, such as electrostatics, you may want to skip right to that section, but the ñbig ideaò applies 

to all Green functions. 

Though Green functions are used to solve linear operator equations (such as differential equations), the 

concepts involved apply to other applications, such as the Born approximation, impulse response analysis, 

and quantum propagators. 

The Big Idea 

Green functions are a method of solving linear operator equations (such as inhomogeneous linear 

differential equations) of the form: 

{ } {}
source

( ) ( ) is a linear operatorf x s x where=L L . (4.1) 

s(x) is called the ñsourceò function.  We use Green functions when other methods are hard, or to make a 

useful approximation (the Born approximation).  The big idea is to break up the source s(x) into infinitesimal 

pieces (ŭ-functions), solve each piece separately, and add up the solutions.  Since the A is linear, the sum of 

solutions is also a solution, and is the solution to the original problem. 

Sometimes, the Green function itself can be given physical meaning, as in E&M where it is essentially 

Huygenôs Principle, but with accurate phase information, or in Quantum Field Theory where it is the 

propagator of a quantized field.  Green functions can generate particular (i.e. inhomogeneous) solutions, and 

solutions matching boundary conditions.  They donôt generate homogeneous solutions (i.e., where the right 

hand side is zero).  We explore Green functions  through the following steps: 

1. Extremely brief review of the ŭ-function. 

2. The tired, but inevitable, electromagnetic example. 

3. Linear differential equations of one variable (1-dimensional), with sources. 

4. Delta function expansions.   

5. Green functions of two variables (but 1 dimension).   

6. When you can collapse a Green function to one variable (ñportable Green functionsò: translational 

invariance) 

7. Dealing with boundary conditions: at least 5 (6??) kinds of BC 

8. Green-like methods: the Born approximation 

You will find no references to ñGreenôs Theoremò or ñself-adjointò until we get to non-homogeneous 

boundary conditions, because until then, those topics are unnecessary and confusing.  We will see that: 

The biggest hurdle in understanding Green functions is the boundary conditions. 

Some references derive Green functions from Greenôs Theorem, which derives from Gaussô Law.  

That is only a special case.  In general, Green functions do not rely on Greenôs Theorem. 

We return to this point later, after discussing general boundary conditions. 

Dirac Delta Function  

Recall that the Dirac ŭ-function is an ñimpulse,ò an infinitely narrow, tall spike function, defined as: 
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( ) 0, 0, and ( ) 1, 0 (the area under the -function is 1)
a

a
x for x x dx ad d d

-
= ¸ = " >ñ . 

(This also implies (0)d ­¤, but we donôt focus on that here.)  The linearity of integration implies the delta 

function can be offset, and weighted, so that: 

( ) 0
b a

b a
w x b dx w ad

+

-
- = " >ñ . 

Since the ŭ-function is infinitely narrow, it can ñpick outò a single value from a function: 

( ) ( ) ( ) 0
b a

b a
x b f x dx f b ad

+

-
- = " >ñ . (4.2) 

This is called the ñfiltering propertyò of the ŭ-function.  See Quirky Quantum Concepts for more on the delta 

function.  The units of ŭ( ) are [x]ï1. 

The Tired, But Inevitable, Electromagnetic Example 

You probably have seen Poissonôs equation relating the electrostatic potential at a point to the charge 

distribution creating the potential (in gaussian units): 

2 ( ) 4 ( ) electrostatic potential, charge densitywheref pr f r-Ð = ¹ ¹r r . (4.3) 

We solved this by noting three things: (1a) electrostatic potential, f, obeys ñsuperposition:ò the potential due 

to multiple charges is the sum of the potentials of the individual charges; (1b) the potential is proportional to 

the source charge; and (2) if we take the potential at infinity to be zero, the potential due to a point charge is: 

1
( ) (point charge at ')

'
qf =
-

r r
r r

. (4.4) 

(We say much more about boundary conditions later.)  The properties (1a) and (1b) above, taken together, 

define a linear relationship:  

1 1 2 2

1 2 1 2

Given: ( ') ( ), and ( ') ( ),

then: ( ') ( ') ( ) ( ) ( ) .totala a

r f r f

r r f f f

­ ­

+ ­ = +  

r r r r

r r r r r
 

To solve (4.3), we break up the source charge distribution ɟ(r ) into an infinite number of little point 

charges.  The set of points is spread out over space, each of charge ɟ(r ) d3r.  The solution for f is the sum of 

potentials from all the point charges, and the infinite sum is an integral, so we find f as: 

3

# points
3 3

' 0
1

1 1
( ) lim ( ' ) ' ( ') '

' '
i

d r ii

d r d rf r r

 

­
=

=  =
- -

ä ñr r r
r r r r

. 

Note that the charge ñdistributionò for a point charge is a ŭ-function: infinite charge density, but finite total 

charge.  Also, ʟ (r ) for a point charge at rô is translationally invariant: it has the same form for all rô.  We will 

remove this restriction later. 

All of this followed from simple mathematical properties of Eq (1) that have nothing to do with 

electromagnetics.  All we used to solve for f was that the left-hand side is a linear operator on f (so 

superposition applies), and we have a known solution when the right-hand side is a delta function at rô: 

linear linearunknown given "source" given point
operator operatorfunction function "source" at 'known

solutio

2

n

2 1
( ) ( ) and ( ')

'
f pr d-Ð  = 4  -Ð  = -

-
 

r

r r r r
r r

. 
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Since any given ɟ can be written as a sum of weighted ŭ-functions, the solution for that given ɟ is a sum of 

delta-function solutions.  Now we generalize this electromagnetic example to arbitrary (for now, 1D) linear 

operator equations by letting r  ­ x, f ­ f, ïÐ2 ­ A, ɟ ­ s, and call the known ŭ-function solution G(x): 

{ } { }

2 2

( ) ( ) given point
"source" at '( ')

1
( ) ( ) and ( ')

'

Given ( ) ( ) and ( ') ( '),

then ( ) ' ( ') ( ') .

f x s x

G

f x s x G x x x x

f x dx s x G x x

f pr d

d

-

¤

-¤

-Ð  =4 -Ð   = - ­
-

= - = -

= -  ñ

rr r

r r r r
r r

 

This assumes, as above, that our linear operator, and any boundary conditions, are translationally invariant. 

A Fresh, New Signal Processing Example 

If the following example doesnôt make sense to you, just skip it.  Signal processing and control theory 

folk have long used a Green function-like concept, but with different words.  A time-invariant linear system 

(TILS) produces an output which is a linear operation on its input: 

{ } {}( ) ( ) is a linear operation taking input to outputo t i t where= . 

In this case, we arenôt given B{}, and we donôt solve for it (also itôs on the right-, rather than the left-side 

of the equation).  However, we are given a measurement (or computation) of the systemôs impulse response, 

called h(t).  If you poke the system with a very short spike (i.e., if you feed an impulse into the system, i(t) = 

ŭ(t) ), the system responds with h(t): 

{ }( ) ( ) ( ) is the system's impulse responseh t t where h td= . 

h(t) acts like a Green function, giving the system response at time t to a delta function at t = 0.  Note that h(t) 

is spread out over time, and usually of (theoretically) infinite duration.  h(t) fully characterizes the system, 

because we can express any input function as a series of impulses (with the delta-function expansion below), 

and sum up all the responses.  Therefore, we find the output for any input, i(t), with: 

( ) ( ') ( ') 'o t i t h t t dt
¤

-¤
= -ñ . 

Caution: many references do not distinguish between a Green function G(x) and an impulse response 

h(x).  The two are similar, but they differ because: 

{ } { }( ) ( ), but ( ) ( )G x x h x xd d= = . 

The ŭ-function is in a different place for a Green function vs. an impulse response.  For example, in 

electromagnetics, sources (charges and currents) are the stimulus that result in fields (E and B).  Maxwellôs 

equations have linear operators acting on the result (fields) to give you the stimulus.  A TILS does the reverse: 

it produces a result which is a linear operation on its input (stimulus). 

We can see a relationship between a Green function and an impulse response by taking B ï1 (if it exists) 

of both sides of the second equation: 

{ }1 ( ) ( )h x xd- = . 

Thus the impulse response for an operator B  is the Green function for the operator B ï1.  In particular, 

quantum field theory calls the field ñpropagatorò a Green function, but it is more directly thought-of as an 

impulse response. 
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Linear differential equations of one variable, with sources 

We wish to solve for f(x), given s(x): 

{ } {}

2 2
2 2

2 2

( ) ( ), is a linear operator .

( ) is called the "source," or forcing function .

E.g., ( ) ( ) ( ) ( ) .

f x s x where

s x

d d
f x f x f x s x

dx dx
w w

=  

 

å õ
+ ¹ + =  æ öæ ö

ç ÷

 

We ignore boundary conditions for now (to be dealt with later).  The differential equations often have 3D 

space as their domain.  Note that we are not differentiating s(x), which will be important when we get to the 

delta function expansion of s(x).  

Green functions solve the above equation by first solving a related equation: if we can find a function 

(i.e., a ñGreen functionò) such that: 

{ }

2
2

2

( ) ( ), ( ) is the Dirac delta function,

e.g., ( ) ( ) ,

G x x where x

d
G x x

dx

d d

w d

=

å õ
+ =  æ öæ ö

ç ÷

 

then we can use that Green function to solve our original equation.  This might seem weird, because ŭ(0) ­ 

Ð, but it just means that Green functions often have discontinuities in them or their derivatives.  For example, 

suppose G(x) is a step function: 

( ) 0, 0
( ) ( )

1, 0
Then

G x x d
G x x

x dx
d

= <û
=ü

= >ý
. 

Now suppose our source isnôt centered at the origin, i.e., ( ) ( )s x x ad= - .  If {}L  is translation invariant 

[along with any boundary conditions], then G( ) can still solve the equation by translation: 

{ }( ) ( ) ( ), ( ) ( ) is a solution.f x s x x a f x G x ad= = - Ý = -L  

If s(x) is a weighted sum of delta functions at different places, then because {}L  is linear, the solution is 

immediate: we just add up the solutions from all the ŭ-functions: 

{ }( ) ( ) ( ) ( ) ( )i i i i

i i

f x s x w x x f x w G x xd= = - Ý = -ä ä . 

Usually the source s(x) is continuous.  Then we can break up s(x) into infinitesimally small pieces (i.e., 

expand it as an infinite sum of delta functions, described in a moment), and sum the solutions for the pieces.  

The summation goes over to an integral, and a solution is: 

{ }

{ }

'
( ') '

1

source source

( ) ( ) ( )

( ) ( ) ( ') ' ( ') and ( ) ' ( ') ( ')

i

i

x x
w s x dx

i i

i

f x s x w x x

f x s x s x dx x x f x dx s x G x x

d

d

­
¤ ­

=

= = - ­

= =   - = -

ä

ñ ñ

 

We can show directly that f(x) is a solution of the original equation by plugging it in, and noting that 

{}L  acts in the x domain, and ñgoes throughò (i.e., commutes with) any operation in xô: 
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{ }

{ } {}

( ) ' ( ') ( ')

' ( ') ( ') moving inside the integral

' ( ') ( ') ( ) ( ) picks out the value of ( ). .

f x dx s x G x x

dx s x G x x

dx s x x x s x s x QEDd d

ë û
= -ì ü
í ý

= -

= - =

ñ

ñ

ñ

L L

L L  

We now digress for a moment to understand the ŭ-function expansion. 

Delta Function Expansion 

As in the EM example, it is frequently quite useful to expand a given function s(x) as a sum of ŭ-

functions: 

1

( ) ( ), are the weights of the basis delta functions

N

i i i

i

s x w x x where wd

=

º -ä . 

[This same expansion is used to characterize the response of linear systems to input i(t).] 

x
(a)

s(x)

N = 8

x

s(x)

ȹx
xi

wi = area 

ås(xi)ȹx

N = 16

(b)  

Figure 4.1  (a) Approximating a function with ŭ-functions.  (b) The weight of each ŭ-function is 

such that its integral approximates the integral of the given function, s(x), over the interval ñcoveredò 

by the ŭ-function. 

In Figure 4.1a, we approximate s(x) first with N = 8 ŭ-functions (green), then with N = 16 ŭ-functions (red).  

As we double N, the weight of each ŭ-function is roughly cut in half, but there are twice as many of them.  

Hence, the integral of the ŭ-function approximation remains about the same.  Of course, the approximation 

gets better as N increases.  As usual, we let the number of ŭ-functions go to infinity: N ­ Ð. 

In Figure 4.1b, we show how to choose the weight of each ŭ-function: its weight is such that its integral 

approximates the integral of the given function, s(x), over the interval ñcoveredò by the ŭ-function.  In the 

limit of N ­ Ð, the approximation becomes arbitrarily good. 

In what sense is the ŭ-function series an approximation to s(x)?  Certainly, if we need the derivative s'(x), 

the delta function expansion seems to be terrible.  However, if we want the integral of s(x), or any integral 

operator, such as an inner product or a convolution, then the delta function series is a good approximation.  

Examples: 

1

For ( ) or ( ) ( ) , or ( ' ) ( ) ,

then ( ) ( ) ( ) .

N

i i i i

i

s x dx f x s x dx f x x s x dx

s x w x x where w s x xd

=

,    -

º - = D  

ñ ñ ñ

ä
 

As N ­ Ð, we expand s(x) in an infinite sum (an integral) of ŭ-functions: 
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'
'

( ') '

( ) ( ) ( ) ' ( ') ( ')

i

i

x x
x dx

w s x dx

i i

i

s x w x x s x dx s x x xd d

­
D ­
­

= - ­ = -ä ñ , 

which if you think about it, follows directly from the definition of ŭ(x), per (4.2). 

[Aside: Delta functions are a continuous set of orthonormal basis functions, much like sinusoids from quantum 

mechanics and Fourier transforms.  They satisfy all the usual orthonormal conditions for a continuous basis, i.e. they 

are orthogonal and normalized: 

( ) ( ) ( )dx x a x b a bd d d
¤

-¤
- - = -ñ  .] 

Note that in the final solution of the prior section, we integrate s(x) times other stuff: 

( ) ' ( ') ( ')f x dx s x G x x= -ñ , 

and integrating over s(x) is what makes the ŭ-function expansion of s(x) valid. 

[Aside: It turns out that even systems that differentiate s(x) can use the ŭ-function expansion, but we need not 

bother with that here.] 

Boundary Conditions on Green Functions 

Most problems require boundary conditions on the solution to an equation. 

Introduction to Boundary Conditions 

We now impose a simple boundary condition on an equation we seek to solve.  Consider a 2D problem 

in the plane: 

{ }( , ) ( , ) inside the boundary;

(boundary) 0, where the boundary is given.

f x y s x y

f

=

=

L
 

We define the vectors r  ſ (x, y) and rô = (xô, yô), and recall that: 

2 2
( ) ( ) ( ), so that ( ') ( ') ( ')x y x x y yd d d d d d¹ - = - -r r r . 

The boundary condition removes the translation invariance of the problem (Figure 4.2).  The delta function 

response of { }( )G r  translates, but the boundary condition does not.  I.e., a solution of: 

{ } { }( ) ( ), and (boundary) 0 ( ') ( ')

BUT does NOT ( ') 0 .

G G G

G boundary

d d= = Ý - = -

Ý - =

r r r r r r

r

L L
 

x

Domain 

of  f(x, y)

f(boundary) = 0
boundary

y

x

y

ŭ2(r )

ŭ2(r īr ')

boundary condition does 

not translate with rôboundary condition 

remains fixed

(a) (b)  

Figure 4.2  (a) The domain of interest (blue), and its boundary (red).  (b) A solution meeting the 

BC for the source at (0, 0) does not translate to another point rô and still meet the BC. 
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With boundary conditions, for each source point r', we need a different Green function!   

The Green function for a source point r ', call it Grô(r ), must satisfy both: 

 { }' '( ) ( ') and (boundary) 0G Gd= - =r rr r rL . 

We can think of this as a Green function of two arguments, r  and r ', but really, r  is the argument, and r ' is a 

parameter.  In other words, we have a family of Green functions, Grô(r ), each labeled by the location of the 

source point, r '. 

Note that finding 1D Green functions is an important prerequisite for 3D Green functions, because a 3D 

problem sometimes separates into a 2D and a 1D problem.  We give such an example in the section on 3D 

Laplacian operator boundary conditions. 

One Dimensional Boundary Conditions 

Example:  Returning to a 1D example in r:  Find the Green function for the equation: 

2

2
( ) ( ), on the interval [0,1], subject to BC: (0) (1) 0.

d
f r s r f f

dr
=  = = 

Solution:  The Green function equation replaces the source s(r) with ŭ(r ï r'): 

2

'2
( ) ( ')r

d
G r r r

dr
d= - . 

Note that Grô(r) satisfies the homogeneous equation on either side of rô: 

2

'2
( ') 0r

d
G r r

dr
¸ = . 

The full Green function simply matches two homogeneous solutions, one to the left of rô, and another to the 

right of rô, such that the discontinuity at rô creates the required ŭ-function there.  First we find the 

homogeneous solutions h(r) (not an impulse response): 

2

2
( ) 0 Integrate both sides:

( ) C is an integration constant. Integrate again:

( ) , are arbitrary constants .

d
h r

dr

d
h r C where

dr

h r Cr D where C D

=

=

= +  

 (4.5) 

There are now 2 cases:  (left)  r < r ',  and (right)  r > r '.  Each solution requires its own set of integration 

constants. 

'

'

'

'

Left case: ' ( )

Only the left boundary condition applies to ' : (0) 0 0

Right case: ' ( )

Only the right boundary condition applies to ' : (1) 0 0, .

r

r

r

r

r r G r Cr D

r r G D

r r G r Er F

r r G E F F E

< Ý = +

< = Ý =

> Ý = +

> = Ý + = =-  

 

So far, we have: 

Left case: ( ') Right case: ( ')G r r Cr G r r Er E< = > = -. 

The integration constants C and E are as-yet unknown.  Now we must match the two solutions at r = r', 

and introduce a delta function there.  The ŭ-function must come from the highest derivative in L{ }, in this 

case the 2nd derivative, because if dG/dr had a delta function, then the 2nd derivative d2G/dr2 would have the 

derivative of a ŭ-function, which cannot be canceled by any other term in L{ }.   Since the derivative of a step 
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(discontinuity) is a ŭ-function, dG/dr must have a step, so that d2G/dr2 has a ŭ-function.  And finally, if dG/dr 

has a step, then G(r) has a cusp (aka ñkinkò or sharp point). 

We can find G(r) to satisfy all this by matching G(r) and dG/dr of the left and right Green functions, at 

the point where they meet, r = rô: 

' 'Left: ( ') Right: ( ')r r

d d
G r r C G r r E

dr dr
< =   > =. 

There must be a unit step in the derivative across r = rô: 

' '

1 1
r r

G G
C E

r r
- +

µ µ
+ = Ý + =

µ µ
. (4.6) 

So we eliminate E in favor of C.  Also, G(r) must be continuous (or else dG/dr would have a ŭ-function), 

which means:  

' '( ' ) ( ' ) ' ( 1) ' 1, ' 1r rG r r G r r Cr C r C C r- += = =    Ý = + - - = -, 

yielding the final Green function for the given differential equation and boundary conditions: 

( ) ( )' '( ') ' 1 , ( ') ' ' ' 1r rG r r r r G r r r r r r r< = - > = - = -. 

Hereôs a plot of these Green functions for different values of r': 

r
r' = 0.3

Gr' (r)

0

0.5

-0.5

r0

0.5

-0.5

r0

0.5

-0.5
0 1

r' = 0.5 r' = 0.8

Gr' (r) Gr' (r)

0 1 0 1
 

Normalization is important, because the ŭ-function in { }( ) ( )G r rd=  must have unit magnitude. 

To find the solution f(r), we need to integrate over r'; therefore, it is convenient to write the Green 

function as a true function of two variables: 

{ }'( ; ') ( ) ( ; ' ( '), and (boundary ; ') 0rG r r G r G r r r r G rd¹ Ý = -   =, 

where the ñ;ò between r and r ' emphasizes that G(r ; r ') is a function of r, parameterized by r'.  I.e., we can 

still think of G(r; r') as a family of functions of r, where each family member is labeled by rô, and each family 

member satisfies the homogeneous boundary condition.   

It is important here that the boundary condition is G = 0, so that  

any sum of Green functions still satisfies the boundary condition.   

Finally, the particular solution to the original equation, which now satisfies the homogeneous boundary 

conditions, is: 

( ) ( )
1 1

0 0
( ; '), ' ( ; '), '

( ) ' ( ') ( ; ') ' ( ') ' 1 ' ( ') ' 1

which satisfies (boundar ) 0

r

r
G r r r r G r r r r

f r dr s r G r r dr s r r r dr s r r r

f y

> <

= = - + -

=

ñ ñ ñ
. 

Summary: To solve { }'( ) ( ')rG r r rd= -  in one dimension: 
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¶ We break G(r) into left- and right- sides of r'.  Each side satisfies the homogeneous equation, 

{ }'( ) 0rG r = , with arbitrary integration constants.   

¶ We establish a first matching condition on G(r), which is usually that it must be continuous at 

r'. 

¶ We establish another matching condition to achieve the ŭ-function at r'.  This establishes a set 

of simultaneous equations for the integration constants in the homogeneous solutions.   

¶ We solve for the constants, yielding the left-of-r' and right-of-r' pieces of the complete Green 

function, G(r; rô). 

Aside:  It is amusing to notice that we use solutions to the homogeneous equation to construct the Green 

function.  We then use the Green function to construct the particular solution to the given (inhomogeneous) 

equation.  So we are ultimately constructing a particular solution from a homogeneous solution.  Thatôs not like 

anything we learned in undergraduate differential equations. 

When Can You Collapse a Green Function to One Variable? 

ñPortableò Green Functions:  When we first introduced the Green function, we ignored boundary 

conditions, and our Green function was a function of one variable, r.  If our source wasnôt at the origin, we 

just shifted our Green function, and it was a function of just (r ï rô).  Then we saw that with (certain) boundary 

conditions, shifting doesnôt work, and the Green function is a function of two variables, r and rô.  In general, 

then, under what conditions can we write a Green function in the simpler form, as a function of just (r ï rô)?   

When both the linear operator and the boundary conditions are translation-invariant,  

the Green function is also translation-invariant. 

We can say itôs ñportable.ò   

This is fairly common: differential operators are translation-invariant (i.e., they do not explicitly depend 

on position), and BCs at infinity are translation-invariant.  For example, in E&M it is common to have 

equations such as: 

2
( ) ( ), with boundary condition ( ) 0f r f-Ð = ¤ =r r . 

Because both the operator ïÐ2 and the boundary conditions are translation invariant, we donôt need to 

introduce r' explicitly as a parameter in G(r).  As we did in (4.4) when introducing Green functions, we can 

take the origin as the location of the delta function to find G(r), and use translation invariance to ñmove 

aroundò the delta function: 

{ }'( ; ') ( ) ( ') and ( ') ( ')

with BC: ( ) 0

rG r r G r G r r G r r r r

G

d¹ = -    - = -

¤ =

L
 

Non-homogeneous Boundary Conditions 

So far, weôve dealt with homogeneous boundary conditions by requiring '( ) ( ; ')rG r G r r¹  to be zero on 

the boundary (which may be at infinity).  But there are different kinds of boundary conditions, and different 

ways of dealing with each kind.   

[Note that in general, constraint conditions donôt have to be specified at the boundary of anything.  They are 

really just ñconstraintsò or ñconditions.ò  For example, one constraint is often that the solution be a ñnormalizedò 

function, which is not a statement about any boundaries.  But in most physical problems, at least one condition does 

occur at a boundary, so we defer to common usage, and limit ourselves here to boundary conditions.] 

Boundary Conditions Specifying Only Values of the Solution 

In one common case, we are given a general (inhomogeneous) boundary condition, m(r) along the 

boundary of the region of interest.  Our problem is now to find the complete solution c(r) such that 
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{ }( ) ( ), and (boundary) (boundary)c r s r c m= =L . 

One approach to find c(r) is from elementary differential equations: we find a particular solution f(x) to the 

given equation, that doesnôt necessarily meet the boundary conditions.  Then we add a linear combination of 

homogeneous solutions to achieve the boundary conditions, while preserving the solution of the non-

homogeneous equation.  There are 3 steps: 

(1) First solve for f(r), as above, such that: 

{ }

{ }

( ) ( ), and (boundary) 0,

using a Green function satisfying:

( ; ') ( ') and (boundary; ') 0 .

f r s r f

G r r r r G rd

= =

  

= - =  

L

L

 

(2) Find homogeneous solutions hi(r) which are non-zero on the boundary, using ordinary methods (see 

any differential equations text): 

{ }( ) 0, and (boundary) 0i ih r h= ¸L . 

Recall that in finding the Green function, we already had to find homogeneous solutions, since every Green 

function is a homogeneous solution everywhere except at the ŭ-function position, r'. 

(3) Finally, we add a linear combination of homogeneous solutions to the particular solution to yield a 

complete solution which satisfies both the differential equation and the boundary conditions.  Thus we find 

coefficients Aj such that: 

{ }1 1 2 2 1 1 2 2( ) ( ) ... ( ), and ( ) ( ) ... 0 by superpositionA h r A h r m r A h r A h r+ + =    + + = . 

Then our solution is c(r): 

{ } { }

{ }

1 1 2 2

1 1 2 2

( ) ( ) ( ) ( ) ... , because,

( ) ( ) ( ) ( ) ...

( ) ( ) and (boundary) (boundary)

c r f r A h r A h r

c r f r A h r A h r

f r s r c m

= + + +  

= + + +

= = =

 

Continuing Example:  In our 1D example above, we have: 

{} ( ) ( )
2

' '2

' '

and ( ') ' 1 , ( ') ' 1 ,

satisfying BC: (0) (1) 0 (0) (1) 0, ( ) .

r r

r r

G r r r r G r r r r
r

G G f f s r

µ
= < = - > = -
µ

= = Ý = = "  

 

We now add boundary conditions to the original problem: c(0) = 2, and c(1) = 3, in addition to the original 

problem.  Our linearly independent homogeneous solutions are, from (4.5): 

1 1 0 0( ) ( ) (a constant)h r A r h r A= = . 

To satisfy the BC, we need 

1 0 0

1 0 1

(0) (0) 2 2

(1) (1) 3 1

h h A

h h A

+ = Ý =

+ = Ý =
 

Thus our complete solution, satisfying the given BCs, is: 

1

0
( ) ' ( ') ( ; ') 2c r dr s r G r r r

è ø
= + +é ù
ê ú
ñ . (4.7) 
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Boundary Conditions Specifying a Value and a Derivative 

Another common kind of boundary conditions specifies a value and a derivative for our complete 

solution.  For example, in 1D: 

(0) 1 and '(0) 5c c= =. 

Recall that our previous Green function (4.7) is not required to have any particular derivative at zero.  When 

we find a particular solution, f(x), we have no idea what itôs derivative at zero, f '(0), will be.  And in particular, 

different source functions, s(r), will produce different f(r), with different values of f '(0).  This is bad for our 

new BCs.  In the previous case of BC, f(r) was zero at the boundaries for any s(r).  What we need with our 

new BC is f(0) = 0 and f '(0) = 0 for any s(r).  We can easily achieve this by using a different Green function!  

We subjected our first Green function to the boundary conditions G(0; rô) = 0 and G(1; rô) = 0 specifically 

to give the same BC to f(r), so we could add our homogeneous solutions independently of s(r).  Therefore, in 

our example {}
2

2

d

dr
= ,we now choose our Green function BC to be: 

{ }
2

2
(0; ') 0 and (0; ') 0, with ( ; ') ( ; ') ( ')

d d
G r G r G r r G r r r r

dr dr
d =  =   ¹  = -. 

We can see by inspection that this leads to a new Green function (Figure 4.3): 

( ; ') 0 ', and ( ; ') ' 'G r r r r G r r r r r r= < = - >. 

r

r' = 0.3

G(r ; r')

0

0.5

r0

0.5

r0

0.5

0 1 0 10 1

r' = 0.5 r' = 0.8

G(r ; r') G(r ; r')

 

Figure 4.3  Green functions for 3 different values of rô. 

The 2nd derivative of G(r; rô) is everywhere 0, and the first derivative changes from 0 to 1 at rô.  Therefore, 

our new particular solution f(r) also satisfies: 

1

0
( ) ' ( ') ( ; ') and (0) 0, '(0) 0, ( )f r dr s r G r r f f s r= = = "ñ . 

We complete the solution using our homogeneous solutions to meet the BC: 

1 1 0 0

1 0 0

1 0 1

1

0

( ) ( ) (a constant)

(0) (0) 1 1

'(0) '(0) 5 5. Then:

( ) ' ( ') ( ; ') 5 1

h r A r h r A

h h A

h h A

c r dr s r G r r r

= =

+ = Ý =

+ = Ý =

è ø
= + +é ù
ê ú
ñ

 

In general, the Green function depends not only on the particular operator,  

but also on the kind of boundary conditions specified. 

The Green function does not depend on the values of the given BCs. 

https://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu/  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

4/27/2021  11:49 AM Copyright 2002-2021 Eric L. Michelsen. All rights reserved. 54 of 322

  

Boundary Conditions Specifying Ratios of Derivatives and Values 

Another kind of boundary conditions specifies a ratio of the solution to its derivative, or equivalently, 

specifies a linear combination of the solution and its derivative be zero.  This is equivalent to a homogeneous 

boundary condition: 

'(0)
or equivalently (if (0) 0) '(0) (0) 0

(0)

c
c c c

c
a a= ¸  - =. 

This BC arises, for example, in some quantum mechanics problems where the normalization of the wave-

function is not yet known; the ratio cancels any normalization factor, so the solution can proceed without 

knowing the ultimate normalization.  Note that this is only a single BC.  If our differential operator is 2nd 

order, there is one more degree of freedom that can be used to achieve some other condition, such as 

normalization.  (This BC is sometimes given as ɓc'(0) ï Ŭc(0) = 0, but this simply multiplies both sides by a 

constant, and fundamentally changes nothing.)   

Importantly, this condition is homogeneous: a linear combination of functions which satisfy the BC also 

satisfies the BC.  This is most easily seen from the form given above, right: 

( ) ( )

If '(0) (0) 0, and '(0) (0) 0,

then ( ) ( ) ( ) satisfies '(0) (0) 0

because '(0) (0) '(0) (0) '(0) (0)

d d e e

c r Ad r Be r c c

c c A d d B e e

a a

a

a a a

- = - =

= + - =

- = - + -

 

Therefore, if we choose a Green function which satisfies the given homogeneous BC, our particular solution 

f(r) will also satisfy the BC.  There is no need to add any homogeneous solutions. 

Continuing Example:  In our 1D example above, with A = d2/dr2, we now specify the BC: 

'(0)
2 or '(0) 2 (0) 0

(0)

c
c c

c
=    - =. 

Green functions for this operator are always two connected line segments (because their 2nd derivatives are 

zero), so we have: 

' : ( ; ') , 0 so that (0) 0;

' : ( ; ')

BC at 0 : 2 0

r r G r r Cr D D c

r r G r r Er F

C D

< = + ¸ ¸

> = +

  - =

 

With this BC, we have an unused degree of freedom, so we choose D = 1, implying C = 2.  We must 

find E and F so that G(r; rô) is continuous, and Gô(r; rô) has a unit step at rô.  The latter condition requires 

that E = C + 1 = 3, and then continuity requires: 

' ' 2 ' 1 3 ' , ' 1. So:

' : ( ; ') 2 1 and ' : ( ; ') 3 ' 1

Cr D Er F r r F F r

r r G r r r r r G r r r r

+ = + Ý + = + =- +

< = + > = - +
 

r

r ' = 0.3

G(r ; r ')

0
0 1

4

r

r ' = 0.5

G(r ; r ')

0 1

r
r ' = 0.8

G(r ; r ')
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2

0

4

2

0

4

2

 

Figure 4.4  1D Green functions; the slope changes of +1 occur at r' (dotted red lines), but are subtle 

on this scale. 
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Then our complete solution is just: 

1

0
( ) ( ) ' ( ') ( ; ')c r f r dr s r G r r= =ñ . 

Boundary Conditions Specifying Only Derivatives (Neumann BC) 

Another common kind of BC specifies derivatives at points of the solution.  For example, we might 

have: 

'(0) 0 and '(1) 1c c= =. 

Then, analogous to the BC specifying two values for c( ), we find a Green function which has zeros for its 

derivatives at 0 and 1: 

( 0 ; ') 0 and ( 1; ') 0
d d

G r r G r r
dr dr

= =    = =. 

Then the sum (or integral) of any number of such Green functions also satisfies the zero BCs: 

1

0
( ) ' ( ') ( ; ') satisfie '(0) 0 and '(1) 0f r dr s r G r r s f f= =         =ñ . 

We can now form the complete solution, by adding homogeneous solutions that satisfy the given BC: 

1 1 2 2 1 1 2 2

1 1 2 2

( ) ( ) '( ) '( ) '(0) '(0) 0

'(1) '(1) 1

c r f r A h r A h r where A h A h

and A h A h

= + + + =

+ =
 

Example:  We cannot use our previous example where L{ } = d2/dr2, because there is no solution to: 

2

2
( ; ') ( ') with ( 0 ; ') ( 1; ') 0

d d d
G r r r r G r r G r r

dr drdr
d= - = = = =. 

This is because the homogenous solutions are straight line segments; therefore, any solution with a zero 

derivative at any point must be a flat line.  So we must choose another operator as our example: TBS. 

2D?? and 3D Green Functions 

Green Functions Donôt Separate 

In previous sections, we described 1D Green functions, which satisfy: 

{ }( ; ') ( ')G x x x xd = -. 

(We must change notation slightly from earlier, since in higher dimensions, ñrò now has the conventional 

meaning: distance from the origin.)  A 3D Green function satisfies: 

{ } ( )3( ; ') ( ') coordinate freeG d = -  r r r r . 

Note that ŭ3 is a (coordinate-free) spherically symmetric function, with no preferred direction.  We can choose 

to write it as a product of three coordinate functions.  For example: 

{ } ( )( , , ; ', ', ') ( ') ( ') ( ') rectangular coordinatesG x y z x y z x x y y z zd d d = - - -  . 

To generalize Green functions to 3D in rectangular coordinates, you might guess that we could multiply 

three separate 1D Green functions together.  For example, if A separates into x, y, and z parts, does the 

following hold? 
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{ } { } { }

( ){ } ( )

?

?
3

Let ( ; ') ( '), and similar for ( ; ') and ( ; ') .

Does ( , , ; ', ', ') ( ; ') ( ; ') ( ; ') ? I.e.,

( ; ') ( ; ') ( ; ') ' ?

x y z

x y z

X x x x x Y y y Z z z

G x y z z y z X x z Y y y Z z z

X x z Y y y Z z z

d

d

 = -        

 =          

+ +    = -  r r

 

We now show that does not work.  As a concrete counter-example, consider the Laplacian operator, É2.  In 

1D, it is simply Ö2/Öx2.  Applying our guess to 3D, we would have: 

( ) ( )

2

2

2 2 2
2

2 2 2

( ; ') ( '), and similar for ( ; ') and ( ; ') .

( ') ( ') ( ')

( ') ( ') ( ') .

X x x x x Y y y Z z z
x

XYZ XYZ x x YZ y y XZ z z XY
x y z

x x y y z z

d

d d d

d d d

µ
 = -        

µ

å õµ µ µ
Ð = + + = - + - + -æ öæ öµ µ µç ÷

¸ - - -  

 

Green functions do not separate the way solutions to Laplaceôs equation do. 

Let us explore some properties of an actual 3D Green function.  A well-known 3D Green function for 

the Laplacian, with BC of zero at infinity, is: 

1
( ; ')

4 '
G

p
 =-

-
r r

r r
. 

For simplicity, we fix r '  = 0v and drop the prefactor.  For insight, we write it in rectangular coordinates: 

2 2 2

1 1
( ; )G

r x y z

 ´ =

+ +
vr 0 . 

This is spherically symmetric, as required by the spherical symmetry of É2 and the BCs, but has no other 

obvious structure.  It does not seem to factor into X(x)Y(y)Z(z).  Nonetheless, we have: 

2 2 2
3

2 2 2 2 2 2

1 1
( )

4
r

x y z x y z

d
p

å õå õµ µ µ -æ ö+ + =æ öæ öæ öµ µ µ + +ç ÷ç ÷

. 

By symmetry, the three directions each contribute the same amount to the sum, which is 1/3 of the total, so: 

() () ()
2 2 2

3

2 2 2

1
( )

12
r

x y z
d
p

µ µ µ -
= = =

µ µ µ
. 

This means the 2nd derivative in a single direction is immediately a 3rd-order delta function; this ŭ3( ) does 

not result from the product of one ŭ( ) in each direction. 

3D Green functions are hard to understand.  We give some examples in the following sections. 

Green Units 

Coordinates have units, operators have units, Green functions have units, and delta functions have units.  

As always, we can use dimensional analysis to sanity-check results, which we do later.  As a 1D example: 

https://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu/  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

4/27/2021  11:49 AM Copyright 2002-2021 Eric L. Michelsen. All rights reserved. 57 of 322

  

[] [ ]

[] []

2
2 1

2

2
2 1

2

(length), , ( ) :

, and .

x L L L
x

G L G L G L
x

d

d

- -

- -

è øµ
=   =  =é ù

µé ùê ú

µ
= Ý = =  

µ

 

If x is in meters, then so is G. 

A 3D units example: 

[] [ ]

[] []

2 2 1

2 3 2 3 1

(length), , ( ) :

, and .

x L L L

G L G L G L

d

d

- -

- - -

è ø=   Ð =  =
ê ú

Ð = Ý = =  

 

If the coordinates are in meters, then G is in inverse meters. 

Special Case: Laplacian Operator with 3D Boundary Conditions 

In electrostatics, one often uses Green functions with the Laplacian operator, 2=Ð, and boundary 

conditions, to find the electrostatic potential ū(r).  The Laplacian operator allows a ñtrickò (see glossary) for 

common boundary conditions, that gives a solution in terms of integrals.  This section assumes you are 

thoroughly familiar with solving Laplaceôs equation by separation of variables into eigenfunctions (see Funky 

Electromagnetics Concepts).  Beware that some references define Green functions only for this electrostatic 

special case, and so present an overly narrow view of them. 

inside S outside S

r '

space

source 
volume

surface 
element, 

d2S'

r

observer

(a) (b)
x'

ū

(c)

G(r , r ')|n

r ' on S

nn

 

Figure 4.5  (a) A 3D distribution of charges, admired from within.  (b) A 1D potential; the flux is 

proportional to Öū/Öx'.  (c) For Dirichlet BCs, form of G along the normal coordinate n for r '  on the 

boundary surface S. 

Consider a distribution of source charges, as in Figure 4.5a.  We continue with the definition of G from 

earlier sections, and gaussian units: 

2 3 2

( )

( ; ') ( '), and ( ) 4 ( )

s

G d prÐ  = - Ð F =-

r

r r r r r r . 

Some references include a factor of  (ï1) or (ï4 )́ on the ŭ-function in the definition of G.  That breaks the 

generality of the Green method, and simply moves the factor from s(r ) into the Green function itself, but the 

resulting integral (4.8) is identical, as it must be: ū(r ) is uniquely determined by ɟ(r ') and the BCs.  Our 

convention for G is used in many references, and we believe is objectively simpler in both theory and practice. 

The Laplacian boundary condition trick starts with Greenôs theorem, which relates a certain kind of 

volume integral to a surface integral.  We give some insight to Greenôs theorem in the next section, but the 

result is: for any functions defined inside a volume, ū(r ') and ɣ(r '): 
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2 2 3 2( ') ' ( ') ( ') ' ( ') ' ( ') ( ') '
' '

Ĕ' normal coordinate, so, e.g., ' '
'

Vol Vol
d r d S

n n

where n
n

y
y y y

y
y

µ

µ µFå õ
F Ð - Ð F   = F -  æ ö

µ µç ÷

µ
¹        =Ð

µ

ñññ ññr r r r r r

n

 

Note that the primes denote source coordinates.  In electrostatics, we let ū(r' ) be the electrostatic potential 

inside the volume, and ɣ(r ') Ÿ G(r , rô), taking r  as fixed.  The operator É' tells us how a function changes 

as we move around the source coordinate r' , with r  held fixed.  Then ū is explicitly given by (gaussian units): 

( )
(

3

inside )
volume

2( ) ( ; ') 4 ( ') ' ( ') ( , ') '
' '

boundary of the volume .

s
Vol Vol

G
G d r G d S

n n

where Vol

pr
µ

  

µ µFå õ
F =   -   + F -   æ ö

µ µç ÷

µ ¹     

ñññ ññ
r r

r r r r r r r

 (4.8) 

If r  is outside the volume, it violates the terms of Greenôs Theorem, the volume integral is zero, and the result 

is meaningless.  At this point, we have not given any BCs for G, so as with all Green functions, there are 

many G that satisfy the defining equation 2 3( ')G dÐ = -r r .  We must find BCs for G to make it unique. 

Dirichlet BCs:  There are 2 terms in the surface integral of (4.8).  For Dirichlet BCs, ū(boundary) is 

given.  Therefore, we make G unique by choosing G(boundary; rô) = 0, so the second surface term vanishes.  

Figure 4.5c illustrates G(n, r ') along  n, the normal coordinate to the boundary surface.  This BC for G 

guarantees that ū(r ) from (4.8) meets the given ū(boundary). 

Neumann BCs: dū/dn' = En' is given everywhere on the boundary.  This is equivalent to specifying E\ 

or the surface charge density ů everywhere on the boundary, because: 

4 (gaussian units)
'

d
E

dn
ps^

F
=- =-      . 

You might think we choose dG/dn' = 0 everywhere on the boundary, so the first term in the surface integral 

would vanish.  This turns out to be a contradiction, so it fails to give a solution ( [Jac 1999 p39] or [Bra p174], 

but note they use different ŭ-function conventions from each other, and from us).  The contradiction appears 

from Gaussô Law applied to the definition of the Green function, for r  inside the volume: 

2 3 2 3 3

2

Ĕ( ; ') ( ') ' ' ( ') or

' 1.
'

Vol Vol

Vol

G G G d S d r

dG
d S

dn

d d
µ

µ

Ð  ¹Ð Ð = - Ý Ð  = -     

 =  

ññ ñññ

ññ

r r r r n r r

 

So dG/dn' cannot be 0 everywhere.  The simplest requirement to state (not necessarily to solve) is dG/dn' = 

constant = 1/S, where S ſ surface area, which satisfies the above surface integral.  However, if the system is 

infinitely large, as is commonly approximated, this reduce to the simple dG/dn' = 0. 

The final solution then comes from the fact that ū(r ') is defined by Neumann BCs only up to an additive 

constant.  Therefore, there exists some ū(r ') such that the first term in the surface integral of (4.8) is zero.  

Then that ū satisfies: 

( ) 3 2

inside ( )
volume

( ) ( ; ') 4 ( ') ' ( , ') '
'Vol Vol

s

G d r G d S
n

pr
µ

  

µF
F =   -   -    

µñññ ññ
r r

r r r r r r . 

This gives the solution ū(r ) inside the volume as an integral of the given Neumann BCs. 

The BCs we choose for the Green function depends only on the type of BCs for ū 

(Dirichlet or Neumann), but not on the boundary values themselves. 
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Derivation of Greenôs Theorem 

This section is optional.  Greenôs theorem relates a certain kind of volume integral to a surface integral.  

We start with a one-dimensional section of 3D space, which may be easier to think about (Figure 4.5).  

Consider any two functions ū(xô) and ɣ(xô); we use primes to indicate coordinates of source charges.  From 

simple integration by parts, we have: 

2

2
' '

' ''

bb b

a aa

d d d d
dx dx

dx dx dxdx
y y y

å õå õ
F  =F - F  æ öæ ö

ç ÷ç ÷ñ ñ . 

We could just as well swap the roles of ū and ɣ, and have: 

2

2
' '

' ' ''

bb b

a aa

d d d d
dx dx

dx dx dxdx
y y y

å õå õ
F = F - F  æ öæ ö

ç ÷ç ÷ñ ñ . 

Subtracting the latter from the former cancels the integral on the RHS: 

2 2

2 2

2 2

2 2

charge
density

' or
' '' '

' '
' '' '

b
b

a
a

b
b b

a a
a

d d d d
dx

dx dxdx dx

d d d d
dx dx

dx dxdx dx

y y y y

y y y y

å õ å õ
F - F  = F - F    æ ö æ öæ ö ç ÷ç ÷

å õ
F  = F + F - Fæ ö

ç ÷

ñ

ñ ñ
 (4.9) 

We recognize the charge density in the first integral on the right.  We can isolate ū on the left, at a specific 

point x (not x') in the volume, by choosing ɣ such that d2ɣ/dx'2 = ŭ3(x ï x'); in other words, by choosing ɣ(x')  

to be a Green function: 

2

2
( ') ( ; ') such that: ( ')

'

G
x G x x x x

x
y d

µ
­        = -

µ
. 

For purposes of Greenôs Theorem, óxô is a constant; x' is the variable.  Greenôs Theorem holds for any 

functions ū(x') and ɣ(x'), so it holds for this choice of ɣ.  Then the LHS of (4.9) becomes: 

2

2
' ( ) ( ') ' ( )

'

b b

a a

d
dx x x x dx x

dx
y dF  = F  -  =Fñ ñ . (4.10) 

So (4.9) becomes an explicit integral for ū(x), x inside the volume: 

( )( ) ( ; ') 4 ' ( ') ( ; ')
' '

b
b

a
a

dG d
x G x x dx x G x x

dx dx
pr

Få õ
F =  - + F -  æ ö

ç ÷ñ . (4.11) 

To generalize this to 3D, we throw in the requisite vector identities, and upgrade each term in our 

development by two additional dimensions.  Start by deriving a kind-of 3D version of integration by parts: 

( )

3 2

scalar

3 2

Ĕ Ĕ' ( ') ' ( ') ' ' ' unit vector pointing outward .

Let ( ') ( ') ' ( ')

' ' ' ( ') '
'

Vol Vol

Vol Vol

d r d S where

d r d S
n

y

y
y

µ

µ

Ð  =  ¹     

    =F  Ð Ý

µ
Ð F Ð  = F   

µ

ñññ ññ

ñññ ññ

A r A r n n

A r r r

r

 

Use a vector identity for divergence: 
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( )

( )

2

2 3 2

' ' ' ' '

' ' ' ' ( ') '
'Vol Vol

d r d S
n

y y y

y
y y

µ

Ð F Ð =Ð F Ð +F Ð Ý

µ
Ð F Ð +F Ð  = F   

µñññ ññr

 

As in our 1D warmup, we can swap the roles of ū and ɣ, and subtract the result from the above.  The first 

term on the LHS cancels, leaving: 

2 2 3 2
( ') ' ( ') ( ') ' ( ') ' ( ') ( ') '

' 'Vol Vol
d r d S

n n

y
y y y

µ

µ µFå õè øF Ð - Ð F   = F -  æ öê ú µ µç ÷ñññ ññr r r r r r . 

Now choose ɣ(r ') Ÿ G(r ; r '), where r  is a constant inside the volume, and: 

( )

2 3

3 2

inside ( )
volume

' ( ; ') ( ')

( ) ( ; ') 4 ( ') ' ( ') ( , ') '
' 'Vol Vol

s

G

G
G d r G d S

n n

d

pr
µ

  

Ð  = - Ý

µ µFå õ
F =   -   + F -   æ ö

µ µç ÷ñññ ññ
r r

r r r r

r r r r r r r . 

The particular G we use depends on the BCs given in the original problem for ū(r ), as shown in the previous 

section. 

Desultory Green Topics 

Fourier Series Method for Green Functions 

In some cases, we cannot find the Green function in closed form, but we can find a Fourier series for it.  

This section assumes you are familiar with Fourier Series, and Green functions without Fourier Series.  The 

example below constructs a Green function from a 2D Fourier Series for the x-y parts, and for each Fourier 

component, uses a variant of 1D left-right construction (introduced in an earlier section) for the z part of that 

component. 

To illustrate the Fourier method for Green functions, we expound on the question [Jac Q2.23 and p128-

9].  There are many solutions for Q2.23 (which has no source charge) posted on the internet; most use 

separation of variables and eigenfunctions.  (We describe such a method generally in Funky Electromagnetic 

Concepts.)  We here derive one form of the Green function for such a problem [Jac 3.168 p129m].  In 

principle, this solves for the potential ū(r ) for arbitrary charge density by using (4.8). 

(a) x

y

z

a

z= constant (b)

a

z'

Gz(z; z ')

z

 

Figure 4.6  (a) A cube with specified boundary potentials.  (b) Green function for the z-direction, 

requiring sinh functions. 

The system is a cube of side a, with one corner at the origin, extending to (a, a, a) (Figure 4.6).  The 

cube has arbitrary charge density ɟ(r ) inside.  The two faces of z = 0 and z = a are at fixed potential ū = V, 

and the other 4 faces are at ū = 0.  Find the potential inside the cube.  As with many such problems, it is 

slightly ill-posed: the potential along the x and y axes, and 6 other similar edges, are specified as both 0 and 

V.  We can ignore this by saying that the faces with ū = V are separated by a tiny distance from the rest of 

the cube, so the edges donôt quite touch. 

The geometry favors rectangular coordinates.  The BCs on ū are Dirichlet (ū is given everywhere on 

the surface of the cube), so the BCs on G are all zero.  This means the three coordinate directions are all 

equivalent for G, and we could find G as a 3D Fourier series [Jac 3.167 p129].  However, the original problem 

is given with z chosen as having different BCs than x and y, so we choose to treat z differently than x and y.  
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We will Fourier expand the x-y surfaces (2D), but write the z-dependence of each Fourier component (of G) 

directly.  This is desirable, because lower dimensional series usually converge faster than higher dimension.   

2D Fourier Series:  Recall that a well-behaved 2D function of a rectangular region of space 

[ ] [ ]0, , 0,x a y bÍ  Í  can be written as a series of sinusoids: 

, 1
basis function

( , ) sin sin other cos( ) terms we won't need herelm

l m

l m
f x y A x y

a b

p p
¤

=
 

å õ å õ
= +        æ ö æ ö

ç ÷ ç ÷
ä . 

We justify the lack of cos( ) shortly.  Given the function f(x, y), we can find the coefficients Alm of its series 

expansion from orthogonality of the Fourier basis functions: 

0 0

4
( , )sin sin

b a

lm

l m
A dy dx f x y x x

ab a b

p på õ å õ
=   æ ö æ ö

ç ÷ ç ÷ñ ñ . (4.12) 

The leading coefficient above is the inverse of the normalization of the basis function: 

2

0 0
sin sin

4

b a ab
dy dx lx my

a b

p pè øå õ å õ
  =æ ö æ öé ù

ç ÷ ç ÷ê ú
ñ ñ . 

3D Green function:  For the potential of the cube, ū(x, y, z), we seek the Green function, which looks 

like this in rectangular coordinates: 

( ) ( )( )( )2 3, , ; ', ', ' ( ') ' ' 'G x y z x y z x x y y z zd d d dÐ = - = - - -r r . (4.13) 

In our parlance, we say G( ) is the piece of ū at (x, y, z) due to the piece of source at (xô, yô, zô).  As described 

in a previous section, G (as a whole) does not separate into X(x)Y(y)Z(z).  However, each Fourier component 

of G is a solution to Laplaceôs equation everywhere except at rô, so each component can be separated into 

X(x)Y(y)Z(z), while still including a discontinuity.  In such a separation for the É2 operator in rectangular 

coordinates, at least one function is sin/cos, and at least one is sinh/cosh.  Because we chose to Fourier expand 

x-y, they must be sin/cos, and therefore Z(z) must be sinh/cosh.  Thus G can be written: 

, 1 sinh/cosh

( , , ; ' ' ') ( ', ')sin sin ( ; ')lm lm

l m

l m
G x y z x y z A x y x y Z z z

a a

p p
¤

=

å õ å õ
 =  æ ö æ ö

ç ÷ ç ÷
ä . (4.14) 

Note that each pair of values (x', y') has its own distinct Fourier series.  We call the z part of each component 

of the Green function Zlm(z; z').  Note that each lm component has a different Zlm, which is why there is no 

global Z(z) that can be separated from the rest of G.  The units of the coordinates are [x] = [y] = [z] = distance, 

and [AlmZlm] are [x]ï1. 

As noted earlier, the BCs for ū given in the problem define the BCs for G( ), which then makes G( ) 

unique.  We must impose G( ) = 0 everywhere on the boundary (all 6 faces): 

(boundary; ', ', ') 0, ', ', 'G x y z x y z =    ". 

Each Fourier component satisfies Laplaceôs equation everywhere except at (x', y', z'), and is zero on the 

boundaries.  The BC on G demands a square slice of z = constant has G = 0 around its perimeter.  This can 

be satisfied with X and Y = sin( ), but not cos( ).  Thus: 

( ) sin , ( ) sin , , integerlm lm

l m
X x x Y y y l m

a a

p på õ å õ
=    =  æ ö æ ö

ç ÷ ç ÷
. 

The infinite Fourier sum in X and Y compose a ŭ(x ï x')ŭ(y ï y'), leaving only ŭ(z ï z') to be constructed in 

Zlm.  In rectangular coordinates, Xlm depends only on l, and Ylm depends only on m.  We retain the ñlmò on 

both because other coordinate systems donôt separate so cleanly.  (Ylm here is not a spherical harmonic.) 
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Now to find G, ñallò we must do is find the Zlm and Alm.  Zlm must provide the ŭ(z ï z') in (4.13), so we 

start there.  The Zlm must look like Figure 4.6b, because they are zero at z = 0 and z = a, and each must have 

a positive step in its derivative at z = z'.  We already know that Zlm(z) comprises only sinh/cosh, but because 

G(boundary) = 0, it must be made of only sinh.  From Figure 4.6b: 

( )

( ) 2 2

For ' : ; ' sinh( )

' : ( ; ') sinh ( ) .

lm lm

lm lm lm

z z Z z z A k z

For z z Z z z B k a z where k l m
a

p

 <  =

 >  = - ¹ +  
 

klm is chosen to cancel the sum of the eigenvalues from X(x) and Y(y), as described in the section on boundary 

value problems.  Since klm depends on the component ñlmò, each Zlm is a different function.   

It is customary to combine these two pieces of Zlm into a single form: 

( )( ) ( ) ( )( ; ') sinh( )sinh min , ' , max , 'lm lm lmZ z z C k z k a z where z z z z z z< > < > = - ¹   ¹ . 

Remember that for purposes of derivatives, z' is a given constant, so in the above form, one factor is a function 

of z, and the other is just a constant that depends on z'.  (This combined form looks clumsy, but is helpful 

with deeper concepts of self-adjointness which we do not pursue here.)  The coefficient C could be absorbed 

into the Fourier coefficients Alm, but we have to do the work sooner or later.  Therefore, we opt to keep all 

the z-dependence tidily in Zlm, so we find C now: 

( ) ( )
' '

cosh( )sinh ( ') , sinh( ') cosh ( )lm lm
lm lm lm lm lm lm

z z z z

dZ dZ
Ck k z k a z Ck k z k a z

dz dz< >

= - =- -. 

The unit step in derivative at z' gives: 

( ) ( )

( )( )
( )

' '

1 sinh( ') cosh ( ') cosh( ')sinh ( ')

Use: sinh( ) sinh cosh cosh sinh :

1
1 sinh ' '

sinh

lm lm
lm lm lm lm lm

z z

lm lm
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dZ dZ
Ck k z k a z k z k a z

dz dz

u v u v u v

Ck k z a z C
k k a

+ -
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  + = +

-
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Note that C depends on the source point z', and is negative, as shown in Figure 4.6b.  The complete Zlm is: 

( )
( )( )

1
( ; ') sinh( )sinh

sinh
lm lm lm

lm lm

Z z z k z k a z
k k a

< >

-
 = - . (4.15) 

As expected, Zlm is not a 1D Green function, because it is non-zero everywhere inside the boundary.  

However, it does provide the discontinuity required in G.  In fact: 

2 2 2'
2

2 2 2'
( '; ') , ( '; ') ( ') 1
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z
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(We could say, in general 
2

2

2
( ; ') ( ')lm lm lmZ z z k Z z z

z
d

µ
 = + -

µ
. )  [klm] = [z]ï1, so the scaling of Zlm gives it 

units of distance, [z]. 

For Alm(x', y') we have: 

2 2 2
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This means the Alm have units of [x]ï2.  To pick out a single coefficient Al 'm', we multiply both sides by the 

Fourier basis function, and integrate over the x-y region, recalling the basis function normalization is a2/4:   

2 2 2 2 2 2

' ' 2 2 2 0 0

' '
sin sin ( ') ( ') ( ')

4

' '
sin ' sin ' ( ')

a a

l m lm

l m a l m
A Z dx dy x y x x y y z z

a aa a z

l m
x y z z

a a

p p p p
d d d

p p
d

å õµ å õ å õ
- - + =   - - -  æ ö æ ö æ öæ ö ç ÷ ç ÷µç ÷

å õ å õ
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ç ÷ ç ÷

ñ ñ
 

The only term that survives on the left is from 
2

2
( ') ( ')lmZ z z z z

z
d

µ
= = -

µ
, which cancels the ŭ( ) on the right: 

' '( ', ') ( ')l mA x y z zd -
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(Equivalently, we could integrate both sides with 
'

'
( )

z

z
dz

+

-

  ñ .)  We drop the primes from l' and m', yielding: 

2

4
( ', ') sin ' sin 'lm

l m
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= æ ö æ ö
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The final Green function combines these Alm with Zlm from (4.15): 

( )( )
( )2

, 1

sinh( )sinh4
( , , ; ' ' ') sin ' sin ' sin sin
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Using (4.8), this G gives ū(r ) in integral form for arbitrary ɟ(r ) and Dirichlet BCs. 

Green-Like Methods: The Born Approximation 

In the Born approximation, and similar problems, we have our unknown function, now called ɣ(x), on 

both sides of the equation.  So both our unknown function f(x) Ÿ ɣ(x), and our source s(x) Ÿ ɣ(x): 

(1) { }( ) ( )x xy y=L . 

The theory of Green functions still works, so that: 

( ) ( ') ( ; ') 'x x G x x dxy y=ñ , 

but this doesnôt solve the equation, because we still have ɣ on both sides of the equation.  We could try 

rearranging Eq (1): 

{ }

{ } { } { }

( ) ( ) 0 which is the same as

( ) 0, with ( ) ( ) ( ) .

x x

x x x x

y y

y y y y

- =

= ¹ -  ' '
 

But recall that Green functions require a nonzero source function s(x) on the right-hand side.  The method of 

Green functions canôt solve homogeneous equations, because s(x) = 0 yields: 

{ }( ) ( ) 0 ( ) ( ') ( ; ') ' 0 ' 0x s x x s x G x x dx dxy y= = ­ = = =ñ ñL . 

Technically, this is a solution, but itôs not very useful.  So Green functions donôt work when ɣ(x) appears on 

both sides.  However, under the right conditions, we can make a useful approximation.  If we have an 

approximate solution,  

{ }(0) (0)( ) ( )x xy yº , 
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then we can expand ɣ in a perturbation series of corrections: 

(0) (1) (2)

(1) st (2) nd

( ) ( ) ( ) ( ) ...

is1 order perturbation, is 2 order, ... .

x x x x

where

y y y y

y y

= + + +
. 

Now we can use ɣ(0)(x) as the source term, and use a method like Green functions, to get a better 

approximation to ɣ(x): 

{ }

{ }

(0) (1) (0)( ) ( ) ( ) ( ') ( ; ') '

( ; ') is the Green's function for , . . ( ; ') ( ') .

x x x x G x x dx

where G x x i e G x x x x

y y y y y

d

= Ý + =

= -

ñ  (4.16) 

ɣ(0)(x) + ɣ(1)(x) is called the first Born approx imation of ɣ(x).  This process can be extended to arbitrarily 

high accuracy.   

In QM, A is the perturbed hamiltonian: 

0
Ĕ ( )H V= + r , 

where V(r) is ñsmallò compared to 0
ĔH .  ɣ(0) is an exact solution to the unperturbed Schrodinger equation, so 

it can be shown that the Born approximation (4.16) reduces to: 

(1) (0)

(2) (1) ( 1) ( )

( ) ( ') ( ; ') '

( ) ( ') ( ; ') ' . . . ( ) ( ') ( ; ') 'n n

x x G x x dx

x x G x x dx x x G x x dx

y y

y y y y+

=

= =

ñ

ñ ñ

. 

This process assumes that the Green function is ñsmallò enough to produce a converging sequence.  The first 

Born approximation is valid when ɣ(1)(x) << ɣ(0)(x) everywhere, and in many other, less stringent but harder 

to quantify, conditions.  The extension to higher order approximations is straightforward: the Born 

approximation is valid when ɣ(n)(x) << ɣ(0)(x).  See Quirky Quantum Concepts for detailed information. 

TBS: a real QM example? 

Green function as inverse operator?? 

https://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu/  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

4/27/2021  11:49 AM Copyright 2002-2021 Eric L. Michelsen. All rights reserved. 65 of 322

  

5 Complex Analytic Functions 

For a review of complex numbers and arithmetic, see Quirky Quantum Concepts. 

Notation:  In this chapter, z, w are always complex variables;  x, y, r, ɗ are always real variables.  Other 

variables are defined as used. 

A complex function of a complex variable f(z) is analytic over some domain if it has an infinite number 

of continuous derivatives in that domain.  It turns out, if f(z) is once differentiable on a domain, then it is 

infinitely differentiable, and therefore analytic on that domain. 

A necessary condition for analyticity of f(z) = u(x, y) + iv(x, y) near z0 is that the Cauchy-Riemann 

equations hold, to wit: 

,
f f u v u v u v u v v u

i i i i i and
x y x x y y y y x y x y

å õµ µ µ µ µ µ µ µ µ µ µ µ
=- Ý + =- + =- + Ý = =-æ ö

µ µ µ µ µ µ µ µ µ µ µ µç ÷
. 

A sufficient condition for analyticity of f(z) = u(x, y) + iv(x, y) near z0 is that the Cauchy-Riemann 

equations hold, and the first partial derivatives of f exist and are continuous in a neighborhood of z0.  Note 

that if the first derivative of a complex function is continuous, then all derivatives are continuous, and the 

function is analytic.  This condition implies 

2

1

2 2 0

0 " "

( ) is countour independent if ( ) is single-valued
z

z

u v

u v level lines are perpendicular

f z dz f z

Ð =Ð =

Ð ÖÐ = Ý

ñ

 

Note that a function can be analytic in some regions, but not others.  Singular points, or singularities, 

are not in the domain of analyticity of the function, but border the domain [Det def 4.5.2 p156].  E.g., Õz is 

singular at 0, because it is not differentiable, but it is continuous at 0.  Poles are singularities near which the 

function is unbounded (infinite), but can be made finite by multiplication by (z ï z0)k for some finite k [Det 

p165].  This implies f(z) can be written as: 

1 1 1
0 1 0 1 0 0 1 0( ) ( ) ( ) ... ( ) ( ) ...k k

k kf z a z z a z z a z z a a z z- - + -
- -= - + - + + - + + - +. 

The value k is called the order of the pole.  All poles are singularities.  Some singularities are like ñpolesò 

of infinite order, because the function is unbounded near the singularity, but it is not a pole because it cannot 

be made finite by multiplication by any (z ï z0)k , for example e1/z.  Such a singularity is called an essential 

singularity . 

A Laurent series expansion of a function is similar to a Taylor series expansion, but the sum runs from 

īÐ to +Ð, instead of from 1 to Ð.  In both cases, an expansion is about some point, z0: 

( )

( )
( )0

( )
0

0 0

1

0 1
0

( )
Taylor series: ( ) ( )

!

1 ( )
Laurent series: ( ) ,

2

n
n

n n

n

n
n n karound z

n

f z
f z f z b z z where b

n

f z
f z a z z where a dz

i z zp

¤

=

¤

+
=-¤

= + - =

= - =
-

ä

ä ñ

 

 [Det thm 4.6.1 p163]  Analytic functions have Taylor series expansions about every point in the domain.  

Taylor series can be thought of as special cases of Laurent series.  But analytic functions also have Laurent 

expansions about isolated singular points, i.e. the expansion point is not even in the domain of analyticity!  

The Laurent series is valid in some annulus around the singularity, but not across branch cuts.  Note that in 

general, the ak and bk could be complex, but in practice, they are often real.   

Properties of analytic functions:  
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1. If it is differentiable once, it is infinitely differentiable. 

2. The Taylor and Laurent expansions are unique.  This means you may use any of several methods to 

find them for a given function. 

3. If you know a function and all its derivatives at any point, then you know the function everywhere 

in its domain of analyticity.  This follows from the fact that every analytic function has a Laurent 

power series expansion.  It implies that the value throughout a region is completely determined by 

its values at a boundary. 

4. An analytic function cannot have a local extremum of absolute value.  (Why not??) 

Residues 

Mostly, we use complex contour integrals to evaluate difficult real integrals, and to sum infinite series.  

To evaluate contour integrals, we need to evaluate residues.  Here, we introduce residues.  The residue of a 

complex function at a complex point z0 is the aï1 coefficient of the Laurent expansion about the point z0.  

Residues of singular points are the only ones that interest us.  (In fact, residues of branch points are not 

defined [Sea sec 13.1].) 

Common ways to evaluate residues 

1. The residue of a removable singularity is zero.  This is because the function is bounded near the 

singularity, and thus aï1 must be zero (or else the function would blow up at z0): 

1 0 1 1
0

1
For 0, as , 0a z z a a

z z
- - -¸ ­ ­¤ Ý =

-
. 

2. The residue of a simple pole at z0 (i.e., a pole of order 1) is  

 ( )
0

1 0lim ( )
z z

a z z f z-
­

= - . 

3. Extending the previous method: the residue of a pole at z0 of order k is 

 
( )

( )
0

1

1 01

1
lim ( )

1 !

k
k

kz z

d
a z z f z

k dz

-

- -­
= -
-

 ,  

which follows by substitution of the Laurent series for f(z), and direct differentiation.  We show it 

here, noting that poles of order m imply that ak = 0 for k < ïm, so we get:  

( ) ( )
( )
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0 1 0 1 0 0 1 0

1 1 1
0 1 0 1 0 0 0 1 0

1
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0 1 0 0 0 1 01
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z z f z a a z z a z z a z z a z z

kd k
z z f z k a z z a z z a z z

dz

- - + -
- -

- +
- -

-
- +

--

= - + - + + - + + - +

- = + - + + - + - + - +

+
- = - - + - + - +
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4. If f(z) can be written as 
( )

( )
( )

P z
f z

Q z
= , where P is continuous at z0, and Qô(z0) ̧  0 (and is continuous 

at z0), then f(z) has a simple pole at z0, and 
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( ) ( )
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( ) ( )
Res ( ) . Why? Near , ( ) '( ).
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= - = - =
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5. Find the Laurent series, and hence its coefficient of (z ï z0)ï1.  This is sometimes easy if f(z) is given 

in terms of functions with well-known power series expansions.  See the sum of series example 

later. 

We will include real-life examples of most of these as we go. 

Contour Integrals 

Contour integration is an invaluable tool for evaluating both real and complex-valued integrals.  Contour 

integrals are used all over advanced physics, and we could not do physics as we know it today without them.  

Contour integrals are mostly useful for evaluating difficult ordinary (real-valued) integrals, and sums of 

series.  In many cases, a function is analytic except at a set of distinct points.  In this case, a contour integral 

may enclose, or pass near, some points of non-analyticity, i.e. singular points.  It is these singular points that 

allow us to evaluate the integral. 

You often let the radius of the contour integral go to Ð for some part of the contour: 

real

imaginary

CR

R

 

Any arc where  

1

1
lim ( ) ~ , 0
R

f z
z
e

e
+­¤

­ >  

has an integral of 0 over the arc.   

Beware that this is often stated incorrectly as ñany function which goes to zero faster than 1/|z| has a 

contour integral of 0.ò  The problem is that it has to have an exponent < ï1; it is not sufficient to be 

simply smaller than 1/|z|.  E.g.  
1 1

1z z
<

+
, but the contour integral still diverges. 

Jordanôs lemma:  ??. 

Evaluating Integrals 

Surprisingly, we can use complex contour integrals to evaluate difficult real integrals.  The main idea is 

to find a contour which: 

(a) includes some known (possibly complex) multiple of the desired (real) integral,  

(b) includes other segments whose values are zero, and  

(c) includes a known set of poles whose residues can be found.   

Then you simply plug into the residue theorem: 
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( ) 2 Res ( ), are the finite set of isolated singularities
n

n
C z

n residues

f z dz i f z where zp= äñ . 

We can see this by considering the contour integral around the unit circle for each term in the Laurent series 

expanded about 0.  First, consider the z0 term (the constant term).  We seek the value of 
O

dzñ .  dz is a small 

complex number, representable as a vector in the complex plane.  Figure 5.1a shows the geometric meaning 

of dz.  Figure 5.1b  shows the geometric approximation to the desired integral.   

real

imaginary

ɗ

dɗ

unit 
circle

dz = ei(q+ /́4) dq

dz1

dz2

dzi

dzN

(a) (b)  

Figure 5.1 (a)  Geometric description of dz.  (b)  Approximation of 
O

dzñ  as a sum of 32 small 

complex terms (vectors). 

We see that all the tiny dz elements add up to zero: the vectors add head-to-tail, and circle back to the starting 

point.  The sum vector (displacement from start) is zero.  This is true for any large number of dz, so we have: 

0
O

dz=ñ . 

Next, consider the z-1 term, 
1

O
dz

z

å õ
æ ö
ç ÷ñ , and a change of integration variable to ɗ: 

2 2

0 0

1
Let , : 2

i i i i

O
z e dz ie d dz e ie d id i

z

p p
q q q qq q q p-å õ

= = = = =æ ö
ç ÷ñ ñ ñ . 

The change of variable maps the complex contour and z into an ordinary integral of a real variable. 

Geometrically, as z goes positively (counter-clockwise) around the unit circle (below left), zï1 goes around 

the unit circle in the negative (clockwise) direction (below middle).  Its complex angle, arg(1/z) = ïɗ, where 

z = eiɗ.  As z goes around the unit circle, dz has infinitesimal magnitude e = dɗ, and argument ɗ + p/4.  Hence, 

the product of (1/z) dz always has argument of ïɗ + ɗ + p/4 = p/4; it is always purely imaginary.   
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D
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Ůieiɗaround 

unit circle

 

Paths of z, 1/z, and dz in the complex plane 

The magnitude of (1/z) dz = dq; thus the integral around the circle is 2pi.  Multiplying the integrand by some 

constant, aï1 (the residue), just multiplies the integral by that constant.  And any contour integral that encloses 

the pole 1/z and no other singularity has the same value.  Hence, for any contour around the origin 

( )

1
1

1
1 1 12

2

O

O

a z dz

a z dz i a a
i

p
p

-
-

-
- - -= Ý =

ñ
ñ . 

Now consider the other terms of the Laurent expansion of f(z).  We already showed that the a0 z0 term, 

which on integration gives the product a0 dz, rotates uniformly about all directions, in the positive (counter-

clockwise) sense, and sums to zero.  Hence the a0 term contributes nothing to the contour integral.   

The a1z1 dz product rotates uniformly twice around all directions in the positive sense, and of course, still 

sums to zero.  Higher powers of z simply rotate more times, but always an integer number of times around 

the circle, and hence always sum to zero. 

Similarly, aï2zï2, and all more negative powers, rotate uniformly about all directions, but in the negative 

(clockwise) sense.  Hence, all these terms contribute nothing to the contour integral. 

So in the end: 

The only term  of the Laurent expansion about 0 that contributes to the contour integral is the residue 

term, aï1 zï1. 

The simplest contour integral:  Evaluate 
20

1

1
I dx

x

¤

=
+ñ . 

We know from elementary calculus (let x = tan u) that I = /́2.  We can find this easily from the residue 

theorem, using the following contour: 

real

imaginary

CI

CR

i

-i

R

CI

 

ñCò denotes a contour, and ñIò denotes the integral over that contour.  We let the radius of the arc go to 

infinity, and we see that the closed contour integral IC = I + I + IR.  But IR = 0, because f(R Ÿ Ð) < 1/R2.  Then 

I = IC / 2.  f(z) has poles at ± i.  The contour encloses one pole at i.  Its residue is 
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Note that when evaluating a real integral with complex functions and contour integrals, the iôs always 

cancel, and you get a real result, as you must.  Itôs a good check to make sure this happens. 

Choosing the Right Path: Which Contour? 

The path of integration is fraught with perils.  How will I know which path to choose?  There is no 

universal answer.  Often, many paths lead to the same truth.  Still, many paths lead nowhere.  All we can do 

is use experience as our guide, and take one step in a new direction.  If we end up where we started, we are 

grateful for what we learned, and we start anew. 

We here examine several useful and general, but oft neglected, methods of contour integration.  We use 

some sample problems to illustrate these tools.  This section assumes a familiarity with contour integration, 

and its use in evaluating definite integrals, including the residue theorem. 

Example:  Evaluate  
2

2

sin x
I dx

x

¤

-¤

=òó
ô

. 

The integrand is everywhere nonnegative, and somewhere positive, and the limits are in the positive 

direction, so I must be positive.  We observe that the given integrand has no poles; it has only a removable 

singularity at x = 0.  If we are to use contour integrals, we must somehow create a pole (or a few), to use the 

residue theorem.  Simple poles (i.e. 1st-order) are sometimes best, because then we can also use the indented 

contour theorem.   

real

Imaginary

IR = 0

Ir

real

Imaginary

IR = 0

Ir

 

Contours for the two exponential integrals: (left) positive (counter-clockwise) exp(2z); 

 (right) negative (clockwise) exp(ï2z) 

To use a contour integral (which, a priori, may or may not be a good idea), we must do two things: (1) 

create a pole; and (2) close the contour.  The same method does both: expand the sin( ) in terms of 

exponentials: 

( )
()

2
2 2 2

2 2 2 2 22

sin 1 2

42

iz iz
i z i ze ex e e

I dx dz dz dz dz
x z z zi z

-
-¤ ¤ ¤ ¤ ¤

-¤ -¤ -¤ -¤ -¤

- è ø
= = =- - +é ù

é ùê ú
ñ ñ ñ ñ ñ. 

All three integrals on the RHS have poles at z = 0.  If we indent the contour underneath the origin, then since 

the function is bounded near there, the limit as r ­ 0 leaves the original integral unchanged (above left).  The 

first integral must be closed in the upper half-plane, to keep the exponential small.  The second integral can 
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be closed in either half-plane, since it ~ 1/z2.  The third integral must be closed in the lower half-plane, again 

to keep the exponential small (above right).  Note that all three contours must use an indentation that preserves 

the value of the original integral.  An easy way to insure this is to use the same indentation on all three. 

Now the third integral encloses no poles, so is zero.  The 2nd integral, by inspection of its Laurent series, 

has a residue of zero, so is also zero.  Only the first integral contributes.  By expanding the exponential in a 

Taylor series, and dividing by z2, we find its residue is 2i.  Using the residue theorem, we have: 

()
2

2

sin 1
2 2

4

x
I dx i i

x
p p

¤

-¤
= =- =è øê úñ . 

Example: Evaluate  
20

cos( ) cos( )ax bx
I dx

x

¤ -
=ñ   [B&C p?? Q1]. 

This innocent looking problem has a number of funky aspects: 

¶ The integrand is two terms.  Separately, each term diverges.  Together, they converge.   

¶ The integrand is even, so if we choose a contour that includes the whole real line, the contour integral 

includes twice the integral we seek (twice I). 

¶ The integrand has no poles.  How can we use any residue theorems if there are no poles?  Amazingly, 

we can create a useful pole. 

¶ A typical contour includes an arc at infinity, but cos(z) is ill-behaved for z far off the real-axis.  How 

can we tame it? 

¶ We will see that this integral leads to the indented contour theorem, which can only be applied to 

simple poles, i.e., first order poles (unlike the residue theorem, which applies to all poles). 

Each of these funky features is important, and each arises in practical real-world integrals.  Let us consider 

each funkiness in turn. 

1. The integrand is two terms.  Separately, each term diverges.  Together, they converge.   

Near zero, cos(x) å 1.  Therefore, the zero endpoint of either term of the integral looks like 

2 20 0
0

cos 1 1
~

anywhere
anywhere anywhereax

dx dx
xx x

=- ­+¤ñ ñ . 

Thus each term, separately, diverges.  However, the difference is finite.  We see this by power series 

expanding cos(x): 

( )

( ) ( )

2 4 2 2 2 2
4

2 2 2 2
2 2

2

2 2

20

cos( ) 1 ... cos( ) cos( )
2! 4! 2 2

cos( ) cos( )

2 2 2

cos( ) cos( )
~ which is to say, is finite.

2
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O x O x

x

ax bx b a
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=- + + = + Ý
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ñ

 

2. The integrand is even, so if we choose a contour that includes the whole real line, the contour 

integral includes twice the integral we seek (twice I ). 

Perhaps the most common integration contour (below left) covers the real line, and an infinitely distant 

arc from +Ð back to ïÐ.  When our real integral (I in this case) is only from 0 to Ð, the contour integral 

includes more than we want on the real axis.  If our integrand is even, the contour integral includes twice the 

integral we seek (twice I).  This may seem trivial, but the point to notice is that when integrating from  

ïÐ to 0, dx is still positive (below middle). 
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real

R

x

imaginary f(x) even

dx > 0  

(Left) A common contour.    

(Right) An even function has integral over the real-line twice that of 0 to infinity. 

Note that if the integrand is odd (below left), choosing this contour cancels out the original (real) integral 

from our contour integral, and the contour is of no use.  Or if the integrand has no even/odd symmetry (below 

middle), then this contour tells us nothing about our desired integral.  In these cases, a different contour may 

work, for example, one which only includes the positive real axis (below right). 

real

R

imaginary

x

f(x) asymmetric

x

f(x) odd

dx> 0

 

(Left) An odd function has zero integral over the real line.  (Middle) An asymmetric function has 

unknown integral over the real line.  (Right) A contour containing only the desired real integral. 

3. The integrand has no poles.  How can we use any residue theorems if there are no poles?  

Amazingly, we can create a useful pole. 

This is the funkiest aspect of this problem, but illustrates a standard tool.  We are given a real-valued 

integral with no poles.  Contour integration is usually useless without a pole, and a residue, to help us evaluate 

the contour integral.  Our integrand contains cos(x), and that is related to exp(ix).  We could try replacing 

cosines with exponentials, 

() ( )exp exp
cos (does no good)

2

iz iz
z

+ -
= . 

but this only rearranges the algebra; fundamentally, it buys us nothing.  The trick here is to notice that we 

can often add a made-up imaginary term to our original integrand, perform a contour integration, and then 

simply take the real part of our result: 

() { }( ) , ( ) ( ). Re ( )
b b

a a
Given I g x dx let f z g z ih z Then I f z dz= ¹ + =ñ ñ . 

For this trick to work, ih(z) must have no real-valued contribution over the contour we choose, so it 

doesnôt mess up the integral we seek.  Often, we satisfy this requirement by choosing ih(z) to be purely 

imaginary on the real axis, and having zero contribution elsewhere on the contour.  Given an integrand 

containing cos(x), as in our example, a natural choice for ih(z) is i sin(z), because then we can write the new 

integrand as a simple exponential: 

cos( ) ( ) cos( ) sin( ) exp( )x f z z i z iz­ = + = . 

In our example, the corresponding substitution yields 

2 20 0

cos cos exp( ) exp( )
Re

ax bx iax ibx
I dx I dx

x x

¤ ¤- -ë û
= ­ = ì ü

í ý
ñ ñ . 

Examining this substitution more closely, we find a wonderful consequence: this substitution introduced 

a pole!  Recall that  
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3
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sin ... ...
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z i z z
z z i
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ç ÷
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We now have a simple pole at z = 0, with residue i.   

By choosing to add an imaginary term to the integrand, we now have a pole that we can work with to 

evaluate a contour integral! 

Itôs like magic.  In our example integral, our residue is: 

( )
2

sin sin
... ,

i az i bz a b
i and residue i a b

zz

- -å õ
= + = -æ ö
ç ÷

. 

Note that if our original integrand contained sin(x) instead of cos(x), we would have made a similar 

substitution, but taken the imaginary part of the result: 

() { }sin( ) , cos( ) sin( ). Im ( )
b b

a a
Given I x dx let f z z i z Then I f z dz= ¹ + =ñ ñ . 

4. A typical contour includes an arc at infinity, but cos(z) is ill-behaved for z far off the real-axis.  

How can we tame it? 

This is related to the previous funkiness.  Weôre used to thinking of cos(x) as a nice, bounded, well-

behaved function, but this is only true when x is real.   

When integrating cos(z) over a contour, we must remember that  

cos(z) blows up rapidly off the real axis. 

In fact, cos(z) ~ exp(Im{z}), so it blows up extremely quickly off the real axis.  If weôre going to evaluate 

a contour integral with cos(z) in it, we must cancel its divergence off the real axis.  There is only one function 

which can exactly cancel the divergence of cos(z), and that is ± i sin(z).  The plus sign cancels the divergence 

above the real axis; the minus sign cancels it below.  There is nothing that cancels it everywhere.  We show 

this cancellation simply: 

( )( )cos sin exp( ) exp exp( )exp( )

exp( )exp( ) exp( ) exp( ) exp( )

Let z x iy

z i z iz i x iy ix y and

ix y ix y y

¹ +

+ = = + = -

- = Ö - = -

 

For z above the real axis, this shrinks rapidly.  Recall that in the previous step, we added i sin(x) to our 

integrand to give us a pole to work with.  We see now that we also need the same additional term to tame the 

divergence of cos(z) off the real axis.  For the contour weôve chosen, no other term will work. 

5. We will see that this integral leads to the indented contour theorem, which can only be applied 

to simple poles, i.e., first order poles (unlike the residue theorem, which applies to all poles). 

Weôre now at the final step.  We have a pole at z = 0, but it is right on our contour, not inside it.  If the 

pole were inside the contour, we would use the residue theorem to evaluate the contour integral, and from 

there, weôd find the integral on the real axis, cut it in half, and take the real part.  That is the integral we seek. 

But the pole is not inside the contour; it is on the contour.  The indented contour theorem allows us to 

work with poles on the contour.  We explain the theorem geometrically in the next section, but state it briefly 

here: 

Indented contour theorem:  For a simple pole, the integral of an arc of tiny radius around the pole, of 

angle ɗ, equals (iɗ)(residue).  See diagram below. 
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real

ɟ

imaginary

real

ɟ

imaginary

ɗ

As 0,

( ) ( )( )
arc

f z dz i residue

r

q

­

=ñ
arc

 

(Left) A tiny arc around a simple pole.  (Right) A magnified view; we let ɟ ­ 0. 

Note that if we encircle the pole completely, ɗ = 2p, and we have the special case of the residue theorem for 

a simple pole: 

( )( ) 2f z dz i residuep=ñ . 

However, the residue theorem is true for all poles, not just simple ones (see The Residue Theorem earlier). 

Putting it all together:   We now solve the original integral using all of the above methods.  First, we 

add i sin(z) to the integrand, which is equivalent to replacing cos(z) with exp(iz): 

{}

2 20 0

20

cos cos exp( ) exp( )
Re

exp( ) exp( )
, Re

ax bx iax ibx
I dx I dx

x x

iax ibx
Define J dx so I J

x

¤ ¤

¤

- -ë û
= ­ = ì ü

í ý

-
¹ =

ñ ñ

ñ

 

We choose the contour shown below left, with R ­ Ð, and ɟ ­ 0. 

real

imaginary

R

real

imaginary

Rɟ

C2
CR

Cɟ

 

There are no poles enclosed, so the contour integral is zero.  The contour includes twice the desired integral, 

so define: 

2

exp( ) exp( )
( ) . Then ( ) ( ) 2 ( ) 0

RC C

iaz ibz
f z f z dz f z dz J f z dz

z r

-
¹ = + + =ñ ñ ñ .  (5.1) 

For CR,  |f(z)| < 1/R2, so as R ­ Ð, the integral goes to 0.  For Cɟ, the residue is i(a ï b), and the arc is p 
radians in the negative direction, so the indented contour theorem says: 

( )( ) ( )
0

lim ( )
C

f z dz i i a b a b
rr

p p
­

=- - = -ñ . 

Plugging into (5.1), we finally get 

( ) {} ( )2 0 Re
2

J a b I J b a
p

p+ - = Ý = = -. 

In this example, the contour integral J happened to be real, so taking I = Re{J} is trivial, but in general, 

thereôs no reason why J must be real.  It could well be complex, and we would need to take the real part of 

it. 

To illustrate this and more, we evaluate the integral again, now with the alternate contour shown above 

right.  Again, there are no poles enclosed, so the contour integral is zero.  Again, the integral over CR = 0.  

We then have: 
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( ) ( )
RC

f z dz f z dz=ñ ñ

( )( ) ( )

2

0

( ) ( ) 0

lim ( ) / 2
2

C C

C

f z dz J f z dz

And f z dz i i a b a b

r

rr

p
p

­

+ + + =

=- - = -

ñ ñ

ñ

 

The integral over C2 is down the imaginary axis: 

( ) ( ) ( ) ( )
2 2

0

2 2

0 ,

exp exp exp exp
( )

C C

Let z x iy iy iy then dz i dy

iaz ibz ay by
f z dz dz i dy

z y¤

= + = + = =

- - - -
= =

-
ñ ñ ñ

 

We donôt know what this integral is, but we donôt care!  In fact, it is divergent, but we see that it is purely 

imaginary, so will contribute only to the imaginary part of J.  But we seek I = Re{J}, and therefore 

{}
0

lim Re is well-defined.I J
r­
=  

Therefore we ignore the divergent imaginary contribution from C2.  We then have 

( ) ( ) {} ( )0 Re
2 2

i something J a b I J b a
p p

+ + - = Ý = = -. 

as before. 

Evaluating Infinite Sums 

Perhaps the simplest infinite sum in the world is 
2

1

1

n

S
n

¤

=

=ä .  The general method for using contour 

integrals is to find an countably infinite set of residues whose values are the terms of the sum, and whose 

contour integral can be evaluated by other means.  Then 

1

2 Res ( ) 2
2

C
C n

n

I
I i f z iS S

i
p p

p

¤

=

= = Ý =ä . 

The hard part is finding the function f(z) that has the right residues.  Such a function must first have poles at 

all the integers, and then also have residues at those poles equal to the terms of the series. 

To find such a function, consider the complex function ́ cot(́ z).  Clearly, this has poles at all real integer 

z, due to the sin(́ z) function in the denominator of cot(z).  Hence, 

( )
( )
( )

( )
( )

cos cos
For (integer), Res cot Res 1

sin cos

n n
n n

n n

z z
z n z

z z

p p
p p p

p p p

è ø
è ø= = = =é ùê ú

é ùê ú

, 

where in the last step we used 
0 0

( ) ( )
if ( ) 0 then Re

( ) '( )z z

P z P z
Q z s

Q z Q z=
= = , if this is defined. 

Thus p cot(pz) can be used to generate lots of infinite sums, by simply multiplying it by a continuous 

function of z that equals the terms of the infinite series when z is integer.  For example, for the sum above, 

2
1

1

n

S
n

¤

=

=ä , we simply define: 

( )
2 2

1 1
( ) cot , and its residues are Res ( ) , 0nf z z f z n

z n
p p= = .̧ 
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[In general, to find 

1

( )

n

s n

¤

=

ä , define  

( )( ) ( ) cot , and its residues are Res ( ) ( )
z n

f z s z z f z s np p
=

= =è øê ú . 

However, now you may have to deal with the residues for n ¢ 0.] 

Continuing our example, now we need the residue at n = 0.  Since cot(z) has a simple pole at zero, 

cot(z)/z2 has a 3rd order pole at zero.  We optimistically try tedious brute force for an mth order pole with m = 

3, only to find that it fails: 

 

Use  
2

U VdU UdV
d

V V

-
= : 

( )

( )

2

2 400

30

1
sin cos 2 sin 2 2 sin cos

cot 2
Res lim

2 sin

1
sin cos 2 sin 2 2 cos

2
lim

2 sin

zz

z

z z z z z z
z

z z

z z z z z

z

p p p p p p p p p
p p p

p

p p p p p p p p
p

p

­=

­

å õ
- - -æ ö

ç ÷
=

å õ
- - -æ ö

ç ÷
=

 

Use Lôhopitalôs rule: 

( ) ( )

( )

( ) ( )

2 200

2

2 2

20

cot 1
Res lim cos cos2 sin 2 sin 2 1

2 3 sin cos

1
cos2 2 cos sin 2 2 sin

2

1
cos cos2 1 sin 2 sin 2 1 2 sin 2 sin

2
lim

2 3 sin cos

zz

z

z
z z z z

z z z

z z z z z

z z z z z z z

z z

p p p
p p p p p p p p

p p p

p p p p p p p p p

p p p p p p p p p p
p

p p p

­=

­

è
= - + - -é

ê

øå õ
- - - -æ ö ù

ç ÷ ú

å õ
- - + - - - -æ ö

ç ÷
=

 

At this point, we give up on brute force, because we see from the denominator that weôll have to use 

LôHopitalôs rule twice more to eliminate the zero there, and the derivatives will get untenably complicated. 

But in 2 lines, we can find the aï1 term of the Laurent series from the series expansions of sin and cos.  

The z1 coefficient of cot(z) becomes the z-1 coefficient of f(z) = cot(z)/z2: 

( )( ) ( )
2 2

2 2 2

3 2

2

20

cos 1 / 2 ... 1 1 / 2 1 1 1
cot 1 / 2 1 / 6 1 / 3

sin 3/ 6 ... 1 / 6

1 cot
cot Res

3 3z

z z z z
z z z z

z z z z zz z z

z z
z

z z

p p p
p p

p =

- + -å õ å õ å õ
= º = º - + º - = -æ ö æ ö æ ö

ç ÷ ç ÷ ç ÷- + -

º - Ý =-

 

Now we take a contour integral over a circle centered at the origin: (no good, because cot(ˊz) blows up 

every integer ! ??) 

2 2
3

2 2 2 20 00

2

2 20 0 0

cot 1 cot 1
Res lim lim cot

2! 2!

1
sin 2

cos sin 2lim cot csc lim lim
2 2 2sin sin

z zz

z z z

z d z d
z z z

z dz z dz

z z
d d z z z d

z z z
dz dz dzz z

p p p p
p p

p p
p p p p p p

p p p
p p

­ ­=

­ ­ ­

è ø è ø
= =é ù é ù

ê ú ê ú

è ø
-é ù-è øè ø= - = = é ùé ùê ú ê ú é ù

ê ú
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real

imaginary
IC

 

As R Ÿ Ð, IC Ÿ 0.  Hence: 

2
0

0 02 2 2 2
1 1 1 1

1 1 1 1
0 2 2 0,

2 6
C

n n n n

K
I i K K

n n n n

p
p

-¤ ¤ ¤ ¤

=- = = =

å õ -
= = + + Ý + = = =æ ö

æ ö
ç ÷
ä ä ä ä . 

Multi-valued Functions 

Many functions are multi -valued (despite the apparent oxymoron), i.e. for a single point in the domain, 

the function can have multiple values.  A simple example is a square-root function: given a complex number, 

there are two complex square roots of it.  Thus, the square root function is two-valued.  Another example is 

arc-tangent: given any complex number, there are an infinite number of complex numbers whose tangent is 

the given complex number.   

[picture??] 

We refer now to ñniceò functions, which are locally (i.e., within any small finite region) analytic, but 

multi-valued.  If youôre not careful, such ñmulti-valuednessò can violate the assumptions of analyticity, by 

introducing discontinuities in the function.  Without analyticity, all our developments break down: no contour 

integrals, no sums of series.  But, you can avoid such a breakdown, and preserve the tools weôve developed, 

by treating multi-valued functions in a slightly special way to insure continuity, and therefore analyticity. 

A regular function, or region, is analytic and single valued.  (You can get a regular function from a 

multi-valued one by choosing a Riemann sheet.  More below.) 

A branch point is a point in the domain of a function f(z) with this property: when you traverse a closed 

path around the branch point, following continuous values of f(z), f(z) has a different value at the end point 

of the path than at the beginning point, even though the beginning and end point are the same point in the 

domain.  Example TBS: square root around the origin.  Sometimes branch points are also singularities. 

A branch cut is an arbitrary (possibly curved) path connecting branch points, or running from a branch 

point to infinity (ñconnectingò the branch point to infinity).  If you now evaluate integrals of contours that 

never cross the branch cuts, you insure that the function remains continuous (and thus analytic) over the 

domain of the integral.   

When the contour of integration is entirely in the domain of analyticity of the integrand, ñordinaryò 

contour integration, and the residue theorem, are valid. 

This solves the problem of integrating across discontinuities.  Branch cuts are like fences in the domain 

of the function: your contour integral canôt cross them.  Note that youôre free to choose your branch cuts 

wherever you like, so long as the function remains continuous when you donôt cross the branch cuts.  

Connecting branch points is one way to insure this. 

A Riemann sheet is the complex plane plus a choice of branch cuts, and a choice of branch.  This defines 

a domain on which a function is regular. 
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A Riemann surface is a continuous joining of Riemann sheets, gluing the edges together.  This ñlooks 

likeò sheets layered on top of each other, and each sheet represents one of the multiple values a multi-valued 

analytic function may have.  TBS: consider ( )( )z a z b- - .   

real

imaginary

branch cut
real

imaginary

branch cuts
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6 Conceptual Linear Algebra 

Instead of lots of summation signs, we describe linear algebra concepts, visualizations, and ways to think 

about linear operations as algebraic operations.  This allows fast understanding of linear algebra methods that 

is extremely helpful in almost all areas of physics.  Tensors rely heavily on linear algebra methods, so this 

section is a good warm-up for tensors.  Matrices and linear algebra are also critical for quantum mechanics. 

Caution In this section, vector means a column or row of numbers.  In other sections, ñvectorò has 

a more general meaning. 

In this section, we use bold capitals for matrices (A), and bold lower-case for vectors (a). 

Matrix Multiplication 

It is often helpful to view a matrix as a horizontal concatenation of column-vectors.  You can think of it 

as a row-vector, where each element of the row-vector is itself a column vector.   

or

è øè ø
é ùé ù

= =é ùé ù
é ùé ùê ú ê ú

d

A a b c A e

f

. 

Equally valid, you can think of a matrix as a vertical concatenation of row-vectors, like a column-vector 

where each element is itself a row-vector.   

Matrix multiplication is defined to be the operation of linear transformation, e.g., from one set of 

coordinates to another.  The following properties follow from the standard definition of matrix multiplication: 

Matrix times a vector:  A matrix B times a column vector v, is a weighted sum of the columns of B: 

11 11

21 21

13 13

23 23

3

12 12

22 22

32 323 1 3331 3

y y z

z

x

x

B v B

B v B

B B

B B

B v v B

B B

B B

B v B

B v B

è øè ø è ø
é ùé

è ø
é ù
é ù

ù é ù
= ¹ + +é ùé ù é ù

é ùé é ùê úù é ùê ú ê úê ú

è ø
é ù
é ù
é ùê ú

Bv

 

We can visualize this by laying the vector on its side above the columns of the matrix, multiplying each 

matrix-column by the vector component, and summing the resulting vectors: 

13 13

23 2313

33 3323

3

12 12

22 2212

32 322

11 11

21 2111

31 3121

31

2

2 33

z

z

z

y

y y

x

x

x

v

B B

B v v BB

B BB

B

v

B B

B v BB

B v

v

B v B

B v BB

B BB BB

B B

è ø
é ù

è ø ³ ³ ³è ø è ø è øé ù
é ùé ù é ù é ùé ù= = = + ++ +é ùé ù é ù é ùé ù
é ùé ù é ù é ùê ú ê ú ê úé ùê ú

é ù
ê

è ø
é ù

è ø
é ù
é ù
é ù

é ù

ê

ú

ùê ú úé

Bv

 

The columns of B are the vectors which are weighted by each of the input vector components, v j.   

Another important way of conceptualizing a matrix times a vector: the resultant vector is a column of 

dot products.  The i th element of the result is the dot product of the given vector, v, with the i th row of B.  

Writing B as a column of row-vectors: 
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1 1 1

2 2 2

3 3 3

è ø è øè øè ø
é ù é ùé ùé ù
= ­ = =é ù é ùé ùé ù
é ù é ùé ùé ùê úê úê ú ê ú

r r r v

B r Bv r v r v

r r r v

. 

This view derives from the one above, where we lay the vector on its side above the matrix, but now consider 

the effect on each row separately: it is exactly that of a dot product.   

In linear algebra, even if the matrices are complex, we do not conjugate the left vector in these dot 

products.  If they need conjugation, the application must conjugate them separately from the matrix 

multiplication, i.e. during the construction of the matrix. 

We use this dot product concept later when we consider a change of basis.   

Matrix times a matrix:   Multiplying a matrix B times another matrix C is defined as multiplying each 

column of C by the matrix B.  Therefore, by definition, matrix multiplication distributes to the right across 

the columns: 

,Let then

è ø è ø è ø
é ù é ù é ù
= = ¹
é ù é ù é ù
é ù é ù é ùê ú ê ú ê ú

C x y z BC B x y z Bx By Bz . 

[Matrix multiplication also distributes to the left across the rows, but we donôt use that as much.] 

Determinants 

This section assumes youôve seen matrices and determinants, but probably didnôt understand the reasons 

why they work. 

The determinant operation on a matrix produces a scalar.  It is the only operation (up to a constant 

factor) which is (1) linear in each row and each column of the matrix; and (2) antisymmetric under 

exchange of any two rows or any two columns. 

The above two rules, linearity and antisymmetry, allow determinants to help solve simultaneous linear 

equations, as we show later under ñCramerôs Rule.ò  In more detail: 

1. The determinant is linear in each column-vector (and row-vector).  This means that multiplying any 

column (or row) by a scalar multiplies the determinant by that scalar.  E.g., 

det det ; det det detk k and= + = +a b c a b c a d b c a b c d b c . 

2. The determinant is anti-symmetric with respect to any two column-vectors (or row-vectors).  This 

means swapping any two columns (or rows) of the matrix negates its determinant. 

The above properties of determinants imply some others: 

3. Expansion by minors/cofactors (see below), whose derivation proves the determinant operator is 

unique (up to a constant factor). 

4. The determinant of a matrix with any two columns equal (or proportional) is zero.  (From anti-

symmetry, swap the two equal columns, the determinant must negate, but its negative now equals 

itself.  Hence, the determinant must be zero.) 

det det det 0=- Ý =b b c b b c b b c . 
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5. det det detÖ =A B AB .  This is crucially important.  It also fixes the overall constant factor of the 

determinant, so that the determinant (with this property) is a completely unique operator. 

6. Adding a multiple of any column (row) to any other column (row) does not change the determinant: 

det det det det detk k k+ = + = +a b b c a b c b b c a b c b b c det= a b c . 

7. det|A + B| Í det|A| + det|B|.  The determinant operator is not distributive over matrix addition. 

8. det|kA| = kn det|A|. 

The ij -th minor , Mij,  of an n³n matrix (A ſ Aab) is the product Aij times the determinant of the (nï1)³(nï

1) matrix formed by crossing out the i-th row and j-th column: 

ith row

jth column

11 1
11 1, 1

1,1 1, 1
1

det

. . .
' . . '

. . . . .
. . . .

. . . .
. . . .

. . . . .
' . . '

. . .

n
n

ij ijij

n n n
nnn

A A
A A

M AA

A A
A A

è ø
é ù è ø
é ù é ù
é ù é ù
é ù é ù
é ù é ù
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é ù é ù
é ù é ù
é ù é ù
é ù é ù
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¹­

 

A cofactor is just a minor with a plus or minus sign affixed: 

[]( 1) ( 1) det without row and columni j i j th th
ij ij ijC M A i j+ + è ø= - = -

ê ú
A . 

Cramerôs Rule 

Itôs amazing how many textbooks describe Cramerôs rule, and how few explain or derive it.  I spent years 

looking for this, and finally found it in [Arf ch 3].  Cramerôs rule is a turnkey method for solving simultaneous 

linear equations.  It is horribly inefficient, and virtually worthless above 3 ³ 3, however, it does have 

important theoretical implications.  Cramerôs rule solves for n equations in n unknowns: 

, is a coefficient matrix,

is a vector of unknowns,

is a vector of constants,

i

i

Given where

x

b

=Ax b A

x

b

 

To solve for the i th unknown xi, we replace the i th column of A with the constant vector b, take the 

determinant, and divide by the determinant of A.  Mathematically: 

1 2

1 1 1

Let is the column of . We can solve for as

det ... ...

is the column of
det

th
n i i

i i n

th
i i

where i x

x where i

- +

=è øê ú

=

A a a a a A

a a b a a

a A
A
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This seems pretty bizarre, and one has to ask, why does this work?  Itôs quite simple, if we recall the 

properties of determinants.  Letôs solve for x1, noting that all other unknowns can be solved analogously.  

Start by simply multiplying x1 by det|A|: 

1 1 1 2det det ... nx x=A a a a  

  from linearity of det[ ] 

 1 1 2 2 2

adding a multiple of any column to 
det ...

another doesn't change the determinant
nx x= +a a a a  

 1 1 2 2 2det ... ...n n nx x x= + +a a a a a  ditto (n ï 2) more times 

 2 2det ... det ...n n= =Ax a a b a a  rewriting the first column 

2

1

det ...

det

n

xÝ =

b a a

A
. 

Area and Volume as a Determinant 

(a,0)

(c,d)

c

d
(a,b)

(c,d)

c

d

b

a

ac

b

d

 

Determining areas of regions defined by vectors is crucial to geometric physics in many areas.  It is the 

essence of the Jacobian matrix used in variable transformations of multiple integrals.  What is the area of the 

parallelogram defined by two vectors?  This is the archetypal area for generalized (oblique, non-normal) 

coordinates.  We will proceed in a series of steps, gradually becoming more general. 
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First, consider that the first vector is horizontal (above left).  The area is simply base ³ height:  A = ad.  

We can obviously write this as a determinant of the matrix of column vectors, though it is as-yet contrived: 

det (0)
0

a c
A ad c ad

d
= = - =. 

For a general parallelogram (above right), we can take the big rectangle and subtract the smaller 

rectangles and triangles, by brute force: 

1 1
( )( ) 2 2 2

2 2
A a c b d bc cd ab ab

å õ å õ
= + + - - - =æ ö æ ö

ç ÷ ç ÷
ad cb cd+ + + 2bc cd- - ab-

det .
a c

ad bc
b d

= - =

 

This is simple enough in 2-D, but is incomprehensibly complicated in higher dimensions.  We can 

achieve the same result more generally, in a way that allows for extension to higher dimensions by induction.  

Start again with the diagram above left, where the first vector is horizontal.  We can rotate that to arrive at 

any arbitrary pair of vectors, thus removing the horizontal restriction: 

( )

the rotation matrix. Then the rotated vectors are
0

det det det
0 0

a c
Let and

d

a c a c

d d

è ø è ø
= é ù é ù

ê ú ê ú

å õè ø è ø è ø
= =æ öé ù é ù é ù

ê ú ê ú ê úç ÷

R R R

R R R R det det
0 0

a c a c

d d
=

 

The final equality is because rotation matrices are orthogonal, with det = 1.  Thus the determinant of 

arbitrary vectors defining arbitrary parallelograms equals the determinant of the vectors spanning the 

parallelogram rotated to have one side horizontal, which equals the area of the parallelogram. 

What about the sign?  If we reverse the two vectors, the area comes out negative!  Thatôs ok, because in 

differential geometry, 2-D areas are signed: positive if we travel counter-clockwise from the first vector to 

the 2nd, and negative if we travel clockwise.  The above areas are positive. 

In 3-D, the signed volume of the parallelepiped defined by 3 vectors a, b, and c, is the determinant of 

the matrix formed by the vectors as columns (positive if abc form a right-handed set, negative if abc are a 

left-handed set).  We show this with rotation matrices, similar to the 2-D case: First, assume that the 

parallelogram defined by bc lies in the x-y plane (bz = cz = 0).  Then the volume is simply (area of the base) 

³ height: 

( )( ) ( )det det

0 0

x x x

z y y y

z

a b c

V area of base height a a b c

a

å õ
= = =æ ö

ç ÷

b c
. 

where the last equality is from expansion by cofactors along the bottom row.  But now, as before, we 

can rotate such a parallelepiped in 3 dimensions to get any arbitrary parallelepiped.  As before, the rotation 

matrix is orthogonal (det = 1), and does not change the determinant of the matrix of column vectors. 

This procedure generalizes to arbitrary dimensions: the signed hyper-volume of a parallelepiped defined 

by n vectors in n-D space is the determinant of the matrix of column vectors.  The sign is positive if the 3-D 

submanifold spanned by each contiguous subset of 3 vectors (v1v2v3, v2v3v4, v3v4v5, ...) is right-handed, and 

negated for each subset of 3 vectors that is left-handed. 

The Jacobian Determinant and Change of Variables 

How do we change multiple variables in a multiple integral?  Given 
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[ ]

( , , ) and the change of variables to , , :

( , , ), ( , , ), ( , , ). The simplistic

( , , ) ( , , ), ( , , ), ( , , ) ( !)

f a b c da db dc u v w

a a u v w b b u v w c c u v w

f a b c da db dc f a u v w b u v w c u v w du dv dw wrong

= = =

­

ñññ

ñññ ñññ

 

fails, because the ñvolumeò du dv dw associated with each point of f(·) is different than the volume da 

db dc in the original integral.   

dadu

dv

dw

db

dc

dv

dw

da

db
dc

du
 

Example of new-coordinate volume element (du dv dw), and its corresponding old-coordinate 

volume element (da db dc).  The new volume element is a rectangular parallelepiped.  The old-

coordinate parallelepiped has sides straight to first order in the original integration variables. 

In the diagram above, we see that the ñvolumeò (du dv dw) is smaller than the old-coordinate ñvolumeò 

(da db dc).  Note that ñvolumeò is a relative measure of volume in coordinate space; it has nothing to do 

with a ñmetricò on the space, and ñdistanceò need not even be defined.   

There is a concept of relative ñvolumeò in any space, even if there is no definition of ñdistance.ò  

Relative volume is defined as products of coordinate differentials. 

The integrand is constant (to first order in the integration variables) over the whole volume element.   

Without some correction, the weighting of  f(·) throughout the new-coordinate domain is different than 

the original integral, and so the integrated sum (i.e., the integral) is different.  We correct this by putting in 

the original-coordinate differential volume (da db dc) as a function of the new differential coordinates, du, 

dv, dw.  Of course, this function varies throughout the domain, so we can write 

[ ]

( ) ( )

( , , ) ( , , ), ( , , ), ( , , ) ( , , )

( , , )

f a b c da db dc f a u v w b u v w c u v w V u v w du dv dw

where V u v w takes du dv dw da db dc

­

­

ñññ ñññ
 

To find V(·), consider how the a-b-c space vector Ĕdaa  is created from the new u-v-w space.  It has 

contributions from displacements in all 3 new dimensions, u, v, and w: 

Ĕ Ĕ. ,

Ĕ Ĕ

Ĕ Ĕ

a a a
da du dv dw Similarly

u v w

b b b
db du dv dw

u v w

c c c
dc du dv dw

u v w

µ µ µå õ
= + +æ ö
µ µ µç ÷

µ µ µå õ
= + +æ ö
µ µ µç ÷

µ µ µå õ
= + +æ ö
µ µ µç ÷

a a

b b

c c

 

The volume defined by the 3 vectors Ĕ Ĕ Ĕ, ,du dv and dwu v w  maps to the volume spanned by the 

corresponding 3 vectors in the original a-b-c space.  The a-b-c space volume is given by the determinant of 

the components of the vectors da, db, and dc (written as rows below, to match equations above): 
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( )det det

a a a a a a
du dv dw

u v w u v w

b b b b b b
volume du dv dw du dv dw

u v w u v w

c c c c c c
du dv dw

u v w u v w

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ
= =

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ

. 

where the last equality follows from linearity of the determinant.  Note that all the partial derivatives are 

functions of u, v, and w.  Hence, 

( , , ) det ( , , ) the Jacobian ,

( , , ) ( , , ), ( , , ), ( , , ) ( , , )

a a a

u v w

b b b
V u v w J u v w and

u v w

c c c

u v w

f a b c da db dc f a u v w b u v w c u v w J u v w du dv dw

µ µ µ

µ µ µ

µ µ µ
= ¹ è øê ú

µ µ µ

µ µ µ

µ µ µ

­ è øê úñññ ñññ

 

QED. 

Expansion by Cofactors 

Let us construct the determinant operator from its two defining properties: linearity, and antisymmetry.  

First, weôll define a linear operator, then weôll make it antisymmetric.  [This section is optional, though 

instructive.] 

We first construct an operator which is linear in the first column.  For the determinant to be linear in the 

first column, it must be a sum of terms each containing exactly one factor from the first column: 

( ) ( ) ( )

12 1

22

11

21
11

2

2

21 1

1

Let , then det . . . . . . . . .

n

n

n n

n

n n

A

A
A A

A A

A A

A

A

AA

è ø
é ù
é ù= = + + +
é ù
é ù
ê ú

A A . 

To be linear in the first column, the parentheses above must have no factors from the first column (else 

they would be quadratic in some components).  Now to also be linear in the 2nd column, all of the parentheses 

above must be linear in all the remaining columns.  Therefore, to fill in the parentheses we need a linear 

operator on columns 2...n.  But that is the same kind of operator we set out to make: a linear operator on 

columns 1..n.  Recursion is clearly called for, therefore the parentheses should be filled in with more 

determinants: 

( ) ( ) ( )11 1 21 2 1det det det det (so far)n nA A A= + + +A M M M . 

We now note that the determinant is linear both in the columns, and in the rows.  This means that det M1 

must not have any factors from the first row or the first column of A.  Hence, M1 must be the submatrix of 

A with the first row and first column stricken out.   
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1st row

1st column

2nd row

1st column

11 1 11 12 1

21 22 2 21 2

31 32 3

1 21 2

. . . . .

. . . . .

. . . . , . . , .
1 2

. . . . .. . . . .

. .. .

n n

n n

n

n n nnn n nn

A A A A A

A A A A A

A A A A etcij

A A AA A A

è ø è ø
é ù é ù
é ù é ù
é ù é ù­ ­
é ù é ù
é ù é ù
é ù é ù

ê úé ùê ú

M M

 

Similarly, M2 must be the submatrix of A with the 2nd row and first column stricken out.  And so on, 

through Mn, which must be the submatrix of A with the nth row and first column stricken out.  We now have 

an operator that is linear in all the rows and columns of A. 

So far, this operator is not unique.  We could multiply each term in the operator by a constant, and still 

preserve linearity in all rows and columns: 

( ) ( ) ( )1 11 1 2 21 2 1det det det detn n nk A k A k A= + + +A M M M . 

We choose these constants to provide the 2nd property of determinants: antisymmetry.  The determinant 

is antisymmetric on interchange of any two rows.  We start by considering swapping the first two rows: 

Define Aô ſ (A with A1* ź A2*).   

11 12 1

11 12

1

1

21 2

1 1 2

21 2

. .. .

. .

. . . . . . . . ,

. . . . . . . . . .

. .

' '

.

.

.

.

.

.

.

.

n

n

n

n

n nn n n nn

A A A

A A A

A A etcij ij

A A A

A

A

A

A

A

A

è ø è ø
é ù é ù
é ù é ù
é ù é ù­ ­
é ù é ù
é ù é ù
é ù é ù
é ù é ùê ú ê ú

A M

swap swapped

 

Recall that M1 strikes out the first row, and M2 strikes out the 2nd row, so swapping row 1 with row 2 

replaces the first two terms of the determinant: 

 

But Mô1 = M2, and Mô2 = M1.  So we have: 

. 

This last form is the same as det A, but with k1 and k2 swapped.  To make our determinant antisymmetric, we 

must choose constants k1 and k2 such that terms 1 and 2 are antisymmetric on interchange of rows 1 and 2.  

This simply means that k1 = ïk2.  So far, the determinant is unique only up to an arbitrary factor, so we choose 

the simplest such constants:  k1 = 1, k2 = ï1. 

For M3 through Mn, swapping the first two rows of A swaps the first two rows of Mô3 through Môn:   

 

Since M3 through M n appear inside determinant operators, and such operators are defined to be 

antisymmetric on interchange of rows, terms 3 through n also change sign on swapping the first two rows of 

A.  Thus, all the terms 1 through n change sign on swapping rows 1 and 2, and det A = ïdet Aô. 
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