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“But Mr. Faraday, of what use is all this?”  - unknown woman 

“Madam, of what use is a newborn baby?”  - Michael Faraday 

“With electromagnetism, as with babies, it’s all a matter of potential.”   

- Bill Nye, the Science Guy 

 

 

* Physical, conceptual, geometric, and pictorial physics that didn’t fit in your textbook. 
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Please cite as: Michelsen, Eric L., Funky Electromagnetic Concepts, at the URL just above, 12/21/2021. 
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“Remarkably clear and easy to reproduce.”  -- physics graduate student. 

“Finally, a systematic approach to boundary value problems.”  -- physics graduate student. 

 

 

2006 values from NIST.  For more physical constants, see http://physics.nist.gov/cuu/Constants/ . 

??Needs updating for the 2019 revamp of SI. 

 

Speed of light in vacuum   c = 299 792 458 m s–1  (exact) 

Boltzmann constant   k = 1.380 6504(24) x 10–23 J K–1 

Stefan-Boltzmann constant   σ = 5.670 400(40) x 10–8 W m–2 K–4  

 Relative standard uncertainty ±7.0 x 10–6  

Avogadro constant    NA, L = 6.022 141 79(30) x 1023 mol–1  

 Relative standard uncertainty  ±5.0 x 10–8 

Molar gas constant   R = 8.314 472(15) J mol-1 K-1 

calorie     4.184 J (exact) 

Electron mass    me = 9.109 382 15(45) x 10–31 kg 

Proton mass    mp = 1.672 621 637(83) x 10–27 kg 

Proton/electron mass ratio   mp/me = 1836.152 672 47(80) 

Elementary charge   e = 1.602 176 487(40) x 10–19 C 

Electron g-factor    ge = –2.002 319 304 3622(15) 

Proton g-factor    gp = 5.585 694 713(46) 

Neutron g-factor    gN = –3.826 085 45(90) 

Muon mass    mμ = 1.883 531 30(11) x 10–28 kg 

Inverse fine structure constant  α–1 = 137.035 999 679(94) 

Planck constant    h = 6.626 068 96(33) x 10–34 J s 

Planck constant over 2π   ħ = 1.054 571 628(53) x 10–34 J s 

Bohr radius    a0 = 0.529 177 208 59(36) x 10–10 m 

Bohr magneton    μB = 927.400 915(23) x 10–26 J T–1 

 

Other values: 

Jansky (Jy), flux and spectral density 10–26 W/m2/Hz = 10–23 erg/s/cm2/Hz 

http://physics.nist.gov/cuu/Constants/
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1 Introduction 

Why Funky? 

The purpose of the “Funky” series of documents is to help develop an accurate physical, conceptual, 

geometric, and pictorial understanding of important physics topics.  We focus on areas that don’t seem to 

be covered well in most texts.  The Funky series attempts to clarify those neglected concepts, and others 

that seem likely to be challenging and unexpected (funky?).  The Funky documents are intended for serious 

students of physics; they are not “popularizations” or oversimplifications.  

Physics includes math, and we’re not shy about it, but we also don’t hide behind it.   

Without a conceptual understanding, math is gibberish. 

This work is one of several aimed at graduate and advanced-undergraduate physics students.  Go to 

http://physics.ucsd.edu/~emichels for the latest versions of the Funky Series, and for contact information.  

We’re looking for feedback, so please let us know what you think. 

How to Use This Document 

 This work is not a text book. 

There are plenty of those, and they cover most of the topics quite well.  This work is meant to be used 

with a standard text, to help emphasize those things that are most confusing for new students.  When 

standard presentations don’t make sense, come here.   

If you don’t understand something, read it again once, then keep reading.   

Don’t get stuck on one thing.  Often, the following discussion will clarify things. 

You should read all of this introduction to familiarize yourself with the notation and contents.  After 

that, this work is meant to be read in the order that most suits you.  Each section stands largely alone, 

though the sections are ordered logically.  Simpler material generally appears before more advanced topics.  

You may read it from beginning to end, or skip around to whatever topic is most interesting. 

The index is not yet developed, so go to the web page on the front cover, and text-search in this 

document. 

What’s Wrong With Existing Electromagnetic Expositions? 

They’re not precise enough with their definitions.  Usually, when there appears to be an obvious 

contradiction, it is a confusion of definitions.  Many widely used references have terribly unclear 

definitions, and one purpose of these notes is to help resolve them.  Also, many texts are not visual or 

graphical enough.  They rely way too much on algebra or advanced math, and not enough on insight.   

My Story 

The Funky series of notes is the result of my going to graduate school in physics after 20 years out of 

school.  Although I had been an engineer all that time, most of my work involved software and design 

architectures that are far removed from fundamental science and mathematics.  I expected to be a little 

rusty, but I found that the rust ran deeper than I realized.   

There are many things I wish I had understood better while taking my classes (first at San Diego State 

University, then getting my PhD at University of California, San Diego).  The Funky series is my attempt 

to help other students acquire a deeper understanding of physics.  

http://physics.ucsd.edu/~emichels
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Thank You 

I owe a big thank you to many professors at both SDSU and UCSD, for their generosity, even when I 

wasn’t a real student:  Dr. Herbert Shore, Dr. Peter Salamon, Dr. Arlette Baljon, Dr. Andrew Cooksy, Dr. 

George Fuller, Dr. Tom O’Neil, Dr. Terry Hwa, and others. 

Notation 

[Square brackets] in text indicates asides that can be skipped without loss of continuity.  They are 

included to help make connections with other areas of physics. 

arg A for a complex number A, arg A is the angle of A in the complex plane; i.e., A = |A|ei(arg A). 

[Interesting points that you may skip are “asides,” shown in square brackets, or smaller font and narrowed 

margins.  Notes to myself may also be included as asides.] 

Common misconceptions are sometimes written in dark red dashed-line boxes. 

Mnemonics (memory aids) or other tips are given in green boxes. 
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2 Circuits 

Lumped Element Circuits 

?? 

Circuits Reference Desk 

Which end of a resistor is positive?  An inductor?  A capacitor?  A diode?  A battery?  It all  comes 

down to two simple conventions: the passive convention, and the active convention.  We start with the 

resistor, then proceed to the more complicated devices.   

These principles extend directly to AC analysis, using phasors and complex impedance. 

 

-
v

+ +

i

-
v

+

i

-
v

+

i

-
v

+

i

-
v

+

i

anode

cathode

v = iR

di
v L

dt
=

dv
i C

dt
= ( )/

0 1vq kTi I e= −
constant

arbitrary

v

i

=

=

passive convention active convention  

Figure 2.1  Reference polarities for all components, except sources, follow the passive 

convention.  The reference polarity is reversed for the battery (a source) compared to all other 

components; it uses the active convention. 

For any circuit element, conventions define a reference polarity for the voltage, and also a 

reference direction for the current.   

We must write our I-V equations consistently with those choices. 

For a resistor: the current always flows from + to -, so we choose reference directions consistent with 

that (diagram above, left).  This allows us to write Ohm’s law without minus signs: v = iR.  All other 

passive devices follow this same convention.  Therefore, when the power P = vi is positive, the device is 

consuming power from the circuit. 

Sources, both voltage and current sources, always use the active convention: reference current flows 

out of the reference positive voltage.  Therefore, when the power P = vi is positive, the source is supplying 

power to the circuit. 

For an arbitrary circuit, we may not know ahead of time which end of a resistor will end up being +.  

For example: 

+

+     −

+

+     −

+
     −

+

+     −

+

+     −

+
  
  

 −

 

Figure 2.2  Two valid choices of reference directions for the same circuit. 

We don’t know, without being given numbers and doing the circuit analysis, whether the middle 

resistor’s current will flow up or down.  No problem: we just choose an arbitrary polarity (this defines both 

voltage and current, since their relationship is fixed by the conventions: reference current flows from 

reference + to reference –).  We do the circuit analysis assuming this polarity.  Note that: 

Ohm’s law applies for both positive and negative voltages and currents. 
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If we find that the voltage (and therefore current) is negative, it just means that the current is really 

flowing opposite to our reference choice.  Note, however, that resistors always consume power from the 

circuit: 

P VI=   is always positive: the resistor consumes power. 

For a capacitor:  Things are a tad messier, because current does not always flow from + to –.  A 

capacitor stores energy in its electric field.  If we increase the voltage on the capacitor from zero, the 

capacitor is drawing energy from the rest of the circuit (it is charging).  In this case, it is qualitatively 

similar to a resistor, and its current flows from + to –.  Therefore, to be consistent with resistors, we define 

our reference directions for this case: reference current flows from reference + to reference – (just like a 

resistor).  But wait!  The current through a capacitor is not related to the polarity of voltage across it; the 

current is related to the rate of change of voltage: 

( ) ( )units: / / /
dv

i C C s C V V s
dt

= = . 

If the voltage is negative, but increasing (becoming less negative), the current through the capacitor is 

still positive.  Thus the I-V equation above is always valid: charging or discharging.  When a capacitor is 

discharging, either its voltage is + and its current is –, or its voltage is – and its current is +.  Either way, the 

capacitor is delivering energy to the circuit, and temporarily acts more like a battery than a resistor.  But we 

can’t change our reference directions on the circuit based on the charging/discharging state of the capacitor 

from moment to moment.  Also, either way, the capacitor’s power “consumed” is 

P VI=   where negative power means it supplies energy to the circuit. 

For an inductor: things are similar, but we exchange “voltage” and “current”, and replace “electric” 

with “magnetic.”  Again, the current does not always flow from + to –.  An inductor stores energy in its 

magnetic field.  If we increase the current from zero, the inductor is drawing energy from the rest of the 

circuit (loosely, it is “charging”).  In this case, it is qualitatively similar to a resistor, and its current flows 

from + to –.  Again, to be consistent with resistors, we define our reference directions for this case: 

reference current flows from reference + to reference – (just like a resistor).  But wait!  The voltage across 

an inductor is not related to direction of the current through it; the voltage is related to the rate of change of 

the current.  Therefore, if the current is negative, but increasing (becoming less negative), the voltage 

across the inductor is still positive.  This allows us to write a single I-V equation for both cases: 

( ) ( )units: - / /
di

v L V flux linkages ampere amperes s
dt

= =  

When an inductor is “discharging,” the current is decreasing, and the inductor is supplying energy to 

the circuit.  Now it is acting more like a battery than a resistor.  But we made our reference choice for the 

inductor, and we must stick with it.  The above I-V equation is valid at all times.  Again, 

P VI=   where negative power means it supplies energy to the circuit. 

Note that when the inductor current is increasing (either becoming more positive or less negative), v is 

positive.  When the current is decreasing (either becoming less positive or more negative), v is negative, 

which means the + reference terminal is really at negative voltage with respect to the – terminal.  In all 

cases, the above equations are correct.  We achieved that consistency by defining a single reference 

polarity. 

For a diode:  Resistors, capacitors, and inductors are all “symmetric” or “unpolarized” devices: you 

can reverse the two leads with no effect.  Diodes, in contrast, are polarized: one lead is the “anode”; the 

other is the “cathode.”  You must connect them properly.  The reference voltage is defined always with + 

on the anode (and therefore – on the cathode); reference current flows from + to –.   Diodes always 

consume power (like resistors do).  Consistently with that, these conventions require that  

P VI=   is always positive: the diode consumes power. 
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For a battery:  Batteries usually supply energy to the circuit, so we define them as having positive 

power when they do so (the opposite of all other devices here).  This requires the opposite reference 

directions:  

Batteries use the opposite convention from other devices:  

reference current flows through the battery from reference – to reference +.   

However, it is possible to force current “backwards” through a battery, and then it will consume energy 

from the circuit (as demanded by the fundamental definitions of voltage and current).  This is how we 

recharge a rechargeable battery.  Thus: 

+

+     −

+

large V, 

forward 

current, 

positive 

power

small V,

reverse 

current, 

negative 

power

P = VI where positive power  battery supplies energy 

to the circuit;

negative power  battery consumes energy 

from the circuit.

 

For a transformer:  Transformers are a new breed, because they have 4 terminals, rather than two: 

i2

−
v 1

+ 2 1
1 2

2 1 2 1

1

di di
v M v M

dt dt

v Nv i i
N

= =

= =i1

−
v 2

+

 

Figure 2.3  An ideal transformer relates the voltages and currents on both sides. 

The dots on the two windings define the reference directions and polarities, as shown in the diagram 

above.  Essentially, the reference directions are the same as for an inductor, except that v1 depends on i2, 

and v2 depends on i1.  This implies that when v1 is positive on the dot-side, v2 is also positive on the dot-

side. 

In an ideal transformer, all the magnetic flux, Φ, passes through every turn of both the primary and 

secondary windings. From Faraday’s law, V = –dΦ/dt, applied to each turn of wire: 

2 2
1 1 2 2 2 1 1

1 1

,
N Nd d

v N v N v v Nv where N
dt dt N N

 
= − = −  = =  . 

Also, an ideal transformer has a highly magnetizeable core such that the flux, Φ, requires virtually no 

current to create it.  This means that the primary and secondary currents must cancel each other, leaving 

nearly zero MMF (magneto-motive force).  Therefore: 

2
1 1 2 2 2 1

1

1
as before

N
N i N i or i i where N

N N
= =  . 

The secondary voltage varies as the turns ratio, N.   

The secondary current varies as the inverse of the turns ratio. 

This implies that the power into the primary equals the power out of the secondary.  Unlike an inductor, an 

ideal transformer does not store energy.  Instead, a transformer transfers energy from one side of the 

transformer to the other.  The direction of energy transfer depends on the circuits to which the two 

transformer sides are connected.  Details are beyond the scope of this section. 

Brief Note on Phasor Analysis 

This section assumes you are familiar with phasor analysis, also known as Fourier mode analysis 

(described later).  The idea of phasor analysis is to consider one pure sinusoidal frequency at a time.  Since 

the circuit response is linear with the excitation, a sum of sinusoidal excitations results in a response equal 

to the sum of the individual sinusoidal responses. 
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For capacitors, we have (using exp(+iωt) time dependence, which is standard for circuits): 

( ) , are the phasors for current and voltage
dv

i t C i i Cv where i v
dt

=  = . 

The phase of the derivative is positive, which means the derivative leads the original function.  In this case, 

the current leads the voltage, or equivalently, the voltage lags the current (Figure 2.4 left). 

90o

t

leading 
current

lagging 
voltage

90o

lagging 
current

leading 
voltage

t

 

Figure 2.4  (Left) In a capacitor, voltage lags current.  (Right) In an inductor, current lags voltage. 

For inductors, things are reversed: 

( ) , are the phasors for current and voltage
di

v t L v i Li where i v
dt

=  = . 

The voltage leads the current, or the current lags the voltage (above right). 

You can remember the lead/lag relationships for circuit elements mnemonically as follows:  

Capacitors oppose a change in voltage, so the voltage lags the current.   

Inductors oppose a change in current, so the current lags the voltage. 

Similarly: 

You can remember the lead/lag relationships for derivatives as follows:  

Derivatives show where you’re going before you get there, so they lead the function.   

Integrals sum up where you’ve been, and so lag the function. 
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3 Electromagnetic Fundamentals 

Fundamental Definitions 

Charge Is a Fundamental Electrical Quantity 

Physically, there are 4 fundamental macroscopic quantities in the universe: length, time, mass, and 

charge (L, T, M, Q).  This is a conceptual truth that does not depend on how we choose our units of 

measure.   

The SI system defines two arbitrary units: time and mass.  Time is defined in terms of atomic cesium 

radiation.  Mass is defined in terms of the prototype kilogram stored in Paris.  From there, SI defines the 

speed of light, a constant of nature, with an exact value.  From time and c, the meter is defined by the 

distance light travels in vacuum in a specific time.  From time, mass, and distance, the SI system defines 

force.  As noted below, μ0 and ε0 are defined exact values.  Then from force, time, and μ0, SI defines the 

ampere, and then the coulomb.   

For example, in the MKSA (aka SI) system, the unit of charge is the coulomb.  However, as a matter of 

laboratory convenience, the SI system defines the ampere first, and then defines the coulomb as the amount 

of charge flowing past a point in 1 second, with a current of 1 ampere.  This is simply because it’s easier to 

measure magnetic forces in the lab than electrostatic forces.  This does not change the theoretical reality 

that charge is one of the 4 fundamental measurable physical quantities.  The ampere is a compound 

quantity involving charge and time.  Particles have charge;  they don’t have currents. 

There are at least three CGS systems of units, the most popular being gaussian units.  In contrast to SI, 

CGS unit systems define the charge as the first electrical quantity, and current in terms of charge.  

Therefore, in CGS systems, charge is a compound unit of M1/2L3/2/T.   

The variety of human chosen definitions for units has no bearing on the nature of physics,  

or the fact that there are 4 fundamental, macroscopic, measurable quantities:  

length, time, mass, and charge. 

The Coulomb Force Constant is Defined Exactly 

This section is superseded by the 2019 revamp of SI.  Updates TBD.  ??Recall that c and μ0 are defined 

exactly, which means so are ε0 and the force constant ke: 

7

0 0 2

0

2

2 7 2 2 9 2 20

0

1
299 792 458 m/s 4 10  is exact, and so is :

1
10 8 987 551 787.3681764 Nm /C 9.0 10 Nm /C .

4 4

e

e

c   k
c

c
k c

  




 

−

−

    =    

= = =  =    

 

Units of Measure: SI vs. Gaussian 

We choose not to capitalize “gaussian.” 

When converting equations between SI and Gaussian units, three simple observations will help 

tremendously in remembering the conversions.  Three formulas are easy to remember in both units, since 

they are so common: (1) electric potential, (2) the speed of light, and (3) the Lorentz magnetic force.  These 

provide all the information needed for most conversions.  By comparing these equations in each set of 

units, we can see what substitutions are needed to take almost any equation from one system to the other.  

We show here conversion from SI to Gaussian, because undergraduates usually learn in SI, then have to 

switch to Gaussian as graduates: 
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0 0

2 2
0 0 0 0 0

Notes SI Gauss SI Gauss

(1) ( ) / 4 ( ) / 1 / 4 .

(2) 1 1 4 / .

(3) / .

r q r r q r

c c

q q c
c

    

     

→

= → =  →

= → =  →

=  → =   →
v

F v B F B B B

 

(1)  This does not mean that ε0 is 1/4π in Gaussian units; in fact, ε0 = 1 in Gaussian units.  It means that 

when including the whole package of conversions to take an equation from SI to Gaussian, the final result 

is that ε0 turns into 1/4π.  Gaussian units have no concept of ε0 or μ0. 

(2)  We used #1 above (ε0 → 1/4π) to eliminate ε0. 

(3)  This means that the B-field in Gaussian units is inflated by the factor c, so when using it, you have 

to deflate it to make it equivalent to the SI B.  For example, that’s why a propagating wave has: 

(SI) , but (gaussian)E cB E B= = . 

Example:  Biot-Savart Law: 

0

2 2 2 2

ˆ ˆ ˆ4 1
(SI) (gaussian)

4 4

dl d dl dl
d d

c cr c r r

 

 

  
= → =  =

I r B I r I r
B B . 

Most (but not all) graduate EM courses seem to use gaussian units.  There’s almost a cult following of 

them.  For some problems, gaussian units are better, but for many problems, SI is better.  Theoreticians 

seem to prefer gaussian.   

More examples: Maxwell’s Equations (ME) in gaussian units, in vacuum: 

( )
1 4 1

4 , 0, , gaussian, vacuum
c t c c t




 
 =  =     = −  = +  

 

B E
E B E B J . 

Note that in gaussian units, the two source distributions ρ(r) and J(r) get 4π factors.  Since they combine 

into a 4-vector jμ ≡ (cρ, J), they must have the same pre-factor.  In matter, the electric dipole per unit 

volume, P, and the magnetic dipole per unit volume M, are also sources, so they also get 4π factors: 

, 4 (gaussian) = −      = +E D P B H M . 

We can find ME from the three simple SI → gaussian conversion rules.  Gaussian units have ε0 = μ0 = 

1, so in vacuum, they don’t usually use D or H; they stick with E and B.  In materials, they still need D and 

H, so the lack of D and H is only a supposed advantage for gaussian units in vacuum.  We give here the 

conversion only for the simpler case of vacuum.   

For Gauss’ laws, we start with D = ε0E → E/4π, and the second equation is unchanged: 

( )4 , 0 gaussian, vacuum =  =     E B . 

For Faraday’s Law, B → B/c: 

( )
1

gaussian
c t


 = −



B
E . 

Two ways to convert Ampere-Maxwell: first, by direct substitution.  H = B/μ0 → (B/c)c2/4π = B(c/4π), and 

again D = ε0E → E/4π: 

( )
4 1

gaussian, vacuum
c c t

 
 = +  



E
B J . 
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Alternatively, it may be easier to first put the SI equation in terms of B, E, and c, by multiplying by μ0 , 

using D = ε0E, and μ0ε0 = 1/c2, yielding 0 2

1

tc



 = +



E
B J .  Then B → B/c and μ0 → 4π/c2 gives the 

above. 

More subtle is the Poynting vector: 

(SI) (gaussian)
4

c


=    → =    S E H S E H . 

As above, to take HSI to HG we replace HSI with B/μ0, and use rules 2 and 3: 

2

0

(SI) (gaussian)
4 4

c c

c  
=    → =  =    

B B
S E S E E B . 

These two examples allow a shortcut rule: HSI → (c/4π)HG. 

About the Size of Things 

Classical electromagnetics requires three size scales: microscopic (atomic), mesoscopic (continuum 

approximated average-atomic), and macroscopic (equipment).  Many references define explicitly only 

macroscopic and microscopic scales, but this is not tenable, and so may cause confusion.  We give three 

examples below requiring explicit recognition of the mesoscopic scale. 

The first scale is microscopic: the level of atoms, molecules, and fundamental particles such as 

electrons and protons.  A hydrogen atom is about 10–10 m in diameter, and most inorganic molecules are no 

bigger than 10–9 m across.  (Polymers and biomolecules can be much bigger.)  Therefore, when discussing 

the microscopic structure of fields, even a crude approximation requires resolving 10–11 m or less.  A proton 

is about 10–15 m, and in nonrelativistic conditions, an electron is typically much bigger, about the size of 

the atom, 10–10 m. 

Next up, the mesoscopic scale is for “continuous” charge and current distributions, ρ(r) and J(r), and 

“infinitesimal” volumes dτ [Jac p20m].  It must be large compared to microscopic, so we can average over 

molecules to make (with high accuracy) a continuum.  The mesoscopic scale must also be much smaller 

than the feature size of any apparatus in question.  We may take it as roughly 100 molecules long, about 

10–7 m, or 0.1 micron.  This allows for 106 molecules per unit of “infinitesimal” mesoscopic volume.  

([Cullwick Electromagnetism and Relativity, 1959 p??] uses 1000 molecules, but underestimates the size of 

each, to reach the same scale of 10–7 m.)   

Finally, the macroscopic scale must resolve the smallest feature size of any apparatus in question.  We 

may take it as roughly 100 mesoscopic “sizes” long, or about 10–5 m, or 10 microns.  This allows 106 

mesoscopic volumes per macroscopic volume.  Calculations with features smaller than this scale cannot 

blithely assume the continuum approximation; they must justify their approximations explicitly.   

As an example, the mesoscopic scale is required to even have a concept of smooth current i(t), or 

densities ρ(r) and J(r).  Charge is discrete, and current is the flow of discrete microscopic charges.  We can 

well approximate these as continuous at the mesoscopic scale. 

Similarly, polarization of dielectrics and permeable materials requires the mesoscopic scale for the 

polarization per unit volume, P(r) and M(r), to be well-approximated as a pure dipole.  The mesoscopic 

dipole in a volume dτ comprises millions of distinct molecular dipoles. 

Finally, as a practical calculational example: What is the force per unit area on each of two identical 

large charged plates (Figure 3.1a)?   
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Figure 3.1  (a) Electric field between two charged plates.  (b) View of charge distribution on a 

mesoscopic scale, illustrating its thickness, though h may be much less than d. 

A naive calculation would say: 

/ , / (wrong)E F a E  = = . 

This is a factor of two too big.  The problem lies in the fact that the thickness of the “surface” charge 

cannot be taken to be truly zero.  Any realistic surface charge has some thickness h at the mesoscopic scale 

(Figure 3.1b).  The charge is distributed through a finite height in the plates.  We can think of the charge as 

a series of thin (mesoscopic) layers.  Then in the top plate, E decreases “smoothly” as we proceed upward 

through the plate, until E = 0.  The average E pulling on the top charges is E/2, so the force on the plate is: 

/ / 2F a E E = = . 

This is also an example a common and useful idealization (zero surface charge thickness) breaking 

down, and giving an incorrect answer. 
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Is the Electric Field Real? 

Is the electric field real?  Or is it just a tool to help model reality?  This question has been asked over 

the history of our understanding of EM fields, and the answer has evolved over time.  For the electric field: 

First, people noticed that certain particles pushed or pulled on each other.  To model that, they invented 

the idea of “charge”, and Coulomb’s force law.  At this point, there is no need for any fields, since electric 

forces are all two-particle interactions.   

In more complicated situations, particularly when there is a fixed set of charges, called the “source” 

charges, it was convenient to pre-compute the effect of these source charges on hypothetical “test” charges.  

This pre-computation worked because of the linearity of the Coulomb force.  The result was a vector 

function of space, and was given the name “electric field.”  At this point, the electric field is purely a 

mathematical convenience for describing point-charge interactions, with no physical significance.  [Note 

that all forces, by the definition of a vector, must add.] 

Later, experiments showed that if energy is to be conserved, then it is convenient to say that this 

“electric field” actually stores energy.  Now the electric field starts to seem like a physical reality. 

Still later, experiments showed that a time varying electric field could produce waves which propagate 

very far away from any source charges.  Essentially, the electric field (together with the magnetic field) was 

viewed as self-sustaining.  This makes fields seem quite real indeed, as they are now far separated from 

their sources, and seem to exist independently of them.  This view is somewhat unsatisfactory, though, 

because the ultimate source of all EM radiation is still accelerating charges. 

However, this time-dependent theory of EM fields also leads to the experimental fact that the effect of 

a charge on a distant charge is delayed by a propagation time.  What “thing” is propagating?  If fields are 

real entities, then the answer is clear. 

Furthermore, when a particle radiates, it recoils immediately, in a direction opposite to the radiation.  

This implies a transfer of momentum from the particle to the radiation, which is immediate, and 

independent of when that radiation might later be absorbed.  Thus, the energy and momentum of EM 

radiation appears to be quite “real,” and the EM field’s energy and momentum exist independently of the 

particles. 

The final evidence favoring fields as “real” is that they contribute to the center of mass, now called 

center of energy, of a system of particles.  This goes beyond conservation of energy, which counts only the 

total energy, because now the location of the energy in space matters.  To satisfy the condition that the 

center of energy remain fixed for an isolated system, we must associate an energy density with the electric 

and magnetic fields, such that: 

2 2Energy density: ,electric magneticE B   . 

The currently accepted classical (non-quantum) model is that fields are real things: they carry both 

energy and momentum, and we can say where the energy and momentum is located, e.g., the energy 

density varies as the square of the field. 

Quantum mechanics is fully consistent with this classical picture, as photons (quantized EM fields) are 

treated fully and equally with matter as particles: they carry both energy and momentum. 

The complete picture is somewhat more complicated due to the details of magnetic fields, and their 

interaction with electric fields.  However, the above reasoning and conclusions remain valid. 

Just For Reference: Faraday’s Law 

What is the meaning of the minus sign in Faraday’s law?  Faraday’s law relates the induced voltage in 

a circuit surrounding a magnetic field to the rate of change of that field: 

d
V

dt


= − . 
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The minus sign can only be interpreted with respect to a standard set of reference directions and polarities.  

As with reference directions in electric circuits (see Lumped Element Circuits elsewhere), a reference 

direction (of a current, B-field, or E-field) is the direction which is called positive in the equations.  A 

reference polarity (of a voltage) is the polarity which is called positive in the equations.  The actual 

polarity may be the same as our reference choice, or it may be opposite.  We may not know until we solve 

some equations.  But there is no problem either way, because if the actual polarity is opposite our reference 

choice, it will simply have a negative value. 

x

+     −

y

z

Φ

 

Figure 3.2  Reference directions for flux Φ, current, and reference polarity for voltage. 

Now, Faraday’s law: the reference direction for current is that which would produce the reference 

direction for Φ, and Φ is in the same direction as B.  In the diagram above, B and Φ are positive in the z-

direction (out of the page).  The reference direction for the current is counter-clockwise, which produces 

(by the right hand rule) a B-field out of the page.  We can lump the resistance of the loop into a single 

equivalent resistor.  The reference polarity for the voltage must be consistent with the reference direction 

for the current, and this forces the choice shown.  We now have a consistent set of reference directions and 

polarity for all four of the flux, B-field, current, and voltage.  Positive voltage makes positive B-field. 

This defines the meaning of the minus sign in Faraday’s law.  Lenz’ law says that if the B-field 

changes, the voltage induced will try to drive a current that produces a B-field which opposes the change.  

This is the minus sign: decreasing B (negative dΦ/dt) causes positive voltage, which boosts B.  Increasing 

B (positive dΦ/dt) causes negative voltage, which reduces B. 

The minus sign emphasizes that if the induced voltage reinforced the change in B-field, that would 

induce more voltage, further changing the B-field, which induces more voltage, further changing the B-

field, in a never ending death spiral of infinite current and B-field. 

Making Friends With Maxwell 

Maxwell’s Equations (ME) describe the behavior of the E and B fields in the general case, including 

any nearby charges and currents.  Outside materials, Maxwell’s Equations are universal; they apply at all 

times, under all conditions: static, steady state, accelerating, relativistic.  They also apply to dielectric and 

permeable materials, provided those materials are linear and not moving.   

Ultimately, all fields result from charge and current sources, but in some situations, the charges are too 

far away to have any significant influence.  We then use ME to study the fields alone, in the absence of 

charges, such as propagating waves far from their sources.  The electromagnetic static and velocity fields of 

charges drop off as 1/r2, but the radiation fields drop off like 1/r.  Therefore, far from the sources, the 

static/velocity fields are negligible.  Note that the radiation power drops like 1/r2, because S = E  H, and 

E and H each fall as 1/r; power must drop as 1/r2 to conserve energy. 

Here are three features of ME, and tips for remembering the equations: 

• Gauss’ Law, with electric but no magnetic charge. 

• Faraday’s Law with a minus sign to keep fields and energy finite. 

• Ampere-Maxwell law, with a plus sign (opposite Faraday’s Law), again to keep fields and 

energy finite. 

We start with SI units, which are designed to make calculations of energy and power simpler, and this 

also makes ME simpler than in gaussian units.  Therefore, we find it easier to understand and remember 

ME in SI units.  Then for completeness, we mention gaussian units, but the concepts are independent of 

units.   
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There are a few concepts that help to remember ME.  The first is that there exist electric charges 

(monopoles), but no magnetic charges.  Two of the four ME are just Gauss’ law: 

( ), 0 SI =  =    D B , 

the latter because the magnetic “charge” is always zero, since they don’t exist.  How do we remember it’s 

D and B, and not E or H?  Units help: D and ρ are “coulombs per something,” so they have to go together 

in a simple equation.  For the second equation, B is the physical field, which is always a result of currents 

and/or fundamental magnetic dipoles, which are divergenceless sources.  Any superposition of 

divergenceless fields is also divergenceless. 

The third ME is Faraday’s law that a changing magnetic field produces an electric field: 

( )SI
t


 = −



B
E . 

B-field from 
induced current

induced 
current

primary 
B field

induced 
E-field

 

Figure 3.3  Faraday’s Law example: An increasing primary B-field induces an E-field, which 

drives a current, which produces a secondary (induced) B-field that opposes the change (here, the 

increase) in B. 

Picture a current loop with a B-field inside (Figure 3.3).  E is induced around the loop.  The negative sign is 

Lenz’ Law: the induced E field must drive current to oppose the change in the B-field.  If the induced E 

enhanced the change in B, that would induce more E, and then more B, in an infinite spiral of boundless 

energy from nothing.  Note the electric and magnetic fields are on separate sides of the equation. 

The fourth and last equation is the Ampere-Maxwell Law.  It is the most complicated because 

magnetic fields are “curly” from both current sources and a changing E-field.  The magnetic and electric 

terms are again on separate sides of the equation: 

( )SI
t


 = +



D
H J . 

Here again, units help: H is simple C/s per something, J is coulombs-something, and so is D.  No E or B.  

For the plus sign, remember that it’s +∂D/∂t by thinking: E induces B, and B induces E.  When including 

Faraday’s Law above, if both ∂D/∂t and ∂B/∂t had the same sign, a changing E could create a changing B 

that enhances the changing E.  Again, we’d have a runaway spiral of infinite fields from nothing.  

Therefore the ∂/∂t terms in Faraday’s Law and the Ampere-Maxwell Law must be opposite.  You may 

recall that the ∂/∂t terms having opposite signs in ME gave us the wave-equation for EM fields with the 

proper signs. 

For completeness, we present ME in gaussian units, which has no effect on the concepts above.   

( )
1 4 1

4 , 0, , gaussian, vacuum
c t c c t




 
 =  =     = −  = +  

 

B E
E B E B J . 

We can find these from the three simple SI → gaussian conversion rules explained elsewhere.  Note that in 

gaussian units, the two source distributions ρ(r) and J(r) get 4π factors.  Since they combine into a 4-vector 

jμ ≡ (cρ, J), they must have the same pre-factor. 

Stunning Phasors and Fourier Space 

Phasors are a convenient way to mathematically represent oscillations.  Phasors and Fourier space are 

used heavily in EM waves and propagation, as well as classical mechanics, quantum mechanics, and any 

other physics that involves oscillations.  Phasors are also used extensively in engineering.  Virtually all 

physics curricula use phasors, though many do not explain the concept, or use the word “phasor.”  As a 
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result, many physics students are limited by not clearly understanding phasors.  A full understanding of 

phasors includes understanding ratios of phasors (e.g., impedance), and simple extensions of other 

concepts, such as a complex propagation vector, polarization vector, complex permittivity, and complex 

index of refraction.  Phasors also provide a simple but sturdy foundation on which to build more advanced 

concepts: e.g., a Fourier transform is a phasor-valued function of frequency; a quantum wave-function can 

be considered a phasor-valued function of space.   

Working with phasors is also called working in Fourier space or in Fourier modes.  A phasor can 

also be called a complex amplitude [Gri E&M p??].  (Quantum mechanics uses the term “complex 

amplitude” for a complex number whose relationship to a sinusoid is somewhat abstract.) 

This section requires that you understand complex numbers in both polar and rectangular form, and the 

basic calculus of complex functions of real variables.   

We start by noting that any real-valued sinusoid is fully characterized by 3 numbers: amplitude, phase, 

and frequency: 

( ) cos( ), realc t C t C = + . 

A phasor is a complex number that characterizes the amplitude and phase of a sinusoid.   

A phasor says nothing about its frequency ω.  You must know the frequency from some other condition.  

Combining two phasors by simple addition only makes sense if they refer to sinusoids of the same 

frequency.  However, phasors of different frequencies are often combined by inserting the time dependence 

explicitly before combining (quantum mechanics does this routinely). 

A phasor A (a complex number) corresponds to the sinusoid above as follows (in the engineering time 

convention): 

 ( ) cos arg Re , arg the complex angle of

C

i ta t A t A Ae where A A



 +
 
 =   + = 
 
 

. 

The sign of the times:  For engineers (including electromagnetics) and classical physics [M&T, Tay], 

and for AC circuit analysis, the time dependence is e+iωt.  For most physicists in quantum mechanics and 

electromagnetics, the time dependence is e–iωt.  You can remember this mnemonically by thinking that for 

wave physicists, time goes backwards.  The polarity of the exponent is purely conventional, and has no 

physical significance.  This work shows pictures for both time conventions.   

The magnitude of the phasor is exactly the (real) amplitude of the sinusoid, and the complex angle of 

the phasor is exactly the phase of the sinusoid, i.e. the angle of the cosine at t = 0.  The geometric 

interpretation of a  phasor is that of a rotating stick, which casts a shadow on the horizontal axis.  The 

length of the shadow is a sinusoidal function of time, with amplitude |A|, and starting at an angle arg A: 

arg A

ω

shadow

t1 > 0

ω

shadow

ω

shadow

t = 0 t2 > t1

 

Figure 3.4  NB: For engineers, the stick rotates counter-clockwise, as shown, per e+iωt..   

For wave physicists, the stick usually rotates clockwise (opposite to that shown), per e–iωt. 

We can also view the rotation at frequency ω as complex multiplication by e+iωt (engineering), or e−iωt 

(physics).  Recall that multiplication by a unit-magnitude complex number simply rotates another complex 
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number in the complex plane.  Now imagine the unit-magnitude angle is not fixed, but changes linearly 

with time, i.e. multiply not by a fixed complex angle φ, but by an increasing angle ωt.  ‘ω’ is the angular 

frequency, in rad/s.  When we multiply some complex number r eiθ by eiωt, we get a complex function of 

time that rotates continuously around the origin in the complex plane.  The magnitude of the result is fixed, 

because |eiωt| = 1 at all times.  But the angle of the result increases with time, at the rate ω. 

(r eiθ)eiωt

real

imaginary

(r eiθ)eiωt

imaginary

r

θ

r

realθ

 

Figure 3.5  Physics: (Left) Rotation in time at negative frequency ω < 0.  (Right) Rotation in time 

at frequency ω > 0.  Engineering: (Left) Rotation in time at frequency ω > 0.  (Right) Rotation in 

time at negative frequency ω < 0. 

The angular frequency is not constrained to be positive; it can just as well be negative.  Rotation by a 

negative frequency rotates in the clock-wise direction, rather than counter clockwise.  Hence, both positive 

and negative frequencies occur in complex rotations, and in signal analysis. 

Recall that any linear combination of sinusoids, of arbitrary amplitude and phase (but identical 

frequency, of course), is another sinusoid (at that frequency).  The beauty of phasors is that the phasor 

representing the sum of two sinusoids is simply the (complex) sum of the phasors representing the original 

sinusoids (addends).  The graphical demonstration of this is both simple, and illuminating: 

ωt

shadow

t1 > 0

ωt

shadow

ωt

shadow

A+B t2 > t1

A

BA+B

t = 0

 

Figure 3.6  Demonstration that the sum of any 2 sinusoids is a sinusoid, and its phasor is the sum 

of the constituent phasors.  Note that all 3 vectors rotate together.  The sum of the shadows is the 

shadow of the vector sum.  NB: For physicists, the sticks usually rotate clockwise per e–iωt. 

Note that the phasor for cos ωt is 1; the phasor for sin ωt is i (physics, or –j for engineering).  Thus, we 

can represent the sine wave a(t) by its in-phase (cosine) and quadrature (sine) parts (in physics notation  

e–iωt): 

  ( )( ) 

Let phasor .

Then ( ) Re Re cos sin cos sin .

r i

i t
r i r i

A A iA

a t Ae A iA t i t A t A t    −

= +

= = + − = +
 

We see that the real and imaginary parts of the phasor A are exactly the in-phase and quadrature 

components of the sine wave. 

We use complex numbers to represent sinusoids because the arithmetic (and some calculus) of 

complex numbers (2D vectors) is the same as the arithmetic of adding sinusoids. 
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Direction of the wave-vector:  For traveling waves, we can see that the wave-vector points in the 

direction of propagation, by considering a point of constant phase on the wave.  For constant phase, we 

must have 

points in direction of propagationt const− = k x k , 

because as t increases, so must k·x, and therefore the point of constant phase (x → x + dx) must move in 

the same direction as k points. 

Even in the engineering convention, with time evolution given by exp(+iωt), the wave-vector k still 

points in the direction of propagation.  The condition for propagation is t const − =k x , which can be 

brought into the physics-convention form by absorbing a minus sign into the constant. 

Phasor Calculus 

We can easily see that phasors convert differential equations to algebraic equations. This is expected, 

because phasors are a method of Fourier analysis, which is well known for converting differential to 

algebraic equations.  Let’s take the first and second derivatives of a cosine, in both the old-fashioned real-

valued way, and this new-fangled phasor way: 

We can take time derivatives of phasors by noting that the time derivative of the real part of a complex 

function equals the real part of the time derivative: 

 

 

   

Let ( ) ( ) ( ).

Then Re ( ) Re ( ) because

Re ( ) Re ( ) ( ) ( ) Re ( ) .

Then Re Re Re

In phasor notation:

r i

r i r

i t i t i t

z t z t iz t

d d
z t z t

dt dt

d d d d d
z t z t i z t z t z t

dt dt dt dt dt

d d
Ae Ae i Ae

dt dt

d
A i A

dt

  



− − −

 +

 
=  

 

   
= + = =   

   

 
= = − 

 

= −

 

For example (in the engineering convention): 

( )   ( ) 

  ( ) 

 

( )   ( ) 

2
2

2

2
2 2 2 2 2
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d
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dt
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d
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d
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





   

  

    

     

  

       

=  = + =
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=  = +

= − = −

= −

= = −  − = − + = −

 

We can also have phasors defining both space and time sinusoidal variations.   

These can be used for traveling waves.   

Then the phasor carries the amplitude and phase of the traveling wave, but not its wave-vector k (spatial 

frequency) or temporal frequency ω.  We must be given k and ω separately.  In 1-dimension, the spatial 

derivative works like this: 
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 

   

Let ( , ) ( , ) ( , ) .

Then Re ( , ) Re ( , ) similar to above with ,

and Re Re Re

In phasor notation: .
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In higher dimension space, we replace ∂/∂x with : 

   

     

Let ( , ) ( , ) ( , ) .

Then Re ( , ) Re ( , ) similar to above with .

Then Re Re Re

In phasor notation: .
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A i A

  − − −

 +

 = 

 =  =

 =

k r k r k r

r r r

r r

k
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Time Averages 

It is often useful to compute the time average of the product of 2 sinusoids.  E.g., the time average of 

the Poynting vector gives the effective radiation power density in W/m2 (or power per unit area).  The time 

average of two sinusoids does not depend on the absolute phase of either; it depends only on the relative 

phase of the two.  Specifically, 

 

 

 

arg

arg

be a phasor: ( ) Re | |

be a phasor: ( ) Re | |

1
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2
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B B B iB b t B e

a t b t AB





− +

− +

= +       =
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=

 

One way to see this is to decompose the sinusoids into the cosine (real) and sine (imaginary) components: 

( ) ( )

2 2

2

( ) cos sin ( ) cos sin

( ) ( ) cos sin cos sin

cos cos sin cos sin sin

cos cos sin

r i r i

r i r it t
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= + cos sini r t
A B t t + 2sini i

t
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Only the cos-cos and sin-sin terms contribute to the time average, because the time average of cos-sin is 

zero (they are orthogonal functions; sin is odd, cos is even).  Therefore, 

 

2 2

2 2

1
cos sin

2

1 1 1
( ) ( ) cos sin Re *

2 2 2

t t

r r i i r r i it t t

Use

a t b t A B t A B t A B A B AB 

= =

= + = + =

 

[Notice that Re{AB*} is analogous to the dot-product of two spatial vectors: it is the product of parallel 

components of A and B, i.e.  |A| |B| cos θ, where θ = arg B - arg A.  Only the parallel components contribute to the 

time average.] 
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Figure 3.7  Phasors showing time-average power: only the parallel components contribute to the 

average. 

If you’d rather grind through the integration, we can demonstrate the time average formula that way.  

We start with the sinusoids as real-valued cosines, and later switch back to the complex formula (after the 

integration): 

( )  
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The last equation is because the integral is over a full period, so shifting the starting and ending point by a 

fixed time interval, or angle, doesn’t change its value.  This demonstrates that the time average depends 

only on the phase difference between A and B, and not their absolute phases.  Finally, 
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Vector Potentials I Have Known 

Many E&M questions are well-suited to using the magnetic vector potential, A(r), for the magnetic 

fields.  Given a current distribution, we can (in principle) find the vector potential from: 
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30 ( ')
( ) ' [Jac 5.32 p181]

4 '
d r




=

−
J r

A r
r r

. 

However, many problems start with a given magnetic field (rather than current distribution), but our 

analysis tools use the vector potential.  How can we find the vector potential for a given magnetic field?  

There is no explicit “inverse curl,” but usually it is fairly easy to do by inspecting the formula for curl in the 

coordinates of interest.  For example, for a constant B-field,  ˆzB=  =B A z  and rectangular coordinates 

(chosen from other symmetries of the problem), we look at the formula for curl in those coordinates: 

ˆ ˆ ˆ
y yx xz z

A AA AA A

y z z x x y

       
  = − + − + −    

         
A x y z . 

We are given only a Bz component, so we look at the coefficient of ẑ  above.  We see that we can get it 

from either a ∂Ay/∂x, or a ∂Ax/∂y term.  Both terms are simple, so we choose one, and set: 

 
0

( )
x

y
z y z z

A
B A x dx B B x

x


=  = =

  . 

If other aspects of the problem favored an Ax instead, we could choose the other term in the curl.  Note 

that the curl operator is linear, so if there are more components of B, we can build them up from A terms, 

and sum them for the final A. 

Suppose we have a constant Bz in cylindrical coordinates, 

( )
1 1

ˆ ˆ ˆz r z r
AA A A A

rA
r z z r r r




 
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Again we see two terms to choose from: ( )
1 1

and rA
rA

r r r





−

 
.  If the problem has axial symmetry, 

then the 2nd term must be zero.  Also, the 2nd term cannot have a constant derivative, and be single valued at 

 = 0 = 2π.  So we choose the first term, and set 
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2
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2 2
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Spherical coordinates don’t come up all that often in magnetics problems, and are a little more 

complicated, but we can use the same method. 

( ) ( )
1 1 1 1ˆˆ ˆsin

sin sin

r rA A A
A rA rA

r r r r r r


  

     

        
  = − + − + −     

         
A r θ φ  

For a constant Bz, we must first decompose ẑ  into its r and θ components: 
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Plug into the 2nd equation from ẑ : 
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A r
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Image-ination 

The methods of images are often described very tersely.  We offer here a more careful discussion, 

allowing a motivated development for dielectric interfaces.  We use gaussian units. 

Introduction to images: Consider first the simplest case, a point source charge near a perfect 

conductor, which can be well-approximated in practice (Figure 3.8a, b).  What are the fields everywhere?  

Conductors have mobile charges that move to cancel any fields inside them, so inside the conductor, the 

answer is E = 0v.  There remains only the outside region, which is influenced by the source charge and by 

the induced mobile charge on the conductor surface.  It is possible to solve this by simultaneously solving 

for the induced sheet charge density σ(x, y) on the conductor surface, and the electric field.  Then for each 

observation point, you’d have to integrate over the induced charge density.  This is highly inconvenient.  

The method of images converts this into an easier, but equivalent, question. 

(a) (b) (c)

x

y

z

r → ∞

d d
(d)  

Figure 3.8  (a) A positive point charge near a conductor attracts mobile negative charge in the 

conductor.  (b) Side view.  (c) The containing surface of the region of interest is the x-y plane and 

a hemisphere going out to infinity.  (d) System with same boundary conditions and charge density 

in the region of interest. 

The uniqueness theorem says that the electric potentials and fields in any volume are determined by the 

values on the surface of the volume (either V(r) or E(r)), and the charge density within the volume.  If we 

can find a system with the same V (or E) on the surface, and point charge inside, it will also have the same 

potential and fields inside the surface.  Our original system has a point charge at (0, 0, d).  Being a 

conductor, its potential is constant in the x-y plane.  We choose to call this V = 0. 

It is easy to guess that it has potential V = 0 on its hemispherical surface at infinity (Figure 3.8c), but 

guessing is unreliable.  We must demonstrate it.  First, recall that from far enough away, any region of 

charge looks essentially like a point charge.  View the source charge and induced charge from far away, 

and they look like a net point charge.  If this charge is nonzero, it will either attract or expel charge from 

the conductor until it is zero.  In our conductor, the field from the source charge extends to infinity, and 

therefore so does the surface charge density σ(x, y).  Nonetheless, we can still take a limit in the x-y plane 

toward infinity, where the total charge approaches zero, and the potential then also approaches zero.  

Therefore, the potential at infinity (anywhere on the hemisphere) is also zero. 
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If we can find another system with the same point charge and surface of zero potential, regardless of its 

construction outside the region, it will have the same fields inside the region as ours.  There is no general 

method for finding such a system.  However, Figure 3.8b reminds us of a dipole field in the region (Figure 

3.8d).  For this dipole, the potential at infinity can be taken as 0, and therefore also in the x-y plane.  Hence, 

it is equivalent, only in the region of interest (z > 0), to our original system.  From the image system, it is 

trivial to solve for the potential inside the system.  We leave the details to the reader. 

Images for dielectric interface:  A harder problem is the case of a point charge embedded in a 

dielectric, and near a dielectric interface.  Figure 3.9a illustrates the question, where we chose ε2 > ε1 for 

illustration, but all our results are completely general.  What are the fields everywhere?  Again the method 

of images simplifies the problem significantly.   Qualitatively, the E-field vectors bend outward at the 

interface, because E||2 = E||1, but in the z-direction, the higher dielectric constant extinguishes more of the E-

field:  E┴2 = (ε1 / ε2)E┴1 .  Note that in contrast to the conducting slab, the potential V(x, y) is nontrivial, and 

unknown.  That’s why this problem is harder. 

ε1

(a) (b) (c) (d)

ε1ε2 ε1

θ

r
x

z

ε2

θ

r
x

zdqa qbqq

x

 

Figure 3.9  (a) Side view of dielectric interface, ε2 > ε1, with point source charge.  (b) All-ε1 

medium, with its image charge.  (c) Geometry of the all-ε1 system.  (d) All-ε2 medium, with its 

image charge. 

Consider first the right-side region, z > 0.  We can only hope to find a simpler but equivalent system 

with no interface, and the same boundary values.  This suggests Figure 3.9b.  We have removed ε2, made 

the whole system a slab of ε1, and added a point charge qa (much like the conductor case where we 

removed the conductor and replaced it with a point charge).  Note that only some of the field lines 

terminate on the image charge, because the field lines are spreading out at the boundary (as in the original 

system).  This tells us |qa| < |q|, which we’ll use as a check later. 

To produce the same boundary fields in the x-y plane (and therefore along the x-axis), the image 

charge must have the same r(x, y) dependence as the source charge (Figure 3.9c), so it must be in the 

mirrored location, a distance d from the x-y plane.  (The entire system is axially symmetric about the z-

axis, so σ(x, y) = σ(r), with r ≡ (x2 + y2)1/2.) 

From the original problem, we have two boundary conditions (constraints) that must be satisfied along 

the x-axis: 

2 1

2 2 1 1 2 1 2 1
0 0

or or

x x

z z z z
z z

E E

V V
E E D D

z z
   

− += =

=

 
= = =

 

 

We notice that one constraint depends on the ε’s, and the other doesn’t.  This guarantees that the two 

constraints will yield independent equations.  Figure 3.10a shows the vacuum equivalent system: the 

dielectrics have been removed and replaced by a sheet charge at the interface.  Near the sheet charge, it has 

no vertical component of E; therefore E|| is entirely from the source charge.  Then the two matching 

conditions yield: 

2 2 2 2
1 1

( ) sin sin , ( ) cos cos (gaussian)

, , are redundant parameters related by sin / , tan / .

a a
x z

q qq q
E x D x

where x x x d

   
 

  

= +    = − +      

      =  =  

r r r r

r r
(3.1) 

Since Ex and Dz are unknown, we have insufficient information to solve for qa.  (Also, we haven’t used ε2, 

so we can’t yet have a solution.)  Thus, a single image charge cannot be enough to solve the original 

problem.  But we got two independent equations, and only three unknowns.  There is no other suitable 
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place to put another image charge in Figure 3.9c, and we must include ε2 somehow, so our only choice is to 

consider the left-side region z < 0, as well.   

Figure 3.9d shows the left-side region extended over all space, with ε2 everywhere.  There is no source 

charge here, only an image charge qb, which must be outside the left-side.  It must have the same r(x) 

dependence as the source, so it must be at the same location the source was.  The fields at the boundary are: 

2 2
2

( ) sin , ( ) cosb b
x z

q q
E x D x 


=     = −

r r
. (3.2) 

We now have four equations and four unknowns: qa, qb, Ex, and Dz.  We must find qa and qb such that the 

fields Ex and Dz in all configurations, Figure 3.9a, c, and d, are the same along the x axis.  Therefore, we 

eliminate Ex and Dz from eqs. (3.1) and (3.2), yielding two independent equations for qa and qb.  We then 

use qa, q, and Figure 3.9c to find the fields in the right-side; we use qb and Figure 3.9d to find the fields in 

the left-side. 

2 2 2
2 12 1 1

2 2 2

sin sin sin

cos cos cos

b a b a
x

b a
z b a

q q q q qq
E

q qq
D q q q

  
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  

+
= = +  =

= − = − +  = −

r r r

r r r

 (3.3) 

[We can alternatively get the first equation above from the potential on the x-axis: 

1 2

( ) a bq q q
V x

 

+
= =

r r
. ] 

Solving: 

( ) ( ) 1 2
1 2 2 1

2 1 1 2

2

1 2

, ,

2

a a
a a

b a

q q q q
q q q q

q q q q

 
   

   


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− + −
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+

= − =
+

 

(This agrees with [Gri 2013 p196], [Jac 1999 p154-6], and is valid in both gaussian and SI units.)   

We check that for ε2 > ε1, and q > 0, qa < 0, and its magnitude is less than q, as noted earlier.  

Furthermore, the case of the conducting slab is the limit for ε1 = 1, and ε2 → ∞; this agrees, with qa = –q 

(and qb is not relevant).  Finally, it may not be obvious, but qa and qb must also depend only on the ratio 

ε1/ε2, and not on either one independently.  This is because each dielectric constant reduces the electric field 

from a source charge (compared to vacuum) by a multiplicative factor of εr.  Dividing top and bottom of the 

above equations by ε2 shows that they are, indeed, a function only of ε1/ε2.  This is also evident already 

from the two RHS equations of (3.3). 

But hold your horses!  We have found a self-consistent pair of image systems in Figure 3.9c and d, but 

we have not shown that they are equivalent to the original system.  Recall we eliminated the original 

system Ex and Dz to solve for qa and qb.  To verify this method of images, we must prove the image systems 

are equivalent to the original system, Figure 3.9a.  So we must now verify that these image charges have 

the same boundary values as the original system.  Then the method of images still makes it easier to 

compute the fields everywhere inside the boundary. 
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Figure 3.10  (a) Perspective view of the vacuum-equivalent sheet charge at the dielectric interface.  

(b) Side view of the equivalent system in vacuum, with sheet charge density σ(x).  (c) Reference 

E-fields for σ(x). 

So our goal now is to find the fields of the real system at the interface, as a function of the givens, q, ε1, 

and ε2.  The dielectric interface acquires the equivalent of a sheet charge density, σ(x, y), which is radially 

symmetric with respect to the z-axis, defined in Figure 3.9c.  So without loss of generality, we confine 

ourselves to the x-axis.  The fields in the real system are identical to those in a vacuum system which has 

the sheet charge as an additional source (Figure 3.10a), and the source charge reduced by ε1: qvac = q/ε1.  At 

any point x on the interface, we have three unknowns: Ez1, Ez2, and σ, and we need to find Ez1.   

We can eliminate Ez2 with 1
2 1

2

( ) ( )z zE x E x



= .  It is the sheet charge that implements the interface 

matching conditions, so from Gauss’ Law and Figure 3.10c: 
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 
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 
. 

We now have two unknowns: Ez1 and σ, and the one equation above.  A second equation comes from Ez1 

and the source charge.  Ez1 has two contributions: the source charge, and the sheet charge: 

2 1
1 2 2

21 1
2 2

z

q q
E

  


 

  −− −
= +  = +   

  r r
. (3.4) 

We first solve for σ(x): 

2 1 2 1

2
2 2 1

2 1 2 1

2
2 2 1

2 1

2
2 1 1

1
2

2

2

q

q

q

   


  

   


  

 


  

   − − −
− =   

   

   + − −
=   

   

 − −
=  

+ 

r

r

r

. 

We now substitute σ into the first equation of (3.4) to find Ez1 entirely in terms of the givens, q, ε1, and ε2: 

2 2 22 1 2
1 2 2

2 1 2 11 1

2
( , ) 1 ( , )z

q q
E x y where x y x y d

  

    

   −− −
= + =  + +   

+ +   
r

r r
. 

To establish the validity of our method of images, we confirm that this field equals the field produced 

by our image systems.  We have already shown the two sides of the image systems agree with each other, 

so we need only verify one side to complete the proof.  From Figure 3.9b and our earlier results, the image 

system gives: 

1 2 2
1 2 2 2

1 2 1 21 1 1

2
Image system: ( , ) 1a

z

q q q q
E x y

  

     

   − + −− −
 = = − =   

+ +   r r r
. 
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The image system agrees with the real system at the interface, and both are zero at infinity of a right-side 

hemisphere (Figure 3.8c).  Therefore, the image system gives the same fields as the real system. 

Solving Laplace’s Equation (Boundary Value Problems) 

Although these are generally covered in standard texts, we take a different approach from any we have 

seen.  Note that boundary value problems (BVPs) are essential before moving on to waveguides.  We 

describe solutions to Laplace’s equation in eigenfunction-like terms.  This has a huge advantage when 

moving on to waveguides, which are just big eigenfunction boundary value problems.  It also is familiar to 

most students, because eigenfunctions appear everywhere.  It can even serve as a simple introduction to 

eigenfunctions. 

We consider both 2-D and 3-D BVPs, in all common coordinate systems: rectangular, polar, 

cylindrical, and spherical.  All problems start from Laplace’s equation: 

2 0  = , 

plus some boundary conditions on Φ.  In all common coordinate systems, the nontrivial solutions arise 

from separations of variables.  Separation of variables hopes that we can write the solution as a product of 

functions, each of a single coordinate, such as: 

( , , ) ( ) ( ) ( ), ( , , ) ( ) ( ) ( ), ( , , ) ( ) ( ) ( )x y z X x Y y Z z r z R r Q Z z or r R r Q P      =  =  = . 

We restrict ourselves to real-valued functions and parameters, since they are of most interest to E&M.  

[However, quantum mechanics uses complex functions which are simple linear combinations of the real 

functions we use here.]  Finally, note that Laplace’s equation is linear, so that the weighted sum (linear 

superposition) of any number of solutions is also a solution.  We use this property extensively in what 

follows. 

We cover the various cases in order of difficulty.  We do not consider orthogonal function expansions 

for matching boundary conditions; see regular texts [refs??]. 

Two-D Laplace Solutions 

Recall that the 2-D Laplacian operator is: 

2 2 2
2 2

2 2 2 2

1 1
, or r

r r rx y r 

     
 = +  = + 

    
. 

Two-D Laplace Solutions in Rectangular Coordinates 

We start with the simplest solution to 2 0  = , which is completely omitted from Jackson [Jac ch 2]: 

( , )x y Ax By C = + + . 

By inspection, this clearly satisfies Laplace’s equation.  Both terms of the Laplacian operator are zero.  It 

turns out, though, that this solution doesn’t come up very often in E&M problems, because it doesn’t 

satisfy most physical boundary conditions.  Nonetheless, it is a perfectly valid solution, and should be 

considered in some cases.  [It comes up in some 1D quantum mechanical scattering problems.] 

More interestingly, we consider separation of variables, which requires: 

( , ) ( ) ( )x y X x Y y = . 

Consider the two terms of the Laplacian in rectangular coordinates, i.e., the partial derivatives w.r.t. x 

and y: 

2 2 2 2 2 2

2 2 2 2 2 2
( ), ( ) ( ) ( ) 0

X Y X Y
Y y X x Y y X x

x x y y x y

          
= =  + =              

. 
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If we could find X(x) and Y(y) with these properties, we’d be set: 

( )

2 2

2 2

2

( ), ( ), then

( ) ( ) ( ) ( ) ( ) ( ) 0 .

X Y
kX x and kY y

x y

kX x Y y kX x Y y k k X x Y y

 
= = −

 

  = − = − =

 

This implies that X(x) and Y(y) are eigenfunctions of the 2nd derivative operator.  In rectangular coordinates, 

we can easily find such a solution.  Recall that sinh(x) and cosh(x) (and equivalently exp(x) and exp(–x)) 

satisfy this, and their eigenvalues are always positive.  Also, sin(x) and cos(x) satisfy this, and their 

eigenvalues are always negative.  The solutions are therefore: 

( )

( )

( )

2
2 2

2

2
2 2

2

2
2 2

2

2
2

2

( ) , ( ), and

( ) sin cos , sin cos ( )

( ) sin cos , sin cos ( ), and

( ) ,

x x x x

y y y

X
X x Ae Be Ae Be X x

x

Y
Y y C y D y C y D y Y y

y

OR

X
X x C x D x C x D x X x

x

Y
Y y Ae Be Ae Be

y

   

   

 

     

     



− −

− −

 
= + = + = 

 
 

 = + = − + = −
  


= + = − + = −




= + = +


( ) 2 ( )

( , ) ( ) ( )

y Y y

x y X x Y y



 
 
 
 
 =
 
 

 =

 

As always, the boundary conditions determine the coefficients A, B, C, and D. 

Note that  

( ) ( )2 2 1
4

1 1 1 1
sinh( ) , cosh( ) , and

2 2 2 2

sin( ) cos( ) cos , , tan / .

x x x x

q

x e e x e e

A x B x E x where E A B B A 

− −

−

= − = +

+ = + = + =

 

sinh(x) and cosh(x) and exp(x) and exp(–x) are linear combinations of each other, and therefore equally 

good solutions.  However, sinh(x) and cosh(x) are more often convenient in E&M problems because sinh 

has a zero, and cosh has a zero derivative, which are useful for matching common boundary conditions.  

exp(±x) have no zeros, and no zero derivatives.  Also, E cos(x + β) is equivalent to A sin(x) + B cos(x).  So 

we can conveniently write:  

( )
2

2 2

2

2
2 2

2

2
2 2

2

2

( ) sinh( ) cosh( ), sinh( ) cosh( ) ( ), and

( ) cos( ), cos( ) ( )

( ) cos( ), cos( ) ( ), and

( ) sinh( ) cosh( ),

X
X x A x B x A x B x X x

x

Y
Y y E y E y Y y

y

OR

X
X x E x E x X x

x

Y
Y y A y B y

     

     

     

 

 
= + = + = 

 
 

 
= + = − + = − 

 


= + = − + = −




= + ( )2 2

2
sinh( ) cosh( ) ( )

( , ) ( ) ( ) .

A y B y Y y
y

x y X x Y y

   

 
 
 
 
 

= + = 
 

 =

 

As always, the boundary conditions determine A, B, E, and  in this alternate form. 
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More on boundary conditions later. 

Two-D Laplace Solutions in Polar Coordinates 

In polar coordinates, (r, ), we might try the same trick for separation of variables: eigenfunctions of 

the two Laplacian operator terms, with eigenvalues that sum to zero: 

2
2

2 2

2

2 2

1 1
( , ) ( ) ( ).

1 1
( ) ( ), ( ) ( )

r Let r R r Q Solve
r r r r

r R r kR r Q kQ
r r r r

 


 


   
 = +  = 

   

   
= = − 

   

 

We see immediately that this won’t work, because of the 1/r2 factor in front of the Q() term, and Q() 

has no r in it, by definition.  But we don’t really need eigenfunctions of the Laplacian terms; we just need a 

function f(r, ) such that: 

2

2 2

2

1
( ) ( ) ( ), and

1
( ) ( ) ( ) . Then:

( ) ( ) ( ) ( ) ( ) ( ) 0

r R r f r R r
r r r

Q f r Q
r

f r R r Q R r f r Q

 


 

  
= 

  


= −     



  = − =

 

Given that the 2nd term of the Laplacian has 1/r2 before it, the simplest choice for f(r) that we could 

hope for is: 

( )

( ) ( )

( )

2

1 1

2
2 1 2 1

2

2 2
2 2

2 2 2 2

2

2

Let ( ) .

1 1
Then ( ) ( )

1 1
( )

1 1
and ( ) sin cos ( ) sin cos ( )

So ( ) ,

k
f r

r

R r Ar Br r R r r Ar Br
r r r r r

Ar Br Ar Br R r
r r r r

Q C D Q C D Q
r r r

f r
r

   

   

 


   


        





− − − −

− − − −

=

   
= +     = − 

   


= − = + =




= +  = − − = −



=

 

and we have found our solution to Laplace’s equation in 2-D polar coordinates.  [It happens now that Q() 

is an eigenfunction of ∂2/∂2, but R(r) is not an eigenfunction of anything.]  Note that, depending on the 

boundary conditions, ν may or may not be an integer.  [Jac sec 2.11 p75] covers this well.  In particular, if  

goes completely around the origin, then ν must be an integer, because it must be that Q[ν(2+)] = Q(ν), 

so that Q is single-valued at every point.  The solutions are thus 

( ) , ( ) sin cos , ( , ) ( ) ( )R r Ar Br Q C D r R r Q      −
= + = +  = . 

Note that if the domain of Φ includes the origin, then R(r) = Arν, because Br–ν blows up there. 

There is one more case: ν = 0.  If this is allowed by boundary conditions and the domain of Φ, then the 

two Laplacian terms are both zero.  There are separate solutions for this case: 
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( )

2

2 2

2

2 2

1 1
( ) 0, ( ) 0

( ) ln (sometimes written ( ) ln )

1 1 1
( ) 0

1
and ( ) ( ) 0

( , ) ( ) ( ) ln

r R r Q
r r r r

r
R r B R r K B r

A

B
r R r r B

r r r r r r r r

Q C D Q
r

r
r R r Q B C D

A




  


  

   
= = 

   

=  = + 

      
= = =   

      


= +  =



 
 = = + 

 

 

Note that this possibility exists only if the domain of Φ excludes the origin, because (ln r) blows up there.  

Also note that if the domain of Φ allows  to go all the way around the origin, then D = 0, so that Q() is 

single valued, and hence Q() = 1 (constant).   

In this case of the domain surrounding but excluding the origin, we get the most general solution by 

combining the (ν = 0, D = 0) case with the other integer ν [Jac 2.71 p77]: 

( ) ( )0
0 1

( , ) ln sin cos
r

r B A r B r C D
A

 
   



  


−

=

  = + + +
  . 

Three-D Laplace Solutions 

Three-D Laplace Solutions in Rectangular Coordinates 

First, we extend the almost-trivial solution, which satisfies Laplace’s equation by inspection: 

2 2 2
2

2 2 2
, ( , , )x y z Ax By Cz D

x y z

  
 = + +  = + + +

  
. 

All 3 Laplacian terms are zero.  Again, it doesn’t come up much, but some references don’t even mention 

it.   

For less trivial solutions, we extend the separation of variables approach from the 2D rectangular 

coordinate case: 

( , , ) ( ) ( ) ( )x y z X x Y y Z z = . 

We choose X(x), Y(y), and Z(z) to be eigenfunctions of their respective operators: 

( )

2 2

2 2

2 2
2

2 2

( ) ( , , ) ( , , ), and similarly:

( ), ( ) 0 .

X
aX x x y z a x y z

x x

Y Z
bY y cZ z a b c

y z

 
=   =      

 

 
= =     = + +  =  

 

 

For Φ(x, y, z) to be a solution, it must have a + b + c = 0. 

If any coordinate, say z, can be separated into the form Cz + D, its eigenvalue is zero, and we revert to 

the 2D solutions for the remaining two coordinates.  In the 2D case, we had only two terms, so the 

eigenvalues had to be negatives of each other, so that they would sum to zero, and satisfy Laplace’s 

equation.  Recall that the eigenvalues of sinh(x) and cosh(x) are always positive, and the eigenvalues of 

sin(x) and cos(x) are always negative.  This meant that one coordinate had to be A sinh(·) + B cosh(·) (or 

equivalently exp(± ·) ), and the other had to be C sin(·) + D cos(·).   
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In the 3-D case, there are more possibilities, but all we require is that the 3 eigenvalues sum to zero: 

0a b c+ + = . 

This means at least one function must be sinh(·) or cosh(·) (or equivalently exp(± ·) ), at least one function 

must be sin or cos, and the last function can be either, subject to the constraint that the eigenvalues of all 3 

functions sum to zero.  Some example solutions are: 

( ) ( )

( )

( )

2 2

2 2 2

5 12 2 2 2

( ) sin 2 , ( ) cos3 , ( ) sinh 13 2 3 13 0

( ) cosh(3 ), ( ) sinh(4 ), ( ) cos(5 ) 3 4 5 0

( ) , ( ) , ( ) 2sin(13 ) 7 cos(13 ) 5 12 13 0x y

X x x Y y y Z z z

X x x Y y y Z z z

X x e Y y e Z z z z−

= = = − − + =

= = = + − =

= = = + + − =

 

Three-D Laplace Solutions in Cylindrical Coordinates 

In cylindrical coordinates, if the z coordinate can be separated into the form Cz + D, its eigenvalue is 

zero, and we revert to the 2D solutions for polar coordinates.  This is rare. 

Barring that, we now must introduce a slight variation on our separation of variables theme: the Bessel 

functions.  We start with the standard approach of separation of variables: 

2 2
2

2 2 2

1 1
, ( , , ) ( ) ( ) ( )r r z R r Q Z z

r r r r z
 



    
 = + +  = 

    
. (3.5) 

The sum of the above 3 Laplacian terms must be zero.  From our 2D work, we have a Q() = sin or cos(ν) 

solution that can offset an R(r)/r2 term, and a Z(z) solution that can offset either a positive or negative 

constant term [Z(z) = sinh or cosh(kz) or Z(z) = sin or cos(kz)]: 

2 2

2 2 2

2
2

2

1
( ) ( ),

( ) ( ) .

Q Q
r r

Z
Z z k Z z

z


 




= −




=



  (3.6) 

Wouldn’t it be nice if we had an R(r) that would produce the negative of the sum of those Q() and Z(z) 

terms?  That is: 

2
2

2

1
( ) ( )r R r k R r

r r r r

   
= − +        

. (3.7) 

This equation is singular at r = 0, which is often a physically valid radius.  The singularity is easily 

removed by defining R(r = 0) as the limit: 

0
(0) lim ( )

r
R R r

→
 . 

Case 1:  We call the eigenvalue of Z(z) “k2”, and it is positive.  Z(z) = sinh or cosh(kz). 

We don’t have any pre-existing functions that satisfy the R(r) equation, so we do the obvious: we make 

one!  Using power series solutions and some fancy math (that we don’t need to know here), mathematicians 

define a family of functions which satisfy the above R(r) equation for k2 > 0, and call them Bessel 

functions.  Every value of ν gets its own Bessel function, named Jν(kr).  Recall that ν can be any real 

number, so there is an uncountably infinite set of Bessel functions.  Bessel functions have lots of magic 

properties (that we don’t need to know here).  We don’t need a separate Bessel function for each value of k, 

because a simple change of variable eliminates k (w = kr)  [I need to clarify this??]:   
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2
2

2

Let , . Then , and

1
( ) ( )

w
w kr r k

k r w

k
r R r k R r

r r r r



 
= = →

 

   
= − + →        

k
w

w

w k




k 2w

R k
w k

   
= −   

   

2k
+

( )( )

2

2

2

2

Define ( ) . Then

1
( ) 1 ( )

Then ( ) ( ) ( )

( , , ) ( ) sin cos sinh cosh

w
R

kx

w
J w R

k

w J w J w
w w w w

w
R J w R r J kr

k

r z J kr C D E kz F kz



 

 







  

   
       

 
  

 

   
= − +        

 
=  =     

 

 = + +

 

Notice that since the eigenvalue of Z(z) > 0 (k2 > 0), Z(z) = sinh(kz) or cosh(kz).  (We’ll get to the Z(z) = sin 

or cos case in a minute.)   

But wait a minute, something is missing!  We have 2 linearly independent solutions for Q(), two 

linearly independent solutions for Z(z), but only one solution for R(r).  Basic differential equation theory 

tells us we need 2 solutions for each of the 3 variables.  Well it turns out, for non-integer ν, we have two 

Bessel functions: Jν and J–ν.  So the solution to Laplace’s equation is really 

( ) ( ) ( )

( ) ( ) ( )

( , , ) ( ) ( ) sin cos sinh cosh , non-integer

R r AJ kr BJ kr

r z AJ kr BJ kr C D E kz F kz

 

    

−

−

= +

 = + + + =
 

Finally, since Laplace’s equation is linear, the linear combination of any two solutions is also a 

solution: 

( )( )( )( , , ) ( ) ( ) sin cos sinh cosh ,

non-integer

r z A J kr B J kr C D E kz F kz       



  



− = + + +

=


 

Note that each value of ν has its own set of A, B, C, D, E, and F.  Also, the values of ν over which to sum 

are determined by the problem from the allowed range of  and the boundary conditions. 

However, a very common case is ν = integer (solution valid for  all around the axis).  In that case, Jν 

is a multiple of J–ν, and the two solutions are not independent.  So we do more math, and find a variant of 

the Bessel function which satisfies the equation, and is linearly independent.  Such a function is a 

Neumann function (pronounced noy’-mon), also called a Bessel function of the second kind.  Our 

solution is then: 

( )( )( )
0

( ) ( ) ( ), ( ) Neumann function, integer

( , , ) ( ) ( ) sin cos sinh cosh

R r AJ kr BN kr N kr

r z A J kr B N kr C D E kz F kz

  

       





  


=

= +  =

 = + + +
 

Note that each value of ν has its own set of A, B, C, D, E, and F.   

An important property of the Bessel and Neumann functions is: 

Bessel functions are regular at the origin, and Neumann functions blow up there.   
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This is analogous to the 2D polar case, where a domain that includes the origin must exclude the r–n 

solution, which blows up.  In 3D, a cylinder that extends to r = 0 must exclude the Neumann function 

solution, which blows up at r = 0. 

Case 2:  For the case where Z(z) = sin or cos(kz), its eigenvalue is negative, and we have: 

2 2

2 2 2

2
2

2

2
2

2

1
( ) ( ),

( ) ( )

1
( ) ( )

Q Q
r r

Z
Z z k Z z

z

r R r k R r
r r r r


 






= −




= −



   
= + +        

 

This is a different differential equation for R(r), and the Bessel functions don’t solve it.  No problem; we 

just make up a new set of functions for this case, do the fancy math/power series solutions, and call them 

modified Bessel functions (not to be confused with Bessel functions of the 2nd or 3rd kinds).  We use the 

same change of variable (w = kr), and call the solutions Iν and Kν [Jac ??]: 

2
2

2

1
( ) ( ) ( ) ( ) ( ), integerr R r k R r R r AI kr BK kr

r r r r
 




   
= + +  = +        

. 

As before, Iν is regular at the origin, and Kν blows up there.  [For ν non-integer, I assume we don’t use Kν, 

and instead use Iν and I–ν, as in the Z(z) = sinh or cosh case.  Need reference??] 

Three-D Laplace Solutions in Spherical Coordinates with Axial Symmetry 

The Laplacian in spherical coordinates is: 

 

( )

2
2 2

2 2 2 2 2

2 2
2

2 2 2

1 1 1
sin ,

sin sin

1 1 2
Note:

r
r rr r r

r r
r r r r rr r r


   

       
 = + +   

       

     
 •  + 

    

 

We start with a common special case of spherical coordinates: axial symmetry.  In this case, the whole 

system is unchanged by any rotation about the z-axis.  All of our results are thus independent of .  We 

now seek a 2D solution Φ(r, θ), embedded in a 3D physical space.  Applying the simplified Laplacian, and 

separation of variables, we seek something similar to the 2D polar case: 

2 2

2 2

1 1
sin (with axial symmetry)

sin

( , , ) ( , ) ( ) ( )

r
r rr r

r r R r P


 

   

      
 = +   

      

 =  =

 

As with the 2D polar case, the two operators must reduce to ±k/r2 for R(r) and P(θ): 

2 2

2

2 2

1
sin ( ) ( )

sin

1
( ) ( )

k
P P

r r

k
r R r R r

r rr r

  
 

  
= − 

  

  
= 

  

 

The difference from the 2D polar case is that the differential operators for the two Laplacian terms are 

different.  We don’t have any standard functions that provide the desired results, so (as with cylindrical 

coordinates), we invent them. 
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First, to find P(θ): Fancy math → Legendre polynomials, Pl(cos θ).  These are a countably infinite set 

of polynomials, labeled with their (integer) order l, which when applied to cos θ, satisfy the above equation 

[Arf 11.37 p565]: 

( )
2 2

11
sin (cos ) (cos )

sin
l l

l l
P P

r r
  

 

+  
= − 

  
. 

The first few Legendre polynomials, and the corresponding P(θ), are: 

( ) ( )

( )

( ) ( )

2 3
0 1 2 3

4 2
4

2 3
1 2 3

1 1
( ) 1 ( ) ( ) 3 1 ( ) 5 3

2 2

1
( ) 35 30 3 , or

8

1 1
(cos ) cos (cos ) 3cos 1 (cos ) 5cos 3cos

2 2

P x P x x P x x P x x x

P x x x

P P P      

= = = − = −

= − +

= = − = −

 

Now, to find R(r): Consider 

( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( ) ( )

1 22 2 1

2 2

11

2 2 2

1 1
( ) ( ) 1

11 1
1 1 1 ( )

l ll l

ll l l

R r Ar Br r R r r Alr l Br
r r rr r

l l
Alr l Br Al l r l l Br R r

rr r r

− + − +−

− ++ −

     = +  = − +       

+
= − + = + + + =



 

Finally, since Laplace’s equation is linear, the linear combination of any two solutions is also a 

solution: 

( )( ) ( )
1

0

( , , ) ( , ) ( ) ( ) cos (with axial symmetry)
ll

l l l

l

r r R r P A r B r P    


− +

=

 =  = = +  

Note that each value of l has its own set of A and B. 

Three-D Laplace Solutions in Spherical Coordinates without Axial Symmetry 

( )
2 2

2 2 2

2 2 2 2 2 2 2

1 1 1 1 1
sin , :

sin sin

( , , ) ( ) ( ) ( )

r Note r r
r r r r rr r r r r

r R r P Q


   

   

            
 = + +  •     

           

 =

 

Without axial symmetry, we need a real function of .  Since the prefactor of ∂2/∂2 is 1/(r2 sin2 θ), 

which has no  in it, we simply need the eigenfunction of ∂2/∂2, which is, as always, sin or cos(m), with 

eigenvalue –m2: 

2
2

2
( ) sin cos ( ) ( )Q C m D m Q m Q    




= +  = −


. 

The Legendre polynomials no longer work for θ, because now we need to satisfy: 

( ) 2

2 2

11
sin ( ) ( )

sin

l l
P m P

r r
  

 

 +  
= − +        

, 

to cancel the new –m2 term from the  part above.  For integer m, more fancy math creates a new set of 

functions, the associated Legendre functions, Pl
m(cos θ), which satisfy the above equation for given l and 

m: 
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( ) 2

2 2

11
sin (cos ) (cos )

sin

m m
l l

l l
P m P

r r
  

 

 +  
= − +        

 

In other words, combining the θ and  dependence, we see that (excluding r dependence): 

( )2 2

2

1
(cos ) ( )m

l

l l
P Q m

r
 

+
 = − + 2(cos ) ( ) (cos ) ( )m m

l lP Q m P Q   
 

−  
 

( )
2

1
(cos ) ( )m

l

l l
P Q

r
 

+
= −

 

This is exactly the same equation we had for the axial symmetry case, so R(r) is not affected.  Note that 

m is restricted to –l ≤ m ≤ l.  Also, when m = 0, the associated Legendre function is simply the original 

(non-associated) Legendre polynomial of order l.  [Associated Legendre functions are only polynomials for 

even l;  for odd l, they have a square root in them.]   

The loss of axial symmetry introduced a  dependence,  

which was cancelled by new functions of θ.   

The radial function was not involved, and the radial function cannot “see” any dependence on . 

Now R(r): compare to the axially symmetric case (above): we added here a –m2 eigenvalue for , but 

cancelled all of it in the new Pl
m(cos θ).  Therefore, the radial function doesn’t know anything about , and 

our axially symmetric R(r) still works as before: 

( )1
( )

llR r Ar Br
− +

= + . 

Finally, since Laplace’s equation is linear, the linear combination of any set of solutions is also a 

solution: 

( )( ) ( )1

0

( , , ) ( ) ( ) ( ) (cos ) sin cos

l
ll m

l l l lm lm

l m l

r R r P Q A r B r P C m D m      


− +

= =−

 = = + +   

Note that each value of l has its own set of Al, and Bl, and each (l, m) pair has its own Clm, and Dlm. 

Boundary Conditions Determine Solutions 

Given all our choices in the infinite set of solutions, how do we use boundary conditions to find the 

unique solution that they demand? 

In rectangular coordinates of 2 or 3 dimensions, we have to choose between sin/cos, sinh/cosh, and 

e+x/e–x for each coordinate.  The boundary conditions determine the simplest form for Laplace solutions.  It 

helps to consider the following facts about these functions: 

Function Range Zeros at Derivative 

Derivative 

range 

sin –1 to 1 n cos –1 to 1 

cos –1 to 1 (n+1/2) –sin –1 to 1 

sinh –∞ to +∞ 0 cosh ≥ 1 

cosh 1 to ∞ none sinh –∞ to ∞ 

exp(+x) > 0 to ∞ none exp(+x) > 0 to ∞ 

exp(–x) > 0 to ∞ none –exp(–x) –∞ to < 0 
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Figure 3.11  (Left) sinh(x) (blue) is odd, and has one zero.  cosh(x) (green) is even, and has no 

zeros.   ex/2 (red)  has no symmetry and no zeros.  (Right) sin(x)  (blue) is odd.  cos(x) (green) is 

even. 

Recall that in rectangular coordinates, at least one coordinate must be sin/cos, and another other must 

be sinh/cosh or e+x/e–x.  The following two cases often allow a simple choice for the coordinate which is 

sin/cos: 

(1) Given Φ(x=0, y) = 0 and Φ(x=b, y) = 0 

We try X(x) = A sin(πx / b), because that is the only function above with zeros at x = 0 and x = 

b.  Similarly for BCs in y, and in z. 

(2) Given ∂/∂x Φ(x=0, y) = 0 and ∂/∂x Φ(x=b, y) = 0 

We try X(x) = A cos(πx / b), because that is the only function above with zero derivatives at x 

= 0 and x = b.  Similarly for BCs in y, and in 3D, for z. 

In 3D, we might find two coordinates which are both sin/cos.  Note, though, that other BCs can also be 

solved with sin/cos, so the above choices are just two of many possible conditions. 

Now having a good idea which coordinate(s) is/are sin/cos, we use the other BCs with the table above 

to choose the simplest function for the other coordinate(s).  These functions must be sinh/cosh or e+x/e–x, 

because they have the positive eigenvalues needed to complement the negative ones from the sin/cos 

functions already identified in the solution.  Some BCs allow us to write the solution as a single function, 

instead of a linear combination.  For example: 

(3) Given Φ(x, y=0) = 0 and Φ(x, y=b) = L 

We try Y(y) = A sinh(ky), because that is the only function above with zero at y=0 and non-

zero at y=b.  Similarly for x, and z in 3D. 

(4) Given Φ(x, y=0) = K and Φ(x, y=b) = L 

We try Y(y) = A cosh(ky) or A exp(ky), because those are the functions above non-zero at y=0 

and at y=b. 

(5) Given ∂/∂y Φ(x, y=0) = 0 and Φ(x, y=b) = L 

We try Y(y) = A cosh(ky), because that is the only function above with zero derivative at y=0, 

and non-zero value at y=b. 

(6) Given ∂/∂y Φ(x, y=0) = K and ∂/∂y Φ(x, y=b) = L 
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We try Y(y) = A sinh(ky) or A exp(ky), because those are the functions above with non-zero 

derivatives at y=0, and at y=b. 

(7) Given symmetric BCs, such as ∂/∂y Φ(x, y = –a) = K and ∂/∂y Φ(x, y = +a) = K 

We try Y(y) = A cosh(ky), because it is the only symmetric function above with non-zero 

derivatives at y = ± a. 

(8) Given anti-symmetric BCs, such as ∂/∂y Φ(x, y = –a) = –K and ∂/∂y Φ(x, y = +a) = +K 

We try Y(y) = A sinh(ky), because it is the only anti-symmetric function above with non-zero 

derivatives at y = ± a. 

If the BCs do not allow any of the above simple solutions, then the solution must be a linear combination of 

these functions, with coefficients that must be determined by solving simultaneous equations, in the usual 

way. 

Respecting Orthogonality 

TBS: orthogonality wrt to linear operators.  Orthogonality of interest of Bessel functions. 

Multipoles: Dipoles and Quadrupoles 

Suppose we have a small blob of charges, and we look at it from a distance.  We are at the origin: 

observer

r

r'

r'

Q1

Q2

Q3

Q4

Q5

Qi

Qn

reference point 

for blob

r

 

Figure 3.12  A distribution of charges, admired from afar. 

We wish to know the potential we feel (here at the origin) from this blob of charges.  From that, we can 

compute the E-field.  We suppose that our observation distance is large compared to the size of the blob, as 

shown, so we can use the far field approximation.  This is a valuable and widely used approximation.  We 

assume the blob consists of n point charges, with total charge: 

1

n

total i

i

Q Q

=

=  . 

To zeroth order, the potential is simply: 

 totalQ
where r

r
 =  r .   

If all the point charges were exactly at r, this would be the exact potential.  Now consider the effect of 

moving one of the point charges, Qi, from the point r by some small amount, r'i.  The potential at the origin 

due to that charge changes by  

1 1 1

' 'i

i i
Q i i

Q Q
Q Q

r r r

   
 = − = − =     + +   r r r r

. 
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That is, the change in potential (seen by us at the origin) equals the charge times the change in 1/r.  The 

function 1/r is a scalar field: it assigns a number to every point in space.  Therefore, we can use its gradient 

to approximate small changes in 1/r: 

1 1 1
' '

iQ iQ
r r r

   
         

   
r r  . 

We can find the gradient direction with a simple geometric argument: the gradient points in the 

direction of greatest rate of increase.   

r
direction of fastest 

increase in r

 

The greatest rate of increase of 1/r is opposite to r itself: r increases fastest along itself.  Therefore, 1/r 

decreases fastest along r, and 1/r increases fastest opposite to r:  The magnitude of the gradient then 

follows from a simple derivative: 

2 2

1 1 1 1
ˆ

d

dr r rr r

− 
= −  = 

 
r . 

We use this to approximate the change in potential at the origin due to moving Qi a small distance r' : 

2

1 1
ˆ' '

iQ i iQ Q
r r

− 
 =  =  

 
r r r . 

Now let’s move each of the charges by its own small displacement r'i.  By the principle of 

superposition, we just add up the changes due to moving each charge: 

2 2 2
1 1 1

1 1 1
ˆ ˆ ˆ' ' , '

n n n

total i i i i i i

i i i

Q Q where Q
r r r

= = =

 − − −
 =  =  =   

 
 

  r r r r r p p r . 

Note that p is independent of where the blob is located, i.e. independent of the relative position of observer 

and blob.  It is solely a function of the blob, i.e. the distribution of charges.  p is called the dipole moment 

of the charge distribution.  We see that, to first order, the potential due to a net-neutral blob (I mean, charge 

distribution) falls off as 1/r2, and is zero along a line through the blob perpendicular to p. 

Note that often we consider the blob to be at the origin, and compute the field at some position r.  This 

simply reverses the sign of r above, to yield the more common formula: 

2 2

1 1
ˆ ˆ ...total

total

Q

rr r
 =     +  +r p r p . 

A subtle point: the dipole moment of the blob may depend on the reference point within the blob from 

which the r' are measured.  However, if the total charge is zero, the dipole moment is then independent of 

the reference point within the blob.  Why??  

Note that the dipole moment does not completely characterize the charge distribution, nor is it 

necessarily the most significant component of such a characterization.  It is simply the 1/r2 component of 

the potential due to the charge distribution in the far field approximation. 

Quadrupoles 

The quadrupole moment extends the above approximation to 2nd order.  In short, we could say, “Just 

extend the dipole to the 3-variable 2nd order Taylor expansion of 1/r,” and claim we’re done.  But that’s too 

arcane, so let’s see what it really means.   
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First, let’s recall the meaning of the Taylor expansion of a simple function, f(x), about x0.  To first 

order, we approximate the first derivative as constant.  Hence: 

0 0 0'( ) ( ) ( ) '( )f f x x f x x f x f x x    +   +  . 

To 2nd order, we approximate the 2nd derivative as constant, and therefore the first derivative changes 

linearly with x: 

0 0 0' ''( ) '( ) '( ) ''( )f f x x f x x f x f x x    +   +  . 

We can then find the average first derivative f ' over the interval Δx: 

0 0 0

1 1
' '( ) ' '( ) ''( )

2 2
avgf f x f f x f x x= +  = +  . 

This average f ' incorporates 2nd order effects.  Now use this average f ' in the first order estimate for f(x + 

Δx): 

( )

( )

2

0 0 0 0 0

2

0 0 0

1 1
' ( ) '( ) ''( ) '( ) ''( )

2 2

1
( ) ( ) '( ) ''( )

2

avgf f x x f x f x x x f x x f x x

f x x f x f x x f x x

 
   = +   =  +  

 

 +   +  + 

 

Dipole moments are the 1st order Taylor coefficients in the expansion of potential due to a blob of 

charges.  Quadrupole moments are simply the 2nd order Taylor coefficients in the same expansion: 

2 3

ˆ
( ) ...totalQ quadrupole term

r r r


 = + + +

p r
r  . 

We follow a procedure similar to the 2nd order Taylor expansion of f(x) above, but with two additional 

complications: (1) our function 1/r is a function of 3-D space, so its first derivative (gradient) is a vector, 

not a number; and (2) the 2nd derivative of 1/r is the gradient of a gradient, which is the gradient of a vector, 

which is a rank-2 tensor.  We take these two issues in turn.  As is traditional, we’ll stick to Cartesian 

coordinates. 

[Aside: purists might object to the following explanation, but our goal here is to describe electromagnetics, 

not differential geometry.] 

First, the gradient of a scalar field at a point is a set of 3 numbers (a vector), which tell us how the 

scalar field varies as we move in the x, y, and z directions: 

, ,
f f f

f
x y z

   
   

   
. 

We usually write the gradient as a vector, but for now, you can think of it as just a set of 3 numbers.  We 

use the 3 numbers to approximate changes in f given small changes in position, dx, dy, dz: 

, ,
f f f

f dx f dy f dz
x y z

  
     

  
. 

Further, for differentially small changes dx, dy, dz, the Δf are independent and can be summed, to get the 

familiar total derivative rule: 

f f f
f dx dy dz

x y z

  
  + +

  
. 

This is what we used to compute the dipole moment.  It is a first order approximation, because we take the 

gradient to be constant over the intervals dx, dy, dz.  To make the 2nd order approximation, we take the 2nd 

derivative to be constant, thus making the gradient (first derivative) vary linearly over the intervals dx, dy, 

dz.   
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So now we ask, what is the gradient of a vector field, g(r)?  At a given point, it is simply a set of 3 

vectors that tell us how the vector field varies as we move in the x, y, and z directions: 

, ,
x y z

   
   

   

g g g
g  

x

y

(x, y)

g(x, y)

g(x, y) + (∂g/∂x) dx

Δg ≈ (∂g/∂x) dx

Δg ≈ (∂g/∂y) dy

g(x, y) + (∂g/∂y) dy

g(x, y) + (∂g/∂x) dx + 

(∂g/∂y) dy

Δg ≈ (∂g/∂x) dx + (∂g/∂y) dy

(x+dx, y+dy)

x+dx

y+dy

dy

dx
 

Figure 3.13  Variation of a 2D vector field over small intervals. 

Note that all 3 component of g may vary even if we move only in, say, x.  We can approximate the change 

in the vector g over small displacements, just like we did for the scalar field: 

, , , anddx dy dz dx dy dz
x y z x y z

     
        + +

     

g g g g g g
g g g g . 

g is a set of 3 vectors, each with 3 components.  We write g as a 3 x 3 matrix of 3 column vectors: 

, , , , ,

xx yx zx yxxx zx

xy yy zy xy yy zy

xz yz zz xz yz zz

g g g gg g

g g g where g g g
x y z x y z

g g g g g g

      
            

  =          
              

       

g g g g g g
g . 

This is a rank-2 tensor.  It can operate on a displacement vector to approximate the change in a vector field 

over that displacement: 

( )

xx yx zx

xy yy zy

xz yz zz

g g g dx

dx dy dz d g g g dy
x y z

dzg g g

   
     

  + +   =          
   

g g g
g g r . 

Note that a tensor is linear in its vector argument: ( ) ( ) ( )1 2 1 2k d d k d d + =  + g r r g r g r .  [This implies 

that if we transform coordinates (e.g., rotation), the columns and then rows of the tensor will transform like 

vectors;  but we don’t need that right now.] 

Now let’s compute the gradient of the gradient of a scalar function f(x, y, z): 
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2
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2

f f f

x y z yy

f f f

x z y z z

 
 
 
  
 
    

 
   

      

 

It’s just the matrix of all second derivatives.  [It is called the Hessian matrix.] 

Back to quadrupoles:  We are the observer at the origin.  We want the 2nd order change in potential 

seen by us due to displacing a single charge Qi from the blob by a small amount r' = (x', y', z').  We follow 

the same procedure as above for the 2nd order Taylor expansion of f(x).  First, we compute the gradient of 

the gradient of 1/r: 

( ) ( )

( ) ( )

3/ 2
2 2 2

2 3

3/ 2
2 2 2

1 1 1
ˆ ˆ ˆ ˆ . , ,

ˆ ˆ ˆ
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  
− + + + +

   

=

g g g
r r x y z g

x y z

   = 

( )
5/ 2

2 2 2 2x y z
−

+ + ( ) ( ) ( )
3/ 2 5/ 2

2 2 2 2 2 2 2

2

5 3 5 5
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5 5 3 5 5 5 5 3
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3
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ˆ ˆ ˆ
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 
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1 3 1

0 1 0
3
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3
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−           − = −               −

    

Now find the average gradient over the displacement: 
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There’s a trick here that’s kind of complicated that I don’t have time to write down yet, but it turns out 

we can drop the (1/3)r2 terms in the first matrix by adding –(1/3)r'2 terms to the quadrupole tensor.  Briefly, 

it’s because grad-grad-1/r is traceless, so we can add any multiple of the identity matrix to the quadrupole 

tensor Dαβ, and it won’t affect ΔΦ.  So we add –(1/3)r'2[I] to make Dαβ traceless.  This means we can now 

add any multiple of the identity matrix to grad-grad-1/r, and it won’t affect ΔΦ.  So we add (r2/3)I3, to 

eliminate those ugly terms.   

Now notice that all the terms for ΔΦ separate cleanly into r factors and r' factors.  We also use the 

principle of superposition, to include the effect of all charges in the blob.  This leaves us with: 

2 2

2

2 2 2

5
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2 2

1
' ' ' ' ' '

3element by element

3 1
multiplied and ' ' ' ' ' '

32
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  

. 

So we define: 
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1
' ' ' ' ' '

3

i i i i i i

n
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
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 
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 
  −
 
 
 −
  

 , 

and then: 

3 3

5 3
, 1 , 1

3 3
ˆˆ ˆ ˆ, .

2 2

thD r r D r r where r component of
r r

      

   



= =

  =   r  

Dαβ is the quadrupole tensor, which can simply be thought of as the matrix of numbers needed to compute 

the 2nd order change in Φ due to a blob of charges.  Notice that the change in Φ varies as 1/r3. 
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[Notice that the quadrupole tensor is a rank-2 tensor, which acts directly on another rank-2 tensor, to 

produce a scalar: ΔΦ.  The quadrupole tensor acts on the tensor r  r, which is the tensor product of the 

displacement vector with itself.  We have thus seen two ways rank-2 tensors can act: some can act on a 

vector to produce a vector, and others can act on another rank-2 tensor to produce a scalar.  It is not always 

sensible for a single rank-2 tensor to act both ways.  See Funky Mathematical Physics Concepts for details.] 

[Aside: The above last few steps would be a lot easier if we recognize that: 

( ) ( )

2

2

2

element by element
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summed with

element by element

multiplied and

summed with

a b c x x a b c

x y z d e f y x y z y d e f

g h i z z g h i
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yx y yz

zx zy z

 
       
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,

x xy xza b c a b c

d e f yx y yz d e f

g h i g h izx zy z

                              

 

where we’ve defined a matrix dot-product, producing a scalar.] 
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4 Electromagnetic Propagation and Radiation 

Propagation In a Vacuum 

Maxwell’s equations imply that all vacuum EM fields, including inside waveguides, satisfy the wave 

equations (in Gaussian units) [Jac sec. 8.2]: 

2
2

2 2

2 2 2
2 2 2

2 2 2 2 2 2

2
2

2 2

2 2 2
2 2 2

2 2 2 2 2 2

1
, i.e., each component of satisfies the wave equation:

1 1 1
, , .

1
Also for :

1 1 1
, ,

x x y y z z

x x y y z z

c t

E E E E and E E
c t c t c t
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B B B B and B B
c t c t c t


 =


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 =  =  =
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
 =



  
  =  =  =

  

E E E

B B B

 

In free space (no waveguide), the E & B fields are in phase.   

Many people think that in free space, E & B are out of phase,  

and imagine the energy to be shifted back and forth between the E & B fields, but that is not true. 

Absorbing an EM wave is like being hit with a stream of warm beans.  The energy density at the E & 

B nodes (zeros) is zero.  The energy density is maximum at the peaks (anti-nodes). 

x

y

z

E

B

E

B

A

w

z

z

 

Figure 4.1  Linearly polarized EM wave in free space, propagating in the z direction.  On the 

right, only the E and B fields are shown, for simplicity.  On the left, the A field is included.  A is 

in the plane of E, but leads E in time and space. 

In the radiation gauge, the vector potential A for a linearly polarized EM wave is also a linearly 

polarized transverse wave, in the plane of the E field.  A leads E in time (A peaks 90o before E), and lags in 

space (A peaks 90o after E).  Consider the point w in space in the diagram above: 

( ) ( )
ˆ , ( ) 0, 0, 0

y y

y

A w A w
A w

t z

 
= =  

 
A y A . 
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E is maximum at w, where A is 0 and decreasing in time: 

1
(gaussian)

c t


= −



A
E . 

At the same point, B is (negative, in this case) maximum at w, where A is 0 and increasing in space: 

zA

y


=   =


B A ˆ ˆ

y yA A

z z

  
− = − 

   

x x  

However, the A field decreases in magnitude with increasing frequency, for the same power density, 

because E & B derive from A with derivative operators, which introduce factors of ω for E, or k for B: 

E vs. A:
Low Frequency, A smaller

E vs. A:
Low Frequency, A larger

time 

amplitude

E
A

amplitude

E

A
time 

 

Figure 4.2  Same magnitude E field and its associated A field at two different frequencies. 

Polarization Vector 

This section assumes you understand phasors, and the decomposition of a sinusoid into “in-phase” and 

“quadrature” parts (see “Phasors,” above).  We start with an overview, and then fill in the details. 

Overview: A polarization vector in general applies to any vector (or other multi-component object) 

which travels in space, and varies sinusoidally in time and space.  It gives the relative amplitude and phase 

of each component of the vector.  By convention for EM waves, the polarization vector, ε, gives the relative 

amplitudes and phases of the E-field components (Ex, Ey, Ez) for the wave.   

In applications where the A field is most relevant, we write a polarization vector for the A-field, 

instead.  In this case, ε is gauge–dependent.  In some gauges, it has unexpected components, including a 

“longitudinal” component, which points along the propagation direction.  This is a gauge artifact, and the 

polarization vectors for E and B-fields (in vacuum) always have no component along the propagation 

direction. 

In principle, one could write a polarization vector for a B-field, but it’s not usually done since it is just 

a right-hand rotation of the E-field polarization vector about the propagation direction by 90o. 

[Note that for gravity waves, where the propagating field is the 4  4 metric tensor perturbation field, hμν, the 

polarization “object” is a 4  4 polarization tensor.] 

For a propagating EM wave, the polarization vector ε gives two things: 

1. the E-field direction (polarization) of the EM wave at any time; 

2. the fraction of the total EM wave intensity (power density) carried by each component of 

polarization. 

The polarization vector ε is a set of 3 phasors, that describe the sinusoidal oscillations of each component 

(Ex, Ey, Ez) of the E-field.  So we can immediately write the form of the E-field at a point as a function of 

time (in several different notations): 
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E ε x y z . 

It is possible to represent any polarization (linear or elliptical) in any propagation direction with a 3D 

complex vector.  Since (ideal) EM waves are transverse, the E-field, and thus the polarization vector, are 

perpendicular to the wave-vector k, i.e., ε · k = 0. 

y

x

z

y

x

z

k

εR

εI

k

ε

(b)(a)  

Figure 4.3  (Left) Wave vector k in an arbitrary direction, and some possible real polarization 

vectors.  (Right)  Wave vector k, and the real (blue) and imaginary (red) parts of a complex 

polarization vector. 

To keep the x, y, and z intensities normalized with respect to total intensity, the polarization vector is 

usually normalized to unit magnitude: 

( )

22 2

ˆ ˆ ˆ, , , , , are phasors (complex numbers), and

1.

x y z x y z x y z

x y z

where        

  

= = + +

+ + =

ε x y z

 

Note, however, there is a subtle distinction between the amplitudes of spatially perpendicular components, 

and the instantaneous maximum magnitude of the electric field, Emax.  For a linearly polarized wave, say 

halfway between the x and y-directions, Emax = (2)Ex, and the time averaged intensity <I> ~ Emax
2/2.  

However, for the same amplitude of perpendicular electric field components, but phase shifted to make 

circular polarization, Emax = Ex = Ey, and <I> ~ Emax
2.  Note that the intensity is the same for both waves: 

perpendicular component intensities always add; it is Emax which is different. 

For linearly polarized waves, <I> ~ Emax
2 / 2, whereas for circular waves, <I> ~ Emax

2. 

The real part of the polarization vector is the “in-phase” E-field parts.  The imaginary part is the time-

quadrature E-field parts, i.e. is 90o out of phase with the real part.  That is, the real part gives the direction 

of E at t = 0, and the imaginary part gives the direction of E a quarter-cycle later: 

   Re || ( 0), Im || ( / 4)t t T    =        =ε E ε E . 

Any polarization vector for a propagating wave in a given direction k can be written as a linear 

combination of two basis polarization vectors for that k. 
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Figure 4.4  EM wave propagating out of the page: sample polarizations. 

Non-plane waves can be thought of as an infinite set of tiny plane wave fronts propagating in different 

directions; therefore, non-plane waves have a separate polarization vector at each point.  I.e., the 

polarization vector is a function of space, ε(r).  Since the reference time for the sinusoidal phase is 

arbitrary, we conventionally take the first non-zero component of ε to be real and positive, which sets the 

reference time, and define the subsequent components relative to that. 

Details:  We restrict our attention to a single point in space, through which an EM wave is 

propagating.  Since we are at an infinitesimal region of space, any shape wave front may be viewed as a 

plane wave.  For a simple, plane-polarized wave, the time-average intensity P (W/m2) and E-field 

amplitude E are related by (the ε below are permittivity, not polarization vector): 

2

2

1
(SI) 2 , [Jac 7.13 p298]

2

(gaussian) [L&L p120]
4

In general: , 2 (SI) or (gaussian)

E
P E ZP Z

Z

c
P E E P

c

E m P m Z m
c











=  = 


=  =


= = =

 

Consider an EM wave traveling in an arbitrary direction, and with arbitrary polarization.  At any given 

time, the wave has an E-field with components in the x, y, and z directions: 

ˆ ˆ ˆ( ) ( ) ( ) ( )x y zt E t E t E t= + +E x y z . 

Each component is a sinusoid of frequency ω = c|k|, and so may be represented by a phasor (recall that a 

phasor is a complex number which represents the amplitude and phase of a sinusoid; see Phasors above): 

     

( ) 
2

ˆ ˆ ˆ( ) Re Re Re

ˆ ˆ ˆRe

is the total intensity of the wave in W/m

i t i t i t
total x y z

i t
total x y z

total

t m P e e e

m P e

where P

  



  

  

− − −

−

 = + +
 

= + +

E x y z

x y z  

For elliptical polarization, both the magnitude and direction of the E-field are functions of time.   

The propagation vector is k (not to be confused with k ≡ z-hat), whose magnitude is the spatial 

frequency in rad/m, and whose direction is the propagation direction.  For a given E-field component j  

{x, y, z}, the intensity (power/area) carried in the k direction is proportional to Ej
2, where Ej is the (real) 

amplitude: 
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22 22 2 2 2 2 2

22 22

, ,

W/m 1 [Jac 7.13 p298]

x x x total y y y total z z z total

total x y z x y z

P m E P P m E P P m E P

P P P P

  

  

= = = = = =

= + +  + + =

 

So |εx|2 is the fraction of the total wave intensity carried by the Ex component, etc.   

It is instructive to consider the real and imaginary parts of ε separately: 

 and are real vectorsR I R Ii where= +ε ε ε ε ε . 

εR is the direction of the E-field at the reference time, t = 0, and all integer oscillation periods after, 

t = nT = 2n/ω (Figure 4.3b, blue arrow).  εI is the direction of the E-field at quadrature times, t = (n + ¼)T 

(Figure 4.3b, red arrow).  The E-field is always perpendicular to k, so both εR and εI lie in the plane 

perpendicular to k. 

0 0 0 0R I i =  =   = + =ε k ε k ε k . 

Basis polarization vectors: Since EM waves are transverse, the E-field (and therefore polarization 

vector) lies in a plane perpendicular to k.  This plane is a 2-D space, and all vectors in that plane (for a 

given direction of k) can be written as the linear combination of 2 basis vectors.  For complex vectors like 

polarization vectors, the basis vectors can be either real or complex.  We always choose the basis vectors to 

be orthonormal, i.e. 

* * *
1 1 2 2 1 21 0, x x y y z zwhere a b a b a b =  =  =   + +e e e e e e a b . 

[The dot product of complex vectors is just like a quantum inner product.]   

The only two bases you ever see are linear polarization bases, and circular polarization bases.  To 

simplify the discussion, we now focus on propagation in the z-direction (k = kez).  There are 2 orthogonal 

directions of linear polarization, x and y.  Therefore, our linear polarization basis vectors are simply: 

( ) ( )1,0,0 0,1,0 linear polarization basis vectorsx y= =e e . 

For z propagation, the plane of the E-field is the x-y plane; thus every polarization vector for z 

propagation can be written as a (possibly complex) combination of ex and ey.  The polarization vector for 

100% x polarization is just ε = e1 = (1, 0, 0).  For 100% y polarization, ε = e2 = (0, 1, 0).  For linear 

polarization at 45o, ε = (1/√2, 1/√2, 0), which means ½ the power is carried in Ex and half in Ey.   

For right-hand-circular polarization (RHC), E(t) rotates counter clockwise (right hand rule applied to 

k).  This means E(t = 0) points in the x direction, so εR ~ (1, 0, 0).  E(t = T/4) points in the y direction, so εI 

~ (0, 1, 0).  Then: 

( ) ( ) ( ) ( )
1

~ 1,0,0 0,1,0 1, ,0 . , 1, ,0
2

R Ii i i Normalizing i+ = + = =ε ε ε ε . 

For LHC, E(t = T/4) points in the –y direction, so ε = (1/√2, –i/√2, 0).  We have just derived the 

circular polarization basis vectors: 

( ) ( )
1 1

1, ,0 1, ,0
2 2

R Li i= = −e e . 

[Beware that in optics, RHC is called “left handed” and LHC is called “right handed.”  Beats me.] 

Examples:  Let’s use our polarization basis vectors to find out how much power passes through some 

polarization filters.   

(1)  Given an elliptical wave with ε = (3/5, i4/5, 0), what fraction f of the power will survive a y-

polarizing filter?  The filter passes only the part of the wave with ε = (0, 1, 0).  Therefore, we “project” our 

given electric field polarization onto this, i.e., we see what fraction of our wave is Ey-polarized.  This is just 

like finding how much of a basis vector is in a quantum state.  Then we square that, to get intensity: 
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( ) ( )
2 2 2

0,1,0 3/ 5, 4 / 5,0 4 / 5 16 / 25yf i i=  =  = =e ε . 

A circular wave, ε = (1/√2, i/√2, 0),  and a 45o linear wave, ε = (1/√2, 1/√2, 0), would both pass ½ the 

power. 

(2)  How much of an x polarized wave survives a chiral filter that passes only RHC? 

( ) ( )
2 22

1/ 2, / 2,0 1,0,0 1/ 2 1/ 2Rf i=  =  = =e ε . 

The answer is the same for any direction of linear polarization (axial symmetry): 

( ) ( )
2

22 2 2
1/ 2, / 2,0 , ,0 1/ 2, since 1

2
R

a ib
f i a b a ib

+
=  =  = = = = +e ε ε . 

Notice that in these cases, linear polarized light went in, but circular polarized light came out. 

(3)  How much of an LHC wave would pass the RHC filter? 

( ) ( )
2

22 1 1
1/ 2, / 2,0 1/ 2, / 2,0 0

2 2
R Lf i i=  =  − = − =e e . 

Irrelevant point: Sometimes, you can find the direction of k from the polarization vector, sometimes 

not.  If εR and εI point in different directions, then because they are both perpendicular to k, εR  εI points 

along k.  But if εR and εI are parallel, or if εI = 0, then εR  εI = 0, and you can’t tell anything.  So far as I 

know, this fact is of no use at all. 

TBS.  Angular momentum of elliptically polarized waves. 

Extension to other waves: For things like gravity waves, the field which varies sinusoidally is a rank-

2 tensor, which can be written as a 2D matrix (below, left): 

0 0 0 0

0 1 0 01
( , ) Re ( , ) Re

0 0 1 02

0 0 0 0

tt tx ty tz

xt xx xy xz i t i t

yt yx yy yz

zt zx zy zz

t e t e
 



   

   
 

   

   

− −
+

     
     
     = =      
      
         

x x . 

Above right is ε+, the polarization tensor for “+” polarization propagating in the z-direction. 

Sleepy Hollow: The Legend of the Headless Vector 

½ and ¼ waves plates prove headfulness.?? 

Linear polarization direction is often called a “headless vector,” because often only the plane of 

polarization is important (or known).  For example, if we rotate a linear polarizer by 180o, it’s behavior is 

not changed.  Similarly, if we rotate the light incident on a polarizer by 180o, there is no change in the 

output light.  However, these experiments do not explore the full “headedness” of polarization.  We now 

show that polarization is, in fact, a “headful” vector, whose sense can be measured with interference.  This 

is reasonable, because the polarization is fully described by the direction of the E-field, at a given reference 

time, and the E-field is a headful vector. 

Recall every vector lies along an axis, and that the sense of a vector is simply which way the vector 

points along the axis.  In some cases, including most cases of polarization, we know the axis of the E-field, 

but not its sense.  Also, recall that the polarization vector specifies the complete (“headful”) direction and 

phase of the E-field for a propagating wave.   

Interference occurs between headful E-field vectors, including their sense.  To illustrate, suppose we 

superpose two equal-amplitude linearly polarized EM waves, with polarization vectors ε1 and ε2.  Then at 

the point of superposition, we get: 
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    ( ) 1 0 1 2 0 2 1 2 0 1 2( ) Re , ( ) Re , Rei t i t i tt E e t E e E e  − − −= = + = +E ε E ε E E ε ε . 

Suppose that ε1 and ε2 are real and parallel: ε1 = ε2.  Then we get constructive interference.  Now 

suppose we rotate in space the 2nd wave about its propagation direction by 180o.  This is not a phase-shift; 

there is no time delay involved.  After rotation, the polarization vector gets negated: ε2 → –ε1.  The 

interference is now destructive: 

( ) 1 2 0 1 2Re 0i tE e −+ = + =E E ε ε . 

Therefore, we see that ε1 and –ε1 (or ε2 and –ε2) are different polarizations.  One is the negative of the other.  

If ε2 = (ex, 0, 0) then it is horizontal polarization.  Then –ε2 is also horizontal polarization, but it’s a 

different “horizontal:” it is the negative of ε2’s “horizontal.” 

Thus the polarization vector describes not only the plane of polarization, but the sense of the E-field in 

that plane.  For linear polarization, you can write the polarization as a unit vector parallel to the E-field.  

This is a simple case of a polarization vector. 

Of course, the sense reverses every half-period, so the sense of the polarization vector is defined at 

some reference time.  In fact, the polarization vector describes the full 360o phase (in time) of the E-field, 

and phase is always relative to some reference time (or phase), taken as zero.  The phenomenon of 

constructive or destructive interference is, as always, independent of our reference time (or phase). 

Summary:  Some experiments are not sensitive to the sense of the polarization, and therefore measure 

only the plane of polarization.  They often treat such a polarization measurement as a headless vector, 

which is good enough for some applications.  However, we have shown that interference reveals that 

polarization is a headful vector, even if the sense is unknown. 

Wave Packets 

Often, one sends finite-time “messages” or signals with electromagnetic waves (or some other linear 

medium: wires, water, air, etc.).  Such a signal can be decomposed into a sum of sinusoidal frequency 

components (i.e., the Fourier Transform), each frequency component with its own amplitude and phase.  

Since many propagation phenomena are frequency dependent, it is important to ask:  What range of 

frequencies are needed to add together to form a finite time signal?  We will argue that a continuous “band” 

of frequencies, of finite upper and lower bound, is   sufficient to construct a finite time signal.  The 

difference between the upper and lower frequency in a signal is called the bandwidth (BW).  (This term is 

much abused; in particular, it is frequently used (incorrectly) to mean “data capacity.”)  We give a hand-

waving argument for a crude estimate of the bandwidth of a finite-time signal.  When viewed as a sum of 

sinusoidal waves, such a signal is called a wave-packet. 

Wave-packet in Time

time

amplitude

t

Fourier Transform: 
Wave-packet in Frequency

frequency

amplitude

BW 

 

Figure 4.5  (Left) A wave-packet as a function of time.  (Right)  Frequency components of a 

wave-packet . 

Note that when you transmit time-signals into a propagating medium, their extension in time becomes 

also an extension in space (e.g., wavelength).  The following argument applies equally well to a signal at a 
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point in space that varies over time, and to a signal frozen in time that varies in space.  Any reference to 

frequency can be equivalently thought of as time-frequency (ω), or spatial-frequency (wave-number, k).  

When adding up lots of sinusoids, we consider the instantaneous phase of each component at some 

point (in either time or space).  If there is a wide range of phases, spread over most of [0, 2π), then the 

sinusoids will have lots of positive and negative components, and will add up to approximately zero.  To 

have a significant contribution to our signal, most of the instantaneous phases need to be within a radian or 

two of each other.  And this has to be true throughout the width (in time or space) of the wave packet.   

Since the signal comprises different frequencies, the instantaneous phase difference between frequency 

components varies over time (or space).  Components “in-phase” at one point will be “out-of-phase” at a 

distant point.  (Below) the low- and high- frequency components (red and blue) start out in-phase, but drift 

to opposite phase over some time. 

time or 

space

amplitude

t

ωupper
ωlower

 

Figure 4.6  Wave components of different frequencies drift out of phase over time (or space). 

The rate at which the phases drift apart is exactly the frequency difference between the two 

components: 

( ) ( ) ( )

1 1 1 2 2 2

1 2 1 1 2 2 1 2

,

, or

t t

t t t const t const k z const

     

          

 +  +

 = − = + − − = − + =  +           =  +
 

The constant term is not important, and simply depends on the shape of the signal and the origin of our 

t (or z) coordinate.  What matters is that as t (or z) increases, so does the phase difference.  Choose the 

coordinate origin to be the start of the wave-packet; then the width of the packet is Δt (or Δz).  Clearly, the 

largest Δθ occurs when the frequency difference is maximum, i.e., between ωlower and ωupper: 

( ) ( ) ( ) ( )max max, orupper lower upper lowert BW t k k z BW z    = −  =        = −  =  . 

Since Δθ must remain within 1 or 2 radians over the width of the signal, we have: 

( )
1or 2 rad 1or 2 rad

~ 1or 2 rad ~ , or    ~BW t BW BW
t z

 =      
 

. 

A more detailed analysis yields a theorem which states: a signal of finite time must (strictly speaking) 

have infinite bandwidth, and conversely, a signal of finite bandwidth must extend over infinite time.  

However, one can have an approximately finite-time and finite-bandwidth signal (for all practical 

purposes), because the amplitudes outside a finite interval are negligibly small. 

Phase Velocity and Group Velocity 

A hugely important concept now arises: what is the propagation speed of the wave packet?  You might 

be tempted to say, “the same as the propagation speed of a single frequency.”  That’s true if all frequencies 

propagate at the same speed.  The speed of a single sinusoid is called the phase velocity, and can be seen 

from Figure 4.7. 
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ω = vphasek
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Figure 4.7  Phase velocity. 

In the figure, we have 4 rad/s, and  rad/m.  The wave must then travel with: 

4 rad/s
4 m/s

rad/m
phasev

k

 


= = = . 

If all frequencies propagate at the same speed, then ω = vphasek (Figure 4.7, right). 

However, in most linear media, the propagation speed of a sinusoid depends on its frequency.  Since a 

wave-packet is made up of many frequencies, which frequency should we use to determine its speed?  You 

might guess the center frequency.  Turns out, though, that what really matters is just how the speed varies 

with frequency.  The wave-packet, or “group” of waves travels with a speed (group-velocity): 

. Recall the phase velocitygroup phase

d
v v

dk k

 
= = . 

Actually, since each component travels at a different speed, the wave packet does not exactly travel “as a 

group.”  It gets “smeared” over time, because the relative phases of its components get misaligned.  This 

smearing is called dispersion, and in some cases, is a serious limitation on a communication system.  More 

on phase and group velocity in “Waveguides,” later. 

Poynting Vector For Linear Polarization 

The Poynting vector describes the power density (= energy flux) of the propagating radiation: 

watts/m2.  It points in the direction of power flow, and is proportional to E and B: 

( )( ) 2( , ) ( , ) ( , ) SI units: V/m A/m =W/mt t t= S r E r H r . 

Since H α E, and perpendicular to it, if either E or H is sinusoidal, then both are sinusoidal: 

2( ) sin , amplitudest EH t where E H= S . 

Quite often, we are more interested in the time-averaged power density, rather than the instantaneous 

power density.   Then we use the fact that <sin2> = ½, over the long term (or an integral number of quarter-

cycles): 

( )
ˆ

1 ˆ ˆ ˆ ˆ, , are unit vectors in direction of and
2

EH where
E H

=   

k

E H
S E H E H E H . 

Beware of Solenoidal Poynting Vectors 

In the radiation formula for a point particle [Jac ?? & Gri ??], there is a term called the “velocity term” 

or “velocity field,” because it is proportional to the particle’s velocity: 

radiation formula here ?? 
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This term seems to contribute to a Poynting vector, yet is said not to contribute to radiation.  Some 

references’ explanations are misleading: they say that the electromagnetic intensity due to the velocity term 

falls off as 1/r4, and so becomes insignificant compared to the 1/r2 “radiation” term.  While the velocity 

term does drop as 1/r4, this is not the crux of the matter.  The Poynting vector describes the power density 

(= energy flux density) of the propagating radiation: watts/m2.  Regardless of how the magnitude of the 

Poynting vector falls off, a radial component to it represents real energy flow.  In the far field, we can 

imagine thick spherical shells around the radiation source.  Since the shells are in vacuum (or non-

absorbing material), the power (energy/time) flowing into any shell (from the source inside) must equal the 

power flowing out of that shell.  Since the shell surface area increases as r2, the power density must 

decrease as 1/r2, so that the product of the two, the total power, remains constant.  This is just conservation 

of energy.  Therefore: 

Conservation of energy requires that all radially directed power flows fall off exactly as 1/r2. 

There cannot be any power flow that falls off as 1/r4, because it would violate conservation of energy.   

So what of the velocity term?  The real explanation is that the Poynting vector resulting from the 

velocity term is solenoidal, i.e. the lines of power flow close on themselves.  No power flows out; it’s 

almost as if the power just flows around in circles.  The radial component of the velocity term Poynting 

vector is 0: 

ˆ 0 (velocity term Poynting vector)velocity  =S r . 

Velocity fields have no outward power flow.  The rate of fall off (1/r4 or anything else) is irrelevant.  We 

can see this by considering the well-known E-field of a particle at constant velocity.  This field emanates 

from a single point in space called the “present position.”  That means the E-field everywhere points 

radially outward.  It is also well-known that only the tangential component of E contributes to radiation, 

which you can readily see because only the perpendicular component of E contributes to the radial 

component of the Poynting vector (diagram??).  The velocity field has no tangential component of E, and 

therefore no radiation.  The Poynting vector field-lines make circles around the present position, and are 

completely solenoidal.   

We can compute the radiated power out of an arbitrary closed surface (not necessarily a sphere, nor 

centered anywhere in particular) from: 

radP d=  S a . 

While there may be patches (of a non-spherical surface) where the velocity terms have an outward 

component, their solenoidal nature insures that any such patch is exactly canceled by an inward component 

somewhere else. 

In short, velocity terms don’t radiate because their Poynting vectors go in closed loops. 

TBS: Poynting Vector For Arbitrary Polarization 

Realistic Waves: Unguided, Slow, and Twisting 

The idealization of an infinite plane wave is useful for developing basic concepts in EM propagation.  

However, realistic waves have a finite cross-section in space.  This has extremely important consequences: 

such waves are not transverse, travel slower than c, disperse over distance, and can carrying angular 

momentum.  Furthermore, this classical angular momentum has a surprising tie to quantized radiation.  

[We hope it also has a tie to spin-1/2 particles, but that remains to be seen.] 

Besides the practical applications, the analysis of realistic waves illustrates a number of important 

principles, e.g. sometimes idealized models unexpectedly obscure important realistic effects; advanced use 

of phasors, including time averages; and how nonlinear dependence produces new and nonobvious 

consequences. 

We now consider some of these consequences for EM beams.  This section requires that you 

understand linear and circular polarization, and their phasor (complex amplitude) representations, Poynting 
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vectors, and the principle of EM wave momentum.  Some of the analysis is similar to that of waveguides, 

so familiarity with waveguides may be helpful, but is not necessary.   

We follow these steps: 

• Beams cannot be transverse. 

• Therefore, beam group velocities are < c. 

• Linearly polarized beams cannot have angular momentum. 

• Circularly polarized beams can have angular momentum (unlike infinite plane waves). 

• The seeds of quantized EM fields are hinted at even in classical electromagnetics. 

What’s a Beam? 

x

y

z

(a) k (b)

x

Ex

∂Ex /∂x

x

y

z

(c)

E

timeEx

Ez

Δx

Δx

k

Ez

• P

 

Figure 4.8  (a) A roughly circular beam of finite cross-section.  (b) Qualitative example of Ex, 

∂Ex/∂x, and Ez across the beam face, at fixed time.  (c) Example E(x, y) at a few points across the 

beam, at the time indicated on the slopes of both Ex and Ez (inset). 

We consider a z-propagating wave with finite cross-section, i.e. a beam with finite spatial extent in x 

and y.  A common example is a laser beam, say with linear polarization, and an axially symmetric gaussian 

intensity profile.  Any beam must have the approximate form (similar to a waveguide): 

( )
0 ˆ ˆ( , , , ) ( , ) complex, complex polarization vector

i kz t
t x y z E x y e where

−
       E n E n . (4.1) 

E0(x, y) is arbitrary, not necessarily sinusoidal, or gaussian, or symmetric in any way.  However, it must go 

to zero outside some widths Δx and Δy.  Note 3 properties of such a wave: 

1. At every point in space, Ex(t), Ey(t), and Ez(t) are all sinusoidal in time, though we will show that 

Ez is of different phase. 

2. At every point in in the beam face, Ez(z) is sinusoidal in the z direction. 

3. Fields across the beam face, Ex(x, y) and Ey(x, y), are arbtrary, and usually not sinusoidal functions 

of x or y.  This implies that Ez(x, y) is not sinusoidal in x or y. 

We see immediately that the beam form (4.1) cannot be exact, because there is no diffraction.  

Maxwell’s equations do not allow light to propagate in straight lines; it must diffract.  However, by taking 

our cross-section to be large compared to the wavelength λ, we can make diffraction negligible.  We 

confine our analysis to this approximation. 

No Transverse Beams 

We might expect a beam to be transverse, but even in the simple case of linear polarization, Maxwell’s 

Equations do not permit this.  Everywhere in charge-free space: 

0
yx z

EE E

x y z

 
 = = + +

  
E . 

For linear polarization, we take E mostly in the x-direction, i.e. ( )ˆ 1,0,0n .  For a finite cross-section, 

∂Ex/∂x ≠ 0 at least somewhere, and realistically: 
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0xE

x





, almost everywhere in the cross-section.   

Ey = 0 everywhere for x polarization.  Therefore: 

0 0xz EE

z x


 =  = − 

 
E . 

For linearly polarized beams of the nondiffracting form (4.1): 

0 0( , ) ( , )1
, ( , )z

z z

E x y E x yE i
ikE E x y

z ik x k x

 
= = − =

  
. (4.2) 

Thus the amplitude of Ez (including sign), at a point on the face (x, y), is ∂E0/∂x/k.  Also, Ez is imaginary, so 

when ∂E0/∂x > 0, Ez lags Ex in time by a quarter cycle (Figure 4.8c, inset).  For example, in real terms (i.e., 

sines and cosines, with no i): 

( ) ( )

 

( )0
0

amplitude Im

( , )1
, , , ( , )cos ( , , , ) sin

z

x z

E

E x y
E t x y z E x y kz t E t x y z kz t

k x
 

=


= −     =  −


. 

Physically, Figure 4.8c shows a time when Ex > 0 (E points up), such as the time shown in the inset.  Then 

in the lower half of the beam, ∂Ex/∂x > 0, and Ez < 0.  Furthermore, considered over time, when Ex is 

maximum, ∂Ex/∂x in time, and therefore ∂Ez/∂z has its maximum magnitude in time.  ∂Ez/∂z is maximum at 

the zero crossings of Ez, hence the quarter cycle phase shift.  (This phase shift will be crucial to angular 

momentum in circular polarization.) 

In the upper half of the beam, ∂Ex/∂x < 0, and Ez > 0.  Along the y axis, ∂Ex/∂x = 0, and Ez = 0. 

The same argument, with •B = 0, shows that Bz ≠ 0, as well.  Thus, a linearly polarized beam cannot 

be transverse in either E or B, i.e. cannot be TEM, TE, nor TM.  In fact, an identical derivation shows that 

the B-field looks the same as the E-field, except it is oriented mostly in the y direction, instead of x (Figure 

4.9a).  E lies in a plane parallel to x-z; B lies in a plane parallel to y-z. 

The E and B fields are similar to those inside a waveguide, though with different boundary conditions.  

Nonetheless, some beam results are the same as waveguides: the group velocity vg < c, and the phase 

velocity vp > c. 

Could a circularly polarized beam be transverse?  No.  A superposition of transverse waves is still 

transverse, and a linearly polarized wave can be constructed from two superposed circularly polarized 

waves.  Transverse circularly polarized beams would contradict our proof that linearly polarized beams 

cannot exist. 

In short, anywhere ∂Ex/∂x or ∂Ey/∂y are nonzero, Ez is nonzero. 

A finite cross-section wave (a beam) has both  Ez and Bz components, and therefore is not 

transverse in either E or B.  Furthermore, its group velocity vg < c, and its phase velocity vp > c. 
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Figure 4.9  (a) Perspective view of E and B at a point P in the beam lower-right quadrant.  Dashed 

lines are coordinate curves, not axes.  (b) The Poynting vector poynts mostly along z, with small 

positive x and y components.  (c) An integration stripe across the beam face. 
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How non-transverse is it?  How big is a beam’s z component?  We’ll use perturbation theory for this.  

As usual with perturbations, it is helpful to find a dimensionless, small expansion parameter.  For our 

“wide” (non-diffracting) beam, the beam width Δx must be many wavelengths: 

2 1
1 . Then:

2
z

k
where k k

x k x x

 
 


 =      =

   
. 

For well-behaved (realistic) beams: 

,max
,max ,max~

2

xx
x x

EE k
E E

x x





= 

 
. 

Then taking magnitudes from (4.2): 

,max

1 1
~ ~ , /

2

x
z x

E
E E where x

k x
  




   


. 

Thus a non-diffracting beam has a small z-component of O(ε), and vg is only slightly slower than c.  

[Giovannini, Romero, et. al., Science 2015/1/22] measured vg < c by a few ppm.  (They also confirmed this 

effect is fully sustained even at the single-photon level, consistent with the quantum field equations of 

motion satisfying Maxwell’s equations.) 

Angular Momentum 

It is well known that circularly polarized light carries angular momentum about the propagation axis k.  

There is often misunderstanding about how this angular momentum arises.  Still less well-known is that the 

energy-to-angular-momentum ratio for circularly polarized classical EM waves mirrors the quantum 

relationship for photons: U/L = ħω/ħ = ω.  Such a classical relationship provides a strong hint about how 

electromagnetism is quantized. 

Linear polarization:   

Recall L = rp TBS??. 

We first show that linear polarized beams have zero angular momentum at all times.  At the point P in 

Figure 4.9c, both Ez and Bz are negative.  Figure 4.9b shows that a negative Ez “pulls” the Poynting vector 

up above the y-z plane, i.e. Sx is positive.  Similarly, a negative Bz pulls S out of the x-z plane toward the +y 

axis, i.e. Sy is positive.  (The planes are not the actual x-z and y-z planes, because P is not the origin, but the 

planes are parallel to the x-z and y-z planes.)  Since z y xL xS yS − , this shows that there are nonzero 

terms in at some points (x, y) on the face.  However, we now show that when summed over the face, there 

is as much positive Lz as negative, so Lz = 0 at all times.   

Consider Sx due to Ez in a beam; for illustration, assume an axially symmetric intensity.  Ez is negative 

over the entire lower half of the beam (Figure 4.10a), because ∂E0/∂x > 0.  Ez contribute to S only through 

By, and thus Ez  By points in the +x direction throughout the lower beam half.  There is just as much 

clockwise momentum as counter-clockwise, and thus the contribution of the lower beam half to Lz is zero.  

In the upper beam half, Ez > 0, Sx < 0, but all the Lz cancels, just as in the lower half.  The same idea insures 

Lz is zero even for non-axially symmetric beams, as will be rigorously shown later. 
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Figure 4.10  (a) Ez is positive in the top half, and negative in the bottom half.  (b) Bz is positive in 

the left half, and negative in the right half.  (c) RHC surviving contributions to S. 

Now consider Sy due to Bz (Figure 4.10b).  The same argument (rotated in space) shows that all the Lz 

from the left half cancel, as do those from the right half. 

For linear polarization, the angular momentum Lz(t) = 0, at all times. 

Circular polarization:  The circular polarization analysis is mathematically straightforward, if a little 

long-winded, because we also describe the physical significance of the math.  The key result is that the 

angular momentum of the circularly polarized wave derives from the phase-shift of Ez and Bz compared to 

the x and y components, and from the nonlinear (quadratic) dependence of S on the fields E and B. 

First, a circularly polarized infinite plane wave is transverse.  Its Poynting vector S is in the z direction, 

so its angular momentum volume density: 

2 2
, wave linear momentum density

vol c c
 =  =  =     

L S S
r g r g , 

is perpendicular to S, and so has no z-component.  In fact, all components are zero at all times: L(t) = 0v, 

because the x and y contributions on opposite sides of the z-axis all cancel.  In general, axial symmetry does 

not allow a preferred x or y direction for any vector property. 

Circularly polarized infinite plane waves have no angular momentum. 

However, realistic beams do. 

We can describe a circularly polarized (finite) beam as a superposition of two linearly polarized beams, 

which we here call the x-beam (E in x direction), and the y-beam.  For RHC, the y-beam lags the x-beam 

by one-quarter cycle. 

Recall that while L is a linear operation on S, S is not a linear operation on E; S is quadratic in E, so 

Poynting vectors from component waves cannot, in general, be simply added.  If angular momentum were 

a linear operation on E, then the fact that linear polarization has L = 0v would imply that all superpositions 

of linear polarization, including circular polarization, would have L = 0v.  The nonlinear dependence of S 

on E, and therefore of L on E, makes angular momentum possible for circular polarization. 

We now compute the angular momentum of a circularly polarized beam (this is [Jac Q7.29 p350]).  

We start with (4.1) for a z-traveling wave, but drop the tildes from the phasors.  As with linear polarization, 

E is dominated by Ex and Ey, with a small Ez.  For circular polarization, E0(x, y) is real, and the time 

evolution is simply that the entire physical state (E, B, S, and any other vectors) at each point (x, y) rotates 

around the propagation axis (an axis through (x, y) parallel to z).  This is a kind of axial symmetry.  Since 

all properties derive from the E and B fields, the time average of every vector (or tensor) property of the 

wave can have no x or y components, because they would cancel over one cycle. 

The axial symmetry (over time) does not suggest converting to cylindrical coordinates, because E0(x, 

y) need not have circular (or any) symmetry.   

We find the E-field components from: 
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( ) ( )

( ) ( )

0 0

0 0,

,

( , , , ) ( , ) ( , ) , and

i kz t i kz t
x y

i kz t
x y z z

E E e E iE e

t x y z E x y i E x y e ik
z

 



− −

−

= =     


 = + + →
  

E e e e

 

Then: 

0,0 0 0 0
0,0 ( , )

z
z

EE E E Ei
i E x y i

x y z k x y

    
 = = + +  = + 

     
E . (4.3) 

Note that, compared to linear polarization (eq. (4.2)), Ez now has an additional real term (the second term).  

This term comes from the y-beam.  In the right half of the beam ∂E0/∂y > 0, so this term is negative and 

real, and this term (not all of Ez) is always of opposite sign to Ex. In the left half of the beam, this term is 

positive and real, and this term is the same sign as Ex. 

Now having E, we find B from Maxwell’s Equation, 
t


− = 



B
E : 

2 2 2 2
0 0 0 0 0 0

0 02 2

y yx xz z
x y z

x y z

E EE EE E
i

y z z x x y

E E E E E Ei i i
i ikiE ikE i i

k y x k x y x yy x





       
+ = − + − + −    

         

             −
    = + − + − + + −                             

B e e e

B e e e

 

We show that terms of (second derivative)/k are O(ε2) using essentially the same reasoning that above 

showed the first derivative terms are O(ε): 

( )2
max

2
max max

/1 1 1
~

2

xx
E xE E E

k k x x xx




      
=    

     
. 

The same is true for ∂/∂y.  Then to first order in ε: 

0 0
0 0

0 0
0 0

( , , , )

, or

or .

x y z

x y z

E Ei
t x y z kE ikE i

x y

E Ei i i i
E iE i

c k x y c Z

E
where Z c

H








   −
= + + −  

   

   −
= + + + = − = −  

   

 =      

B e e e

e e e E H E  

The factor (–i)E means that at every point in space, B/H leads E by one quarter cycle, as expected for RHC 

polarization. 

We now find the Poynting vector mathematically, and then explain what the math means physically.  

The Poynting vector S = E  H., where E and H are phasors.  The time-averaged product of two sinusoids 

given by phasors A and B is Re{AB*} (see Funky Electromagnetics Concepts, Phasors), so the time-

average Poynting vector is: 

   * *1 1
( , ) Re Re

2 2
x y i

Z
=  = S E H E E . 

Note that the vector 
2* E E E  (a scalar), and is not necessarily real.  From E found in (4.3), we have 

straightforward (though slightly tedious) algebra, to find the time-average <Sx(x, y)> and <Sy(x, y)>: 
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Sz(x, y) is the usual power density (dP/da ≡ I, intensity) carried along with the wave.   

What does this math mean?  Consider the point P, at a point in time (say t = 0) when E points 

dominantly in the x-direction.  The small Ez from the y-beam crosses into the large Hy from the x-beam 

giving a positive Sx contribution that is in neither the x-beam nor the y-beam by itself.  The cross-product 

*   S E H E E  has cross-terms that mix fields from the x-beam and y-beam, yielding results with no 

analog in either beam alone.  This nonlinearity in E begets the surviving angular momentum Lz. 

Figure 4.10c shows the contributions to Lz from Sx in all four quadrants.  They all reinforce.  On the 

right-half of the beam, the small Ez from the y-beam is negative, so Sx points up.  On the left beam half, the 

small Ez is positive, so Sx points down.  The “circulation” is always counter-clockwise, i.e. RHC.  A 

detailed list of every part of the equation for Sx is in the “Loose Ends” below. 

There are four more contribution to Lz, which arise from Sy: the large Ex of the x-beam crossed into the 

small Hz of the y-beam.  In the lower half of the beam, the small Hz > 0, so Sy points right.  In the upper 

half, the small Hz < 0, so Sy points left.  Again, all quadrants circulate counter-clockwise, i.e. RHC. 

The time-averaged angular momentum of the beam (per unit length Δz) is then the integral of the 

volume density  over the beam face area: 

2

( , ) 1
( , )

beam

x y
dx dy x y

z c
=    

 
L

r S . 

For brevity, we now omit the “time average” brackets.  For circular polarization, Lz is constant in time, 

anyway, which follows from the rotating time evolution mentioned earlier.  But for arbitrary polarization, 

the time-averaged Lz is (using E0 ∂E0/∂x = (1/2) ∂(E0
2)/∂x): 

( )
( ) ( )2 2

/ 2 / 2 0 0

2 2 / 2 / 2

1 1 1

2

x y
z

y x
beam x y

E EL
dx dy xS yS dx dy x y

z x yc c Zk

 

− −

  
 =   − =  − −
    
 

   . 

Both terms in the integrand are even, so they contribute nonzero reinforcing values to Lz.  In the example of 

Figure 4.8, the x-derivative is positive when x is negative, and vice-versa.  Similarly for y in the second 

term.  We can integrate each term by parts, and the boundary terms drop out, because the fields are zero at 

the beam edge (outside the regions of Δx and Δy): 
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+  , 

and similar for the y term.  Then total angular momentum (per unit length) is: 

2/ 2 / 2
0

2 2/ 2 / 2
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1 1
2 , power

2

x y
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EL P P
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  . 

This is positive, which means the angular momentum corresponds to right-handed rotation around k, the 

same sense that the E-field rotates.  Also, the angular momentum depends only the total beam power, and 

has no dependence on the form of E0(x, y). 

For any EM beam, the energy in a length Δz is: 

/
U P

U P t P z c
z c

=   =    =


. 

Then the ratio of energy to angular momentum is: 

/

/z

U z P c

L z c P





= =


, 

exactly as in quantum electrodynamics (photons), where U/L = ħω/ħ = ω. 

Summary:  Only finite beams with at least some circular polarization can carry angular momentum; 

idealized plane waves cannot.  While EM beam angular momentum is linear in S, it is quadratic in the 

fields.  Superposition does not apply to energy/momentum flow, nor angular momentum.  When 

considering circular polarization as a superposition of two linearly polarized beams, the angular momentum 

arises from nonlinear cross-terms in the fields, producing a phenomenon not present at all in either 

component beam.  (Quantum wave interference is another example of cross-terms leading to effects that are 

not present in either component alone; Pr(observation)  |ψ|2.) 

Furthermore, the angular momentum of a circularly polarized beam depends entirely on the beam 

energy, without regard to the detailed form of the intensity or field profile.  Classical electromagnetics 

determines that the ratio U/Lz of energy to angular momentum is the wave frequency ω, exactly as it is for 

quantized photons.  This classical result is a hint to the nature of the quantized EM field. 

Loose ends:  We easily show that the total (over the beam face) of Sx, and Sy, are zero at all times.  

This is expected, since energy does not flow out the sides of the beam (in the no-diffraction approximation 

of (4.1)).  For Sx, consider any narrow stripe across the face in the y-direction (Figure 4.9c).  Then: 

( )2
0 2 20

, 0 0 0( ) ( ) ( ) 0
y y

x stripe
y y

EE
S t E dy dy E y E y

y y

 

− −


    − − =

   , 

because the beam fields are zero at its edges, by definition.  Since all stripes have zero Sx, the total Sx = 0.  

A similar argument shows that Sy = 0 at all times. 

Now we identify all the pieces of the equation for <Sx(x, y)>, repeated here from above.  Recall that the 

inner product of two complex numbers A and B is A(B*); the real part of the inner product is the product of 

the parallel (i.e., in-phase) components of A and B. 

 * *1
( , ) Re

2
x y z z yS x y E iE E iE

Z
= − . 

The first term is EyiEz
*, where: 

Ey is the complex phasor for the real Ey(t). 
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–iEz is proportional to the phasor for the real Hz(t). 

iEz
* = (–iEz)*  Hz

*  is proportional to the conjugate phasor of Hz, needed to find the part parallel Ey, 

i.e. the part that contributes to the time average. 

(1/2) is the time average of cos2. 

Re{EyiEz
*} is the product of in-phase components of the phasors Ey and Hz.   

Z = E/H, so Hz = Ez/Z.  Finally, 

(1/2Z)Re{EyiEz
*} is the time average of the real sinusoids Ey(t) and Hz(t), i.e.: 

 
1

cos arg( ) cos arg( )y y z z
cycle

E t E H t H dt
T

  −  −      

The second term in <Sx> is EziEy
*, where: 

Ez is the complex phasor for the real Ez(t) 

–iEy is proportional to the phasor for the real Hy(t) 

and the rest is the same reasoning as in the first term.  The minus sign before the second term is simply the 

right-hand rule for E  H applied to Ez and Hy. 

Elliptical polarization:  Elliptical polarization can be written as a superposition of a linearly polarized 

wave and a circularly polarized wave.  In a sense, only the circularly polarized component contributes to 

the angular momentum, but recall the nonlinear dependence of L on the fields.  The linear and circular field 

components are not orthogonal, and so the total Poynting vector, and angular momentum, is not necessarily 

the sum of the component Poynting vectors and angular momenta.  We do not pursue this analysis here. 

Waveguides 

We should first note that in the context of waveguides, the word “mode” is somewhat abused: in 

classical mechanics, and in E&M cavities, a “mode” implies a specific frequency of oscillation.  In 

waveguides, the “mode” really refers to the eigenvalue of the waveguide transverse 

eigenfunction/eigenvalue equation (described below), and covers a continuum of temporal frequencies, , 

and spatial frequencies (wave numbers), k.  One could say the waveguide “mode” refers only to the 

transverse mode, but not the whole of the EM wave(s) in the waveguide. 

This section relies heavily on the methods developed in “Solving Laplace’s Equation” and 

“Propagation in a Vacuum,” above.  You should read those sections first.  Those sections concern 

electrostatics and magnetostatics.  In the topic of waveguides, we extend those principles to electro-

dynamics, where the fields are time-dependent.  We therefore use the full, time-dependent Maxwell 

equations, including time derivatives. 

Waveguides are concerned with the propagation of waves down a fixed (but arbitrary) cross sectioned 

cylinder.  The most common cross sections are rectangles, circles, and fractions of a circle.  Since we are 

concerned with wave propagation, prior experience strongly suggests decomposition of an arbitrary wave 

into sinusoidal components.  [More rigorously, sinusoids compose a basis set of functions for the 

construction of any arbitrary function, and even  better, are the eigenfunctions of linear integro-differential 

equations (such as the wave equations resulting from Maxwell’s equations).  This means we can study a 

single sinusoid of arbitrary frequency, and know that an arbitrary function can be made from a linear 

superposition of these sinusoids, and the sinusoids will not interact with each other.  This is the standard 

method of eigenfunction decomposition and analysis, familiar from Fourier analysis and quantum 

mechanics.] 

Under what conditions can a sinusoidal wave propagate down the waveguide, but remain otherwise 

unchanged?  We assume an ideal conductor for the boundary of the waveguide, so there is no loss as the 

wave propagates.  (Loss is a small correction to the lossless case [Jac p353m]).  The choice of propagating 

sinusoids leads immediately to the use of phasors (complex numbers) for all components of E and B fields; 
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WLOG, we assume propagation in the +z direction.  Then all 3 components of both the E and B fields vary 

sinusoidally in time and z-direction: 

   ( , , , ) Re ( , ) , ( , , , ) Re ( , ) [Jac 8.18 p357]ikz i t ikz i tx y z t x y e x y z t x y e − −= =E E B B . 

Note that ω is always real, and for lossless propagation, k must be real.  So far, these are still fully 3-

dimensional vector fields with components in all 3 directions.  All the components propagate uniformly in 

the z direction.  Because we have now defined the variation of the fields in z and t, we can find the time and 

z derivatives, and partially evaluate the Laplacian operator in the wave equations above: 

2 2 2 2
2 2 2 2

2 2 2 2
, , ,k k

z t z t
 

   
= − = − = − = −

   

E E B B
E E B B . 

Since we know the variation in z, it becomes useful to separate the Laplacian operator into its “z-part” 

and its “transverse part” (i.e., its x-y part), so we define: 

2 2 2 2 2
2 2 2 2

2 2 2 2 2 2

1 1
[Jac 8.20 p357]t t r

r r rz z x y r 

       
 =  +     − = + = + 

      
. 

Note the subscript “t” means “transverse” here, not “tangential.”  Also, we may use polar coordinates (r, ) 

or (x, y) coordinates for the transverse part (or any other 2-D coordinates for that matter), whichever is 

easier.  With these definitions, keeping in mind that all vector components are complex-valued phasors, the 

wave equations above become: 

( )
2 2 2 2

2 2 2 2 2

2 2 2 2 2

1
,t t tk k

z c t c c

     
 + =   − = −  = −          

E E E E E E , 

or in components: 

2 2 2
2 2 2 2 2 2

2 2 2
, andt x x t y y t z zE k E E k E E k E

c c c

       
 = −  = −  = −          

     
. 

Also for B: 

2 2 2
2 2 2

2 2 2 2

2 2 2
2 2 2 2 2 2

2 2 2

1

i.e., , and

t t

t x x t y y t z z

k
z c t c

B k B B k B B k B
c c c



  

    
 + =   = −          

     
 = −  = −  = −          

     

B B B B

 

Thus we see that the conditions for propagation down a waveguide are that all 6 E & M components, 

Ex, Ey, Ez, Bx, By, and Bz, must satisfy the same 2D eigenfunction/eigenvalue equation in the transverse 

plane.  Note, however, that some of the 6 components may be everywhere zero, in which case those 

components identically satisfy any (linear) eigenfunction/eigenvalue equation.  Each scalar field 

eigenfunction has an eigenvalue, which determines the dispersion relation relating k and  for that 

eigenfunction.  Further, to achieve propagation of such a mode, k and  must be the same for all 6 E & M 

components.  Therefore the eigenvalues (and thus dispersion relation) must be the same for all non-zero E- 

and B-field components of a single frequency.  It is common to define the eigenvalue for a given 

waveguide frequency, and therefore the dispersion relation, as: 

2 2
2 2 2 2 2 2

2 2
, ( )eigenvalue k k k c k

c c

 
    − = − = −  = + . 
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k

(k)

min= c

 = ck

 

Figure 4.11  Dispersion relation for EM propagation in a waveguide. 

Note that for hollow cross-sectional waveguides, the eigenvalues are always negative (why??), so 2 > 0.  

For propagation, k must be real > 0.  Thus, a given propagation mode has a minimum frequency for 

propagation of  

min c = . 

In free space, and with plane or spherical waves, γ = 0, the dispersion relation is linear:  = ck, and 

there is no frequency dispersion.  Note that as ω → ∞, the dispersion relation for all waveguide modes is 

asymptotic to  = ck, which is the free space dispersion relation (of no actual dispersion). 

Now that we have the basic equations of operation of a waveguide, we can consider the boundary 

conditions that exist in a waveguide. 

Boundary Conditions and Propagation 

The walls of a waveguide are good conductors, which imposes boundary conditions that further 

constrain the propagation of EM waves down the guide, compared to free-space propagation.  In particular, 

a good conductor has surface charges and currents that eliminate all E (& D) and B (& H) fields inside it 

(except for a small skin depth) [Jac p358].  Also, as always, the Eparallel (= Ez) and Bn (= Btransverse) are 

continuous at the boundaries.  Therefore, at the boundaries, 

ˆ ˆ ˆ0, 0. ( : )z t x yE NB B B=  =  +B n B x y . 

Note the subscript “t” still means “transverse” here, not “tangential.” 

TBS. 

Phase and Group Velocity In a Waveguide 

First, consider a plane wave propagating in free space at an angle to the z-axis (Figure 4.12, left). 

z

x

vphase > c

vphase = c
z

vphase > c

wave 
crests

vgroup < c

waveguide

θ

 

Figure 4.12  (Left) Phase velocity in free space.  (Right) Phase and group velocity in a waveguide. 
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In the direction of propagation (along the red arrow), the phase velocity is just c, the speed of light.  But 

suppose we set up electrometers to measure the electric field as it passes down the z-axis.  The time 

between wave crests is the same, but the distance between wave crests along the z-axis is greater.  So the 

wave crests are moving faster than light along the z-axis; this is required by the geometry.  Hence, in the z-

direction, vphase > c.   

The propagation down a waveguide can be written as a superposition of two constituent waves 

traveling at an angle to the waveguide axis (Figure 4.12, right, blue and red).  The constituent waves reflect 

off the walls of the waveguide, and superpose to produce a net propagation in the z direction.  The phase 

velocity of both the blue and red constituents is the same as in the left diagram: 

/ cosphasev c c=  . 

However, the net propagation speed in the z direction is just the z component of the red (or blue) 

constituent:  

( )cosgroupv c c=  . 

Therefore, in a waveguide, the phase velocity is always > c, and the group velocity is always < c. 

Note that the constituents are not simply two uniform plane waves.  The boundary conditions must be 

met on each constituent wave: namely, that Ez = 0 at the walls, and that Bn = 0 (the normal component of 

the B-field).  So the constituent waves also taper to zero at the edges, just like the total wave does.??   

The angle θ can be determined from the z-component of the spatial frequency (the wave-vector), kz.  

We find kz from solving Maxwell's equations, and θ from: 

cos
zk

c




= . 

Multiple modes of one frequency:  It is generally the case that a single frequency can propagate in 

multiple modes.  The modes typically have different group velocities, though, so they are dispersed in time 

and space as they propagate.  This is usually undesirable.  To avoid this, the transmitter must excite only a 

single desired mode.  Methods of doing this are beyond our scope. 

Cylindrical Hollow Waveguides 

a


z

β

z

 

Figure 4.13  Cylindrical waveguide. 

Cylindrical waveguides are common: they are just metal pipes, possibly gently bent to guide the waves 

along a path.  The propagation modes are different than those of rectangular waveguides, but are derived 

from the same principles.  In cylindrical coordinates, just as in rectangular, we generalize Laplace’s 

equation (3.5) to time-dependent fields by including the time-dependent factor e–iωt.  This gives the wave 

equation: 

2 2 2
2 2

2 2 2 2

1 1
.

( , , ) ( ) ( ) ( ) (and similar for ).

z z

i t
z z

B E r
r r rc r z

B r z R r Q Z z e E





  −

−     
 =      = + +  

    

=     

. (4.4) 

As before, we seek propagation modes down the pipe, so: 
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2
2

2
( ) , and ( ) ( ) wave numberzik z

z zZ z e Z z k Z z where k
z


= = − 


. 

Solutions:  As when solving Laplace’s equation, the azimuthal function must satisfy: 

22 2
2

2 2 2 2

1
( ) ( ) ( ) ( ), ( )

ikk
Q Q Q k Q Q e

r r


    

 

 
= −  = −      =

 
. 

It is conventional to call kϕ ‘m’:  , ( ) imm k Q e 
     = . 

Then R(r) must satisfy: 

2 2
2 2

2 2

1 1
( ) ( ), ( ) 0r r

m m
r R r k R r or r k R r

r r r r r rr r

         
= − +      + − =                 

. 

Notice that the second term on the right cancels the azimuthal term from the ϕ contribution.  As with 

Laplace’s equation, this equation is singular at r = 0, which is often a physically valid radius.  The 

singularity is easily removed by defining R(r = 0) as the limit: 

0
(0) lim ( )

r
R R r

→
 . 

The differential equation is the famous Bessel equation, solved by Bessel functions of the first kind, Jm(x): 

( ) ( )m rR r J k r= . 

Quantization:  In the rectangular case, kx and ky were quantized by the boundary conditions of the 

guide.  In the cylindrical case, kr and m are quantized.  With the cancellation of the azimuthal terms, kr
2 acts 

like (kx
2 + ky

2), and puts a lower limit ωmin on possible solutions to Maxwell’s equations in the guide.  The 

constraint is: 

2 2
2 2 2 2

2 2
0r rk or k

c c

 
 − − = −     = −  . 

The azimuthal parameter m must make the wave-function single-valued as ϕ goes across 2π.  

Therefore, m must be an integer.  (This is exactly the same quantization and azimuthal function as 

cylindrical and spherical systems in quantum mechanics.)  In our case, we can take m ≥ 0, so: 

0,1, 2, ...m =      

In preparation for considering the radial modes, we recall the form of Bessel functions of first kind 

(Figure 4.14).  They oscillate, with an infinite number of zeros, and extrema. 
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Figure 4.14  Some Bessel functions of the first kind. 

The radial function R(r) is quantized by the boundary condition at the walls of the pipe.  For TE 

modes, B|| must be stationary at the edge r = a, so: 

( ) ( )

th
'( )

0 ' ( ) 0, , '  zero of ' , 1, 2, ...

( , , , ) , ( , , , ) 0 .z

mjz
m r r mj m
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
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

=    =  

. 

These solutions are the TEmj modes.   

For TM modes, E|| = 0, so Ez = 0, and: 

( )

th( ) ( ) 0 ( ) 0, ,  zero of , 1,2, ...

( , , , ) ( ) , ( , , , ) 0 .z

mj
z m r r mj m

i k z tim
z m r z
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E z R a J k a k x j J j

a

E t r z J k r e e B t r z
 

−

 =  =      =          =  

=    =  

. 

These solutions are the TMmj modes.   

Order of the modes:  Within the TE cases, and within the TM cases, except for the m = 0 case, kr 

increases as m increases, i.e. kr increases with the azimuthal mode, so the cutoff frequency increases with 

both m and j, similar to the rectangular waveguide.  You can see from Figure 4.14 that J0 is special, because 

mathematically, its first stationary point is x = 0, but that is not a physical mode.  Therefore, the fastest 

mode (aka “dominant mode”, with smallest kr) is TE11.  However, the TE modes interleave with TM 

modes, so the sequence of modes with increasing cutoff frequency ωmin is somewhat awkward: 

m TE (x’m1) TM (xm1) 

0 3.8317 2.4048 

1 1.8412 3.8317 

2 3.0542 5.1356 

3 4.2012 6.3802 

Guiding “Light” 

There is often confusion regarding the differences between transmission lines, waveguides, and fiber 

optics.  All three devices are ways of transmitting electromagnetic power along a guided path, but all three 

are different, and operate on different principles.  (Many internet arguments are rendered moot by this fact.)  

All three transmit information in essentially analog form (continuously variable).  Nowadays, digital 
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information is often modulated onto analog “carriers” (sinusoids), for digital communication.  We now 

consider each of these devices, in turn. 

Transmission Lines 

(a) (b)

Z

 

Figure 4.15  (a) A source feeds a transmission line, and then a load.  (b) Parallel wire, twisted 

pair, and coaxial transmission lines. 

Transmission lines are probably the simplest of these three devices.  They transmit power by 

conduction of voltages and currents through two long conductors, shown schematically in Figure 4.15a.  At 

the end of the line, a voltage drives a current through the load, delivering power.  In a transmission line, the 

conductors are specifically arranged in a geometry that favors clean propagation of energy and/or 

information.  Three common geometries are parallel wire, twisted pair, and coaxial (Figure 4.15b).   Other 

transmission lines are frequently fabricated on circuit boards by controlling the geometry of the conductors 

and properties of the insulators. 

Transmission lines are commonly used for transmission of either large power, or information, or both.  

Over-the-air television reception (54 - ~150 MHz) often uses parallel wires from the antenna to the 

receiver, in a flat ribbon of plastic about 1 cm wide with wires embedded along the edges, called “twin-

lead”.  Category 3/5/6 communication wiring is twisted pair of 24-26 gauge (0.4 - 0.5 mm dia.).  

Residential cable TV companies provide information over coaxial cable, but do not deliver significant 

power for doing work.  Microphone cords are usually coaxial transmission lines delivering tiny signals to 

an amplifier.  Headphone cords are often coaxial transmission lines delivering less than a watt of power.  

Transmission lines to radio-frequency transmitter antennas deliver a signal of up to many kilowatts for 

radiation.  Coaxial lines are commonly between about 2 mm to several cm in diameter.  An old Ethernet 

coaxial line was about 2 cm diameter semi-rigid (bendable) aluminum tubing, with an air dielectric, and a 

central copper wire suspended by thin plastic discs every 10-20 cm. 

Additional information:  In the parallel wire and twisted pair geometries, the two conductors are 

identical, and interchangeable.  We can somewhat arbitrarily define one conductor as “signal” and the other 

as “return.”  When the connecting circuitry also treats the wires identically, the transmission line is called 

“balanced.”  An unbalanced line can be connected to a balanced line by a simple isolation transformer, 

often with a grounded center tap. 

In the coaxial configuration, the two conductors are physically different, and (by design) couple 

differently to the outside world.  The inner conductor is often called the “signal.”  The outer conductor is 

often called a “shield,” though purists call it a “return,” because current flowing into the signal wire returns 

through the outer conductor.  Coaxial transmission lines cannot be balanced, because the conductors are 

physically different.  Some coaxial lines have a third conductor, also coaxial, surrounding the signal and 

return conductors.  This true “shield” carries no signal current, and provides isolation from outside 

interference. 

Waveguides 

Waveguides are a single hollow conductor, usually with a rectangular or circular cross-section.  They 

are mostly used for transmission to or from high-frequency antennas (> ~ 1 GHz).  At such frequencies, 

waveguides have lower loss than transmission lines.  Waveguides are typically a few cm across.  For 

transmitters, the waveguide transfers signal and power to the antenna for radiation.  For receivers, the 

power is tiny, but waveguides transfer as much signal as possible to maximize signal-to-noise ratio (SNR). 

In a waveguide, all of the energy is transferred in the E and B fields of the guide.  There are no long-

distance voltages or currents, and no significant forces on charges.   
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In practice, there is no such thing as a “coaxial waveguide,” because realistic waveguides are hollow, 

with no central conductor.  Some references may be confusing because they include a subsection on coaxial 

transmission lines within a section on waveguides; the two are very different. 

Within a waveguide, as in all electromagnetics, one can compute the power transferred from the 

Poynting vector.  Of course, this is also true in a transmission line, even though the physics of the power 

transfer is very different.  The Poynting vector works both in the presence and in the absence of driven 

charges, but it is not the whole story. 

Fiber Optics 

Communications fiber optic cables are flexible thin fibers that transmit small amounts of light.  High 

quality communication fibers provide information only, as it is not practical to deliver significant power 

through communication cables.  (However, some communication light sources are lasers with many 

milliwatts, and can be an eye-hazard.  Never look into a fiber optic cable.)   

Some room lighting systems and toys use fibers to deliver light, a form of power, but not information.  

Research is also being done to transmit usable power by light in cables.  We do not consider such systems 

here. 

Communication fibers are typically 125 μm in diameter.  They have inner cores that carry the light; the 

outer material is “cladding.”  Inner cores are either around 60 μm in diameter (called “multi-mode fiber”), 

or around 9 μm (“single-mode fiber”).  Common wavelengths are 1.31 μm and 1.55 μm (both infrared), so 

the single-mode fiber core is only a few wavelengths wide. 

Fibers do not conduct electricity at all, so all the power is carried in the EM fields of the light beam.  

This is similar to a waveguide, but with a big difference: an optical fiber “guides” the light beam with 

controlled indexes of refraction in the fiber.  There is no conducting edge to the wave, as there is in a 

waveguide where the conducting tube abruptly cuts off the EM fields. 

Summary of Guided Light 

Transmission lines, waveguides, and fiber optics all transfer information via electromagnetic energy.  

Transmission lines and waveguides may do so at large power, for applications such as radio transmission.  

All three devices operate on distinct physical principles, though all within the umbrella of classical 

electromagnetism. 

The Speed of Electricity 

Questions, and Short Answers 

In a Veritasium video, Derek Muller asks: (1) Consider a circuit layout of two long pairs of wires 

(Figure 4.16a), with a signal feed in the middle of one wire, and a load in the middle of the other.  The 

“wings” are long, but the physical distance from source to load is quite small.  How long does it take for the 

signal to reach the load?  We performed the experiment to find out. 

The video also asks another question: (2) What is the path through space of the energy from source to 

load?  It then describes the Poynting vector.   

As we show below, the answer to question (1) is “it depends,” but in the simplest case, the load 

receives nearly the full voltage and current almost immediately, without any delay from the long wings.  In 

this simplest case, the answer to question (2) is “At first, through the capacitance between the wires, 

transitioning gradually to current flow in the wires.”  (Radio waves are not a part of the power delivered to 

the load.)   

On the Poynting vector S, we show the well-known fact that Poynting’s theorem does not necessarily 

give the physical flow of energy through space [Jac p259][Gri p358].  We show that the Poynting vector is 

always related to the energy flow, and sometimes it is the energy flow, but it many common cases, it is 

implausible for the Poynting vector to be actual energy flow.  In a steady circuit, the energy flows down the 

wires, as confirmed definitively by these two facts: 
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• If the wires are left intact, then no stationary intervention of any kind into the space between 

and around the wires will perceptibly change the power delivered to the load, even if it 

radically alters the Poynting field. 

• If the wires are severed, no stationary intervention of any kind will enable power to be 

delivered to the load. 

In other words, in a steady state circuit, the wires alone deliver power to the load. 

We think the weakest points in claiming that S is always the energy flow are: 

1. In a steady state circuit, the claim is that the current is driven by the S-field created by the B-

field created by the current!  In other words, the energy to drive the current comes indirectly 

from the current itself.   

2. Poynting’s theorem starts from the fact that the electrons are driven by the E-field around 

them, and nothing else. 

3. The Poynting vector in steady state cannot be measured, even in principle, by any 

electromagnetic experiment.  In science, a thing that can never be detected does not exist. 

Any one of these is enough to refute the claim that in steady state, the Poynting vector is carrying the 

energy delivered to the load.  We examine these ideas in more detail below. 

Some physicists still debate the meaning of the Poynting vector, so there is not a generally accepted 

interpretation, but we think the reasoning in this section is definitive. 

Burden of Proof 

Traditionally, many physicists have simply accepted that the Poynting vector S is the actual energy 

flux density (though many have not).  But science is not decided by tradition; it is decided by experiment 

and logic.  As we show, Poynting’s theorem was never a reason to accept the traditional view in the first 

place, and we give many arguments against the claim that S is the energy flow.  The traditional view holds 

that S is the true energy flow, but it is unmeasurable, even in principle.  The burden of proof lies with the 

traditionalists: what is the evidence?  How do they answer the 3 refutations above? 

Outline 

The concepts underlying the answers are nontrivial, and sometimes subtle.  They are commonly 

misunderstood, even among experts.  This discussion is somewhat long, but starts at a simple level, and 

increases in technical detail as it progresses.  We follow these steps: 

• The experiment: nearly full voltage and current, almost immediately. 

• Variation of the experiment: alternating voltage steps approaching steady state. 

• There can be multiple correct ways of understanding physics. 

• Introduction to the Poynting vector field. 

• The Poynting vector field and steady state currents: less than meets the eye. 

• Tiny fields?  Not the answer. 

• Relationship to General Relativity (not testable with foreseeable technology). 

• Appendix: Detailed discussion and derivation of Poynting’s theorem. 

Momentum?  There is another whole story, even longer, about momentum in electromagnetism.  

Some aspects of EM momentum are also still debated by physicists.  There are some relations between 

energy and momentum, but we do not discuss momentum here.  However, everything here is fully 

consistent with all EM momentum experiments. 
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Figure 4.16  Test setup schematic.  (a) The experiment.  (b) Propagation speed test. 

The Experiment 

There are some variables that are unspecified in the question, and they matter, but we focus on the 

simplest and most fun case, where the load receives nearly the full voltage almost immediately.  We’ll 

discuss a more-complicated case afterward.   

First, a definition: the term “transmission line” has a specific meaning in this context: a transmission 

line is a pair of conductors with significant length, and uniform cross section along that length.  The two 

wings in question are transmission lines.  Ideal transmission lines propagate electricity at a finite speed 

which is measurably slower than the speed of light, with no frequency dependence.  When a signal reaches 

the end of a transmission line, a fraction of it is usually reflected back toward the source; then at the source, 

another fraction is reflected back, etc.  Transmission lines are electrically identical to a resistor for times 

less than a round-trip time.  Transmission lines necessarily have inductance per unit length (L0 in H/m) and 

capacitance per unit length (C0 in F/m).  The small resistance of the conductors is often not relevant, and 

we can safely take it to be zero here.  An ideal transmission line transmits a signal undistorted. 

Figure 4.17 shows the equipment setup.  Our wings are 12-gauge hardware-store extension cords, and 

had to be coiled to fit in the room.  Our propagation speed measurement shows that this does not affect the 

result, as expected. 

 

 

Figure 4.17  Test setup. 

First, to verify the equipment, we made a simple propagation delay measurement through the two 

extension cords plugged together (Figure 4.16b).  Combined, they are 100 ft long.  Figure 4.18a shows the 
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result: the top trace is the input voltage; the bottom is the load voltage.  Look at the falling edges.  The time 

base of the oscilloscope is 0.2 μs/div.  The propagation delay is 0.19 μs, for a propagation speed of: 

100 ft 30.5 m
161m/ s 0.54

0.20μs 0.20μs
c

  
= =  =

  
. 

This is just over half the speed of light, and in the expected range of about 50% - 95% that of light.  This 

measurement confirms the equipment’s ability to measure the desired delay, with a resolution of about 0.01 

μs (10 ns).  The clean signal at the load (lower oscilloscope trace) confirms the transmission has finite 

speed and little distortion, as expected. 

 

(a)

source

load

Δt

 

(b)

source

load

 

Figure 4.18 (a) Propagation delay verifies equipment.  (b) Experiment in question shows no 

measurable delay. 
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The Fun Case: Nearly Full Voltage, Almost Immediately 

Second, the experiment in question: Figure 4.18b shows the measurement (rising edge).  Again, the top 

trace is the input voltage; the bottom is the load voltage + left-wing voltage.  (Grounding requirements 

prevent us from measuring the load voltage by itself with our equipment.)  The load receives the signal 

essentially instantaneously, with no more than ~0.01 μs delay, far faster than the propagation time down the 

wings and back, which is about 0.2 μs. 

How is this possible?  The key is that an (ideal) transmission line, measured from the input terminals, 

appears to be a simple resistance for a finite time.  This resistance is called the characteristic impedance, 

Z0.  Therefore, until one round-trip time (0.2 μs here), our setup has an equivalent circuit of Figure 4.19a.  

Conveniently, the characteristic impedance of heavy-gauge extension cords is low, measured at ~53 Ω.  

Our load is 270 Ω, roughly the on-resistance of a 50 W incandescent bulb, so Z0 is significantly less than 

Rload. Thus, nearly the full voltage appears on the load almost immediately, as experimentally verified. 

Pulse 
gen

270 Ω

1
2

(a)

Z0
(small)

Z0
(small)

Pulse 
gen

270 Ω

1
2

(b)

same 
as right

- - - -

 

Figure 4.19  (a) Test setup short-time equivalent schematic.  (b) Discrete component 

approximation to the continuous transmission line. 

More Details 

Figure 4.19b shows the discrete-component approximation to the continuous transmission line.  For 

times < round-trip time and for (Rload >> Z0), the inductive effect is small compared to the capacitive effect.  

When power is applied, there is a physically short current path through the two nearest capacitors (dotted 

arrow), which almost immediately powers the load.  As the voltage/current wave propagates out the wings, 

the successive capacitors charge one after another.  This provides continuing current through the load. 

When the voltage step hits the ends, it is inverted and reflected, and propagates back toward the source.  

This slightly decreases the voltage across the wing, and therefore increases the voltage across the load.  

You can see this in the lower trace of Figure 4.18b, and it occurs at exactly the round-trip time 

(corresponding to 100 ft of cable delay). 

Question: What determines the cable characteristic impedance Z0, and how do we make it small?  

Standard analysis shows: 

0 0 0/Z L C= . 

Low Z0 comes from low L0 and high C0, consistent with the capacitance dominating the effect.  Low L0 

comes from fat wires close together, as does high C0.  Just like a 12-gauge hardware-store extension cord. 

Mind the Gap 

Note that none of this explanation involves the Poynting vector field, S(r).  However, we can compute 

the Poynting field in the capacitor gaps (between the wires) during the startup transient.  It will show 

anomalies similar to a steady state current in a resistor, which we analyze in detail later.  However, the 

current during startup takes a different physical path than that in steady state, and so the Poynting field 

during startup is different than that in steady state.  Hence we cannot use the steady state Poynting field to 

explain how the startup happens. 

Approach to Steady State 

As the reflections occur and weaken, the system approaches steady state, the E-field in the wire gap 

stabilizes, and current in the wires stabilizes.  At this point, all the current is in the wires, and the 

capacitance between them is fully charged; the physical length is then irrelevant.  Compared to startup, the 
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Poynting vector everywhere (in the gap and around the wires) has a different form in steady state, which we 

discuss in detail later. 

The Opposite Case: Slow, Stepped Turn On 

The opposite case is for high Z0, which comes from small wires far apart.  Recall, though, that “high” 

and “low” are relative to the load resistance.  We verified the following analysis experimentally (scope 

trace not shown).  This is more difficult to compute analytically, so we provide just a qualitative 

description. 

For high Z0, Figure 4.19a shows that at first, most of the voltage is dropped across the wings, and the 

load sees only a fraction.  When the reflected wave returns to the source, it has lowered the wing voltage, 

so the load voltage steps up.  At the source, the traveling pulse is weakened (by the impedance mismatch) 

and reflected again out the wings.  This reflection is not inverted, so the reflected pulse remains negative.  

At the far end, the pulse is reflected and inverted back to positive.  When this pulse hits the source, the 

transmission line voltage increases, causing the load voltage to decrease.  Then repeated reflections will 

alternately decrease and increase the wing voltage and therefore the load voltage, in steps.  As the 

reflections die out, the system approaches the steady-state DC condition, where again, the load sees full 

voltage, and the wires carry full current.  Note that the approach to steady state is not smooth, but a series 

of discrete steps in the load voltage, spaced by the round-trip travel time of electricity on the transmission 

line. 

The Difference Between Right and Right 

Here are some examples of subtleties in electromagnetic theory: Do two electrons repel each other?  

(a) Most people would say yes, and I agree.  But one could argue: (b) No, one electron creates an electric 

field, and that field pushes on the other electron.  This is also correct; it's slightly more detailed, and from a 

somewhat different viewpoint, but (a) is still correct, as well.  But: (c) In calculating the force of (b), we 

use only the E-field from one electron, even though we know both produce E-fields.  To use the full E-

field, we have to compute force with the Maxwell stress tensor; this is also correct.   

There are multiple correct views one can take. 

In a steady state electric circuit, it is valid and correct to say that electrons enter the load with high 

potential energy, and (different) electrons leave with low potential energy.  The electric signal travels 

through the wires, as electrons push on other electrons along the way.  As each electrons push others 

through the load, their potential energy is given to the load.  Another viewpoint is to say electrons (and 

protons) make E-fields in the wire which in turn push other electrons; this is just as valid. 

Similarly, we can use the Poynting vector field to compute where in space the energy is increasing or 

decreasing or being dissipated, or we can just as well use P = VI, or P/vol = E•J.  The results are the same.  

However, this does not justify the claim that the energy flow in space is actually S(r). 

The Poynting Vector Field 

For propagating waves, it is empirically true that the Poynting vector S gives the magnitude and 

direction of energy flow.  This is also easy to show theoretically, by computing the volumetric energy 

density of the wave, and multiplying by the speed of light.  For other cases of EM fields, it is a common 

misperception that Poynting’s theorem demands that S still gives the energy flow, but as we show below, it 

does not.  This fact is well-established [Jac p259]. 

Poynting’s theorem merely states that given some closed surface in space, the energy delivered to any 

charges in the volume equals the energy decrease of the fields in the volume, minus the field energy leaving 

the volume.  As a slightly imperfect analogy, consider a coffee cup with a travel lid (a closed surface in 

space).  You sip from it, but are clumsy, so some of the coffee spills down your chin.  The amount of coffee 

delivered to your mouth (energy delivered to charges) equals the amount of coffee leaving the cup (energy 

decrease of fields in the volume), minus the spilled coffee (energy leaving the volume).  Detail: Poynting’s 

theorem is usually stated as a rate, which is energy per unit time or power.   
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Now Poynting’s theorem follows quickly from Maxwell’s equations, with currents or without (see 

below).  But the theorem does not say that the Poynting vector is the energy flow.  Technically, Poynting’s 

theorem says the divergence of the Poynting vector equals the divergence of the energy flow, as we explain 

next.   

What we know for sure: Poynting’s Theorem is always satisfied, currents or not.   

What is less clear: what is the physical meaning of the Poynting vector  

in the presence of steady currents, or steady magnetic fields? 

Case In Poynt: Steady State Systems 

(a)

I or J

H
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E

(c)
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Figure 4.20  (a) Poynting vector for a volume which could be a wire, resistor, or charge density in 

free space.  (b) Permanent magnet in an E-field.  (c) Steady state source delivering power to a 

load. 

Consider an (idealized) steady state current in a resistor (Figure 4.20a).  The resistor continuously 

dissipates power, and there are no changing fields to provide energy (steady state).  The Poynting vector is 

formed from the B-field created by the current, and points inward.  Does the energy driving the current 

come from the B-field created by the current?  It seems hard to imagine that this is how the energy flows.  

(Richard Feynmann called this idea “crazy” [Feynmann Lectures, Vol. II p27-8], though he did not dispute 

it.)   

Let us consider what Poynting’s theorem actually says about this.  Assume that the true energy flux 

density (watts/m2) is a well-defined function of space, call it Q(r).  Separately, we define the Poynting 

vector field S(r) ≡ E(r)H(r).  Poynting’s theorem for an infinitesimal volume is: 

 
rate of field

energy outflowrate of work rate of field
done on charges energy de

a

creas

ch rges

e

cf.Gri 8.9 p358em

Wd d
u

dt vol dt    
    

= − −       S . (4.5) 

The derivation of Poynting’s theorem starts with the work-energy theorem, and the rate of work done by 

the E-field on a charge density (if any) at a point in space: 

( ) ( )
Power

vol
= =

J

E v E r J r . 

The E-field above is some external applied E-field, and any applied H-field does no work on the charges.  

The work going into the charges comes from the E-field, and the E-field alone.  In the simple case of 

Happlied = 0v, we have S = EHapplied = 0v.  The work going into the charges is not represented by any 

applied Poynting vector. 

In vacuum, there are no charges, no work done, and the left-hand-side (LHS) is zero.  Note that the 

above equation does not say that S is the energy flux density Q; it says that the divergence of S = 

divergence of Q: •S = •Q.  This allows S to vary dramatically in both magnitude and direction from Q, 

and in fact, such differences appear in many simple situations shown below.  Poynting’s theorem contains 

only •S, but not S itself, so Poynting’s theorem cannot say that S = Q [Jac p259]. 
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Now consider five examples.  Case (1): A resistor like Figure 4.20a.  The current flows solely because 

of the applied E-field.  The applied Happlied = 0v.  The current itself produces the resulting H-field; this H-

field is not a source of energy; it results from the charges getting energy from the applied E-field.  

Poynting’s theorem tells us that the H-field is generated in just such a way that (4.5) is satisfied.  In this 

case, the Poynting vector EHresulting represents just a mathematical identity such that:  

( )resulting
resistor

d IV Power = = E H a .   

In other words, S inside a charge density does not represent the flow of energy from the external source 

into the charges.  But its surface integral happens to equal the power delivered from the external source. 

Case (2):  A vacuum region of space.  In the absence of charges, the LHS of (4.5) is zero, and we have 

simple continuity of electromagnetic field energy:  

rate of field
energy outflowrate of field

energy change

em

d
u

dt    
   

−   =  S . 

This still does not mean S = Q; it means only that •S = •Q.   

Case (3): Figure 4.20b shows a permanent magnet (or a steady-state electromagnet) in a stationary E-

field.  H points down the page, and S points into the page.  Clearly, there is no energy flowing into the 

page, even though S ≠ 0v.  However, •S = 0, and that is consistent with the true energy flow Q = 0v, and 

•Q = 0. 

Case (4): What if we apply both an external E-field and an external H-field to a charge density?  Then 

the total H is just the sum total applied resulting= +H H H .  Then S gets a contribution from Happlied (which 

can do no work on charges), plus another contribution from Hresulting.  As in Case (1), the latter contribution 

is just a mathematical identity, and not the flow of anything.  Therefore, this S is not the flow of EM field 

energy. 

Case (5): Figure 4.20c depicts a simple laboratory-scale circuit, in steady state.  The voltage between 

the top and bottom wires means there is an E-field as shown.  The current in the top and bottom wires 

creates an H-field, as shown.  This yields an S vector field.  We take our volume as the large (→ ∞) half-

ball enclosing the load.  The fields at infinity decrease with distance such that the integral of S over the 

dome is zero.  Therefore, the surface integral is just that over the infinite plane.  Analysis shows that 

Poynting’s theorem is satisfied: the S vector integrated over the plane does equal VI, the power delivered to 

the load.  But again, the resistor current flows as a result of the energy delivered by the E-field in the 

resistor to the mobile charges there.  The energy flow through the vacuum around the wires is zero.  In the 

space outside the wires, S ≠ 0v, but •S = 0.  This is consistent with the true energy flow outside the wires 

of Q = 0v, and •Q = 0. 

We could test for energy flow in the space around the wires by inserting small dipole or loop antennas.  

It is well established experimentally and theoretically that such measurements yield zero signal.  It’s hard to 

justify the claim that energy flows in that region, when it cannot be detected by any measurement, even in 

principle.  In contrast, radiation fields are easily measured with antennas, or thermal absorbers.  

Furthermore, no material can be placed in the space between or around the battery and load to block or alter 

the power delivered in any perceptible way: no shield, dielectric, permeable metal, conductor, or 

superconductor will alter the power at all.  We can immerse the entire circuit in static electric fields, 

magnetic fields, or both, with no change in power, even though such fields change the Poynting vector 

field.  In fact, no stationary intervention of any kind that leaves the wires intact will change the power.  The 

wires are the only element needed to deliver the power. 
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There is no question that the charges in the wires and resistor are driven by electric fields in the wires 

and resistor.  In steady state, these fields must arise from stationary charges, driven by the battery to points 

around the circuit until steady state is reached. 

Case Summary:  In all the above cases, S does not represent the true flow of EM field energy into the 

charges.  In fact, of the seven cases we’ve mentioned (including the propagating wave and the gap between 

capacitor plates), S = Q (the true flow of energy) only in the case of a propagating EM wave. 

Simple Circuit: A Closer Look 
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Figure 4.21  (a) Poynting vector components for a steady state circuit.  (b) Looking into the wires 

toward the resistor.  The E and H fields are both stronger closer to the wire; thus, so is S. 

Let’s understand the simple resistor circuit a little better.  We must be careful when computing 

components of S, because superposition does not apply to S (S is quadratic in the fields, not linear).  First, 

(Figure 4.21a) shows the tiny E-field just outside the connecting wire that is related to the small voltage 

drop across the wire driving the current there.  The wires are very low resistance, so this E-field is small.  

Standard boundary conditions at an interface show that the E-field parallel to the wire is the same just 

outside the wire as just inside it.  This produces a component of S directed in toward the wire, which is 

small because the work done inside the wire itself is small (small resistance, small heat loss). 

In contrast, the E-field between the wires (see figure) is much larger, because it has to span the full 

voltage of the load.  Furthermore, E and H are both stronger near the wire (Figure 4.21b).  This is where 

the bulk of the Poynting vector that pierces the plane is located. 

The E-field along the resistor is also the same just inside it as just outside it (Figure 4.20a), and is 

large.  The work is done by the E-field inside driving the current.  S points inward toward the resistor.  We 

haven’t drawn it, but all of the S field lines that pierce the plane ultimately trace a path to the resistor, and 

terminate inside it.  The details depend on how the circuit is physically laid out in space. 

Three Categories of Poynting Field Lines 
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Figure 4.22  Poynting field line categories (a) sources and sinks; (b) far-field radiation; and (c) 

solenoidal; the B-field is uniform out of the page. 

Poynting field lines come in 3 categories (Figure 4.22): (1) sources and sinks; (2) radiation; and (3) 

solenoidal (closed loop).  Source Poynting field lines begin at sources of energy, such as batteries or 

transmitters.  Sink Poynting field lines end at absorbers of energy, such as resistors, motors, etc.  Radiation 

Poynting field lines start at the source and go radially outward to far field propagating waves, which carry 
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energy (and momentum) out to infinity.  Solenoidal (close loop) Poynting field lines close on themselves, 

have no beginning or end, and therefore ultimately go nowhere. 

Note that radiation fields are easily measured with antennas, or thermal absorbers.  Sources and sinks, 

and solenoidal Poynting fields are unmeasurable by any electromagnetic process.  There is no evidence 

they correspond to anything real. 

Tiny Fields?  No 

Some physicists have speculated that perhaps there are tiny electromagnetic fields near the wires, that 

are “idealized away” in our idealized analysis, and that perhaps such fields make a more sensible Poynting 

vector.  However, this idea doesn’t work quantitatively.  In case 5 above (Figure 4.20c), the usual 

idealizations for voltage, current, and fields yield quantitative agreement with Poynting’s theorem for 

energy delivered to the load.  This means the effects of any tiny fields cannot be significant.   

General Relativity to the Rescue? 

The only known noninvasive way, in principle, to experimentally locate energy-flow in space is 

through gravity, i.e. general relativity (GR).  The source of gravity is the stress-energy tensor field Tμν(r), 

which gives the energy and energy-flow (as well as momentum) as a function of position.  Therefore, 

precise measures of gravity throughout a volume gives information about the stress-energy tensor.  

Unfortunately, the gravitational effect of realizable electromagnetic fields is far too small to be measured 

with any foreseeable technology.   

Furthermore, the canonical process for deriving the stress energy tensor from a lagrangian fails for 

electromagnetism: the resulting tensor is not symmetric [Jac p605+].  GR demands that Tμν be symmetric.  

(Conservation of angular momentum also demands it [Jac p608].)  So (without any experimental evidence) 

physicists add a term to the canonical Tμν
(can), using other relativistic criteria.  The result is the (somewhat 

ad hoc) “symmetrized electromagnetic stress-energy tensor”.  Why should we believe that this tensor (and 

therefore the related Poynting vector S = Ti0) physically describes the flow of electromagnetic energy in 

space?  What would happen if we used a different symmetrization method, such as just taking the 

symmetric part of the canonical stress-energy tensor Tμν
(can)? 

And finally, it is not experimentally established that electromagnetic energy and energy-flow act as a 

source of gravity at all.  Most physicists believe it does, but there is little evidence.  Some suggestion 

comes from cosmology, but the early stages of the universe’s evolution are still uncertain.  [Interestingly, 

there is little evidence that electrons act as a source of gravity, either.  Lunar Laser Ranging (LLR) 

indicates that they do, but some physicists do not find this definitive [Unnik].] 

Observations and Speculations on the True Energy Flow, Q(r) 

One can legitimately ask, “Is the energy flux density (W/m2) a well-defined concept?”  Recall that 

there is no such thing as a moving EM field: E-fields, B-fields, A-fields have no velocity; it’s not that their 

velocity is zero, it’s that the concept of velocity does not apply to them.  This is evident because Maxwell’s 

equations and the Lorentz force law have no field velocities in them.   E and B are simply functions of time 

and space, E(t, r), etc.  If the vector fields E and B have no velocity, then do the scalar fields E2(t, r) or 

B2(t, r) have a velocity?  If not, then does the energy given by u(t, r)  (E2 + B2) have a velocity? 

For simplicity, consider a region of space with no charges.  We think it’s clear that if E has no 

velocity, then neither does E2.  What then is the velocity (really, flux density Q(t, r)) of u(t, r)?  Like 

Poynting’s theorem, all we can say for sure about the true energy flux density is that it satisfies the 

continuity equation, i.e. conservation of energy: 

u

t


= −


Q . 

This is a well-known differential equation, and given u(t, r), it defines Q only up to a curl plus a constant 

vector.  This equation alone is insufficient to uniquely define Q from u.  There are several cases where 

standard electromagnetics produces S fields that have non-zero curl.  For example, the so-called "velocity 
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fields" of a moving point charge, a permanent magnet in an E-field (Figure 4.20b), or a charge in a B-field.  

These solenoidal (closed loop) S components supposedly represent eddies of energy, circulating around 

forever, with no observable consequences (except maybe in GR).  One can define a unique Q by specifying 

an auxiliary condition on its curl.  Perhaps we might specify curl Q = 0v.  Then Q(r) ≡ curlfree(S) (where 

‘curlfree’ is a linear operator taking only the “noncurly” component, and fixing S = 0v at infinity) yields a 

unique field satisfying the continuity equation for the given u. 

This would not, however, resolve the funny issue of the Poynting vector pointing inward toward a 

power sink, such as a resistor. 

So which Q (which auxiliary condition) should we use?  Perhaps GR requires the original Q = S, given 

by naive equations of electromagnetics formed before GR was known.  But one can easily imagine that GR 

might actually require a curl-free Q.  This leads to a simple set of equations, and avoids the weird "ghost 

energy flow" that is physically implausible.  Note that GR routinely performs operations on tensors such as 

symmetrizing, or anti-symmetrizing, so removing a curl is perfectly reasonable.  Especially compared to 

the shenanigans that go on in QFT every day, this seems like a very simple and plausible physical theory.   

We think that only GR experiments can resolve the question “Which Q?”, and such experiments are 

out of technological reach for the foreseeable future. 

Appendix: Detailed Discussion and Derivation of Poynting’s Theorem 

Poynting’s theorem follows directly from the work-energy theorem and Maxwell’s equations.  The 

force (per unit volume) on a charge density by fields is: 

 
( )

( ) ( ) ( ) ( ) ( ) Gri 8.14 p362
vol

 = +         
F r

f r r E r J r B r . 

The applied magnetic field does no work on moving charges, so the power delivered to charges comes from 

the E-field alone.  The power density (work per unit time per unit volume) on the charges by the E-field is: 

( ) ( )
Power

vol
= =

J

E v E r J r . 

The goal of the theorem is to describe this power density in terms of just fields, without reference to the 

charge or current density.  We can use Maxwell’s equations to eliminate J in favor of fields: 

( )

resulting

Power

vol t t


    
=   − =   −   

    

J r

D E
E H E H , 

where Hresulting is the field resulting from the current density J only.  Any applied H-field has Happlied = 

0v, so we can define H = Hresulting + Happlied, and replace Hresulting with just H.  Neither of the components of 

H delivers any power to anything. 

Now the second term can be written in terms of ∂/∂t of the electric field energy density, εE2/2, so we 

naturally ask, “Can we make the first term look like a magnetic energy density?”  We need to replace E 

with B or H.  This first term is a dot product, so we examine the product-rule vector identities.  We find: 

 ( ) ( ) ( ) ( ) ( )  =   +   =   −  E H H E H E H E E H . 

Then Faraday’s Law / t = − E B  makes the first term entirely magnetic: 
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( ) ( )

( )

2

rate
rate of work rate of field

done on charges energy decreas

2

e

Use:

1

2

emu

em

Power

vol t

t t

B
E

t

uPower

vol t

 









    
   


=   −   −  =



  
= − − −   

  

 
= 

 

− + −    


= −  


 −   

E
H E E H E B H

B B E
E E H

S

S
of field

energy outflow
  

 

 

 (4.6) 

Thus, in a volume: 

The rate of work done on the charges equals the rate of energy loss of the fields in the volume, 

minus the outflow rate of energy from the volume. 

Conservation of energy then implies that •S = •Q, where Q is the true flow of energy in the fields.  

But nothing in this derivation says that S = Q, even though this Poynting vector S is exactly the same as 

what we needed to compute the energy flow in a propagating wave. 

A similar analysis for momentum defines the Maxwell stress tensor field T(r). 
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5 Relativistic Electromagnetics 

Relativity is second only to statistics in conceptual difficulty, because it is so contrary to common 

experience.  However, when approached systematically, it can be understood, eventually.  Here we not only 

present valid reasoning, but also describe the failure of common invalid reasoning.  Topics: 

1. Valid frame of reference 

2. Time dilation and length contraction 

3. Transformation of E and B fields 

4. Doppler effect 

5. Transformation of electromagnetic intensity 

Construction of a Valid Frame of Reference 

How to construct a valid reference frame:  

(1) Fill space with stationary clocks.  Two clocks can be synchronized by putting a flashing light 

source halfway between them.  Synchronize all your clocks;  they remain synchronized.   

(2) Fill space with a coordinate system.  Measure the distances to vertices in the coordinate system 

with stationary measuring rods.   

(3) Measure any event as its position on the coordinate system, and its time measured by a clock right 

at the event.  Therefore, there is no propagation delay between the event and the clock, and no 

other funny relativistic effect, either. 

Example: Measuring speed:  The wrong way: we’re used to marking off miles on the road, driving 

over the road in our car, and timing the distance between mile markers.  But this overstates our speed.  

Why?  Because once we start moving in the car, the miles on the road shrink from length contraction, and 

we think we’re traveling farther than we really are.  Remember, “really” means “distances as measured in 

our frame of reference,” i.e. measured by rods at rest with respect to us.  No other method of measuring 

distance is valid.  The right way: we measure our speed relative to the road by measuring how long it takes 

a single point on the road to pass between two known points in our reference frame.  The two known points 

are stationary relative to us, and we use two clocks, one at each point, to measure the time interval.  Since 

all our clocks are synchronized, we can always use different clocks to measure time at different events. 

By symmetry, if we measure our speed relative to the road, and someone on the road measures our 

speed relative to the road, we must get the same answer.  Since either frame is valid, there is no basis for 

one frame to measure faster than the other, so the two observers must measure the same speed. 

TBS: distance perpendicular to the motion must be the same for both observers.  [Helliwell p??]. 

Time Dilation and Length Contraction 

Alice and Bob are moving relative to each other, but of course, each has a measuring system (reference 

frame) that is stationary relative to themselves. 
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Figure 5.1  (a, b) Alice shines a flashlight in the y direction.  It travels 1 light-second (in, of 

course, 1 second), and hits a wall.  The two defining events are (1) Alice turns on the flashlight, 

and (2) the beam hits the far wall.  (c, d) Length contraction: see text. 

Bob travels in the +x direction (parallel to the wall) at speed  = v / c.  What does Bob measure?  First, 

Bob sees himself as stationary, and Alice as moving to the left.  He sees that the light beam is not 

perpendicular to the wall, so we conclude that the angle at which a light beam travels is relative; i.e., 

different observers measure different angles.  (This is true of baseballs or anything else that moves.)  Also, 

Bob sees the light travel a larger distance than Alice does; since the speed of light is the same for Alice and 

Bob, Bob clocks a longer time between the two events.  Call Bob’s time γ (in seconds).  During that time, 

Alice moves left a distance (by his measure) of βγ light seconds.  Since distances perpendicular to the 

motion are the same for Alice and Bob, Bob measures a y displacement of 1 (light-second).  Therefore, 

Bob’s time is: 

( )
22 2 2 2 2

2

1
1 , 1,

1
     


= + − = =

−
. 

During this time, a clock stationary in Alice’s frame measures only 1 second.  Therefore, Bob sees a 

moving clock as ticking more slowly than his own (stationary) clocks.  This is time dilation.  By 

symmetry, Alice (and everyone else in the universe) must see the same phenomenon.   

Moving clocks tick more slowly than stationary ones.   

This is not an illusion caused by the finite speed of light (see discussion of valid reference frames above).  

This is real. 

Do not be misled by this erroneous argument:  Alice sees one second on her clock, and sees Bob 

time γ > 1 seconds on his clocks, therefore Alice thinks Bob’s moving clocks run faster.  The error 

is that Bob used two clocks, at different x positions, to make his measurement.  In Bob’s frame, 

those clocks are synchronized, but in Alice’s frame they are not.   

If Alice looks at any one of Bob’s clocks (not two clocks in two different x positions), then she will indeed 

see Bob’s clock run more slowly. 

Length contraction:  By symmetry, Alice and Bob agree that they are moving at a speed β relative to 

each other.  When Alice turns on her flashlight, she simultaneously marks a green dot on Bob’s moving 

frame.  When she detects the light on the wall, she marks a red dot on Bob’s frame.  During the interval, 

Alice measures Bob move βΔt = β light-seconds across her frame; i.e. Alice measures the x distance 

between two moving dots as β light-seconds.  The dots are stationary in Bob’s frame, and as already noted, 

Bob measures their separation as βγ light-seconds.  Therefore, Alice measures the length of moving things 

as shorter than someone at rest with respect to those things, by the factor 1/γ. 

Do not be misled by this erroneous argument:  Look at the diagram of Alice’s measurement of the 

distance between the dots she painted on Bob’s reference frame.  As noted, Alice measures that 

distance as β.  Suppose Alice has a ruler on her ground, with which she measures that distance.  

One might (incorrectly) conclude that at that moment, Bob sees her moving ruler aligned with his 

dots, and conclude that in his frame, the ruler measures γβ, and thus moving rulers grow instead of 
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contract.  This is wrong because in Bob’s frame, the dots do not align with Alice’s ruler at a single 

instant in time.   

For the correct reasoning, see Figure 5.1d: In Bob’s frame, Alice is moving to the left, and her ruler is 

short.  Bob measures the red dot aligns with the red end of Alice’s ruler after the green dot aligns with the 

green end of Alice’s ruler.   

Moving objects are measured shorter than when at rest. 

The Electric Field of a Relativistic Charge 

Since at least 1959, many references reproduce a misleading diagram of the E-field of a relativistically 

moving charge (Figure 5.2a, crossed out).  The radial lines look like electric field vectors, but they can’t be: 

a single point in space has only one E vector associated with it, not multiple, and the E-field is undefined at 

a point charge.   

Instead, the radial lines are field lines, more clearly shown in Figure 5.2a, right.  Recall that the density 

of field lines gives the strength of electric field, and the field is stronger at the top and bottom, and weaker 

along the line of motion. 

We may consider E at points on a sphere some distance from the charge (Figure 5.2b).  This shows the 

field using standard vector depictions: longer vectors are higher magnitude.  In the static case, all the 

vectors are equal magnitude at equal distance.  For a relativistic charge (Figure 5.2c), the field is stronger at 

the top and bottom, and weaker along the line of motion.  The field strength is symmetric about the vertical 

line through the charge. 

vS S̄

(a) (b) (c)

+

View in S-bar

v
+

Static charge in S

• •

Electric 
field lines

vv

 

Figure 5.2  (a) Misleading, and better, diagram of field lines of a relativistic charge.  (b) Electric 

field vectors for a static charge in S; and (c) for the moving charge observed in S-bar. 

Some references have an even worse diagram that shows a circle of electric field vectors compressed 

by length contraction!  The variation of electric field with angle θ is not due to length contraction.  For one 

thing, length contraction doesn’t contract vectors in general; it contracts lengths.  Forces, fields, and other 

mathematical objects transform differently (don’t even get me started on angular momentum).  In this case, 

E is proportional to force, which depends on rate-of-change of momentum, which depends on time dilation, 

so relativistic E-fields are more complicated than just length contraction. 

Relativistic electrons are not hard to come by.  Cathode ray tubes (CRTs) are old fashioned video 

displays that used to be in every television. Many TVs accelerated electrons to ~25 keV.  This corresponds 

to γ = 1.05, and v/c = 0.3. 

Transformation of E & B Fields 

There’s a simple picture of the relativistic transformation of E & B fields.  We seek E’ and B’, the 

fields in the moving frame, in terms of E and B, the fields in the stationary (lab) frame.  First, we’ll find E’, 

the E-field in the moving frame.  We start with transformation of the E-field alone.  Imagine an E-field 

created by a sheet charge: 
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z
Lorentz contraction: 

σ’ = γσ  E┴’= γE┴

v

E┴

sheet charge 
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In the moving frame, the sheet charge is compressed to a smaller area, by the length contraction factor γ.  

Therefore, E’ is increased by the same factor. 

Now we add a B-field to the stationary frame: 

y

x

z
Lorentz 

contraction

E┴’=γ (E┴ + v  B┴)   (SI)

v

E┴

y

x

z

B┴

v

B┴

v  B┴
 

A stationary charge in the moving frame, is (in the lab frame) moving relative to B.  Nonrelativistically, the 

charge feels a force of F = qv  B, just like an E-field of v  B (SI units), simply from the Lorentz force 

law.  This appears in the moving frame to be an E-field: ' = E v B .  Boosting to relativistic speeds, picture 

that the E-field can be thought of as “lines of force” whose density per unit area is proportional to the field 

strength.  Because of Lorentz contraction, the same lines of force occupy a smaller area in the moving 

frame, and so their density is increased by γ: 

( )' , ' [Jac 11.148 p558]E E⊥ ⊥ ⊥= +  =E E v B . 

There is no contraction of the plane perpendicular to the direction of motion, and no Lorentz force from B|| 

(parallel to the velocity).  Hence, E||’ = E||.   

B’ is similar.  TBS?? 

( )' , ' [Jac 11.148 p558]B B⊥ ⊥ ⊥= −  =B B v E . 

We can combine the E (and B) transformations above into a single vector equation for each.  If we start 

with the perpendicular formulas, and note that the cross-product term does not contribute anything to the 

parallel component, then replacing B⊥ → B would incorrectly inflate the parallel component by γ.  We can 

fix this by just subtracting off ( ) ( ) ˆ1 1E − = − β E : 

( ) ( ) ( ) ( )ˆ ˆ' 1 ' 1   = +  − −  = −  − − E E β B β E B B β E β B . 

Jackson complicates this formula with the identity ( ) ( )
2

ˆ1
1





−  =  

+
β E β β E  

( ) ( ) ( ) ( )
2 2

' , ' [Jac 11.149 p558]
1 1

 
 

 
= +  −  = −  − 

+ +
E E β B β β E B B β E β β B . 
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Acceleration Without Force 

Consider a particle moving in the x-direction, and a force pushing it in the +y-direction.  The particle 

accelerates up, but it also decelerates in the x-direction, even though there is no force in the x-direction.  

That’s because the acceleration in y increases the particle’s magnitude of velocity (speed), and therefore the 

particle’s γ = 1/(1 – v2/c2).  The x-momentum doesn’t change, but when γ increases, vx must decrease to 

keep the same momentum: 

2increases, and and increase.

0 . increasing decreases!

y

y y

x
x x x x

dp
F v v

dt

dp
F p mv const v

dt
 

= 

= =  = = 

v

 

On-Axis Doppler 

Enterprise 

(observer)
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light source

v > 0

A v dt c dtB C

light

 

We first consider the simpler case of motion along the line of propagation.  We are a stationary light 

source, and there is a moving observer traveling directly toward us (above).  We can deduce what the 

observer sees from our own observations.  Note that wave crests are countable things, and therefore the 

same in all frames.  In an interval of our time dt, the observer starts at A and ends at B, and simultaneously, 

the wave train starts at C and also ends at B.  During this interval, the observer sees all the crests between A 

and C, i.e. 

( ) ( ) 1 is the speed of
c v v

n f dt f dt where v approach
c c

+   
= = +   

   
. 

However, his clock advances only (dt / γ) seconds, due to time dilation.  Without loss of generality, let 

dt = 1 second.  Then in one of the observer’s seconds, he sees  

' ' 1
v

n f f
c


 

= = + 
 

. 

This formula is valid for positive and negative v.  And of course, only the relative motion of the source and 

observer matter (after all, this is relativity, isn’t it?) 

Off-Axis Doppler 

For variety, we now take the reverse (but equivalent) view that you are now the observer, you are 

stationary, and the light source is moving.  (I think this is a little harder to follow).  You are in the 

enterprise, and a star has an off-axis relative motion of v 

(see diagram). 

Let r = distance from enterprise to star 

x = “horizontal” distance to star 

v = speed of star in x direction (v < 0) 

fs = frequency at which star emits light (in its 

own frame) 

fo = frequency at which enterprise sees light 

Enterprise

light emitting 

star

θ
+x

v < 0

x
r
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From the diagram, and recalling that v < 0, 

( )

( )

2 2 2

2 2 2 cos

cos

r x d

dr dx
r x r v

dt dt

dr v dt





= +

= =

=

 

Because of time dilation, the emitted frequency in the Enterprise frame is multiplied by a factor of 

(1/γ).  In addition, the waves are “compressed” by the changing separation between the star and Enterprise.  

In a time interval dt, the Enterprise sees the star emit (fs/γ) dt cycles of EM wave.  But those cycles get 

squeezed into a space of (c dt + dr) distance (dr < 0).  Thus, the number of cycles the enterprise sees in a 

full distance of (c dt) is (recalling again that v < 0): 

( )

cos

cos 1 cos

s s
o

s s
o

f fc dt c dt
f dt dt dt

c dt dr c dt v dt

f fc
f

c v

  

    

   
= =   

+ +   

 
= = 

+ + 

 

This reduces to the well known simpler formula for on-axis motion when θ = 0: 

( ) ( )1 cos 1

s s
o

f f
f

    
= =

+ +
. 

Transformation of Intensity (Power Density) 

If a light wave has an intensity I in the stationary frame, what is its intensity I’ as seen in an on-axis 

moving frame?  We first find this from the transformation of the E field, and noting that I α E2.  Then we 

show another, more intuitive, way to find the intensity transformation. 

First, the transforming E-field approach:  In gaussian units, a free space wave as B = E.  For on-axis 

motion: 

Doppler shift

' ' 1
v v v

E E B E E E
c c c c

   
       

= +   = + = + = +       
       

v
E E B . 

Electric fields in propagating waves transform exactly like the Doppler frequency shift. 

Then, for source and observer approaching: 

( )
( )( )

22
2 2

also square ofsquare of
Doppler shiftDoppler shift

1 / 1 /
' 1

1 / 1 / 1 /

v cv v c
I E I I I I

c v c v c v c


+ + 
  = + = = 

− + − 
. 

Intensity transforms as the square of the Doppler shift. 

It is perhaps more intuitive (though less theoretically sound) to consider the light wave as a “flux of 

photons,” i.e. some number of photons per unit area per unit time, impinging on the observer.  The flux 

times the photon energy is proportional to intensity.  If the flux seen by a stationary observer is f, what is 

the flux seen by a moving observer, f '?  The picture is essentially identical to that we used for deriving on-

axis Doppler shift: 
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Without loss of generality (wlog), the tube has cross-sectional area of 1m2.  As seen by you (stationary), the 

moving observer intercepts ( )1 1
v

n f dt
c

 
= + 

 
 photons in the time interval dt.  But again, his clock only 

advanced (dt / γ) seconds.  Therefore, the observer’s photons per unit time (the cross sectional area for him 

is still 1m2) is ' ' 1
v

n f f
c


 

= = + 
 

.  The flux transforms like Doppler shift.  (Note also that as the moving 

observer looks ahead at the photon “density” in space, his density is greater than yours by a factor of , 

because the tube is shorter by a factor of  due to length contraction.) 

But each photon’s energy is proportional to its frequency, E = , and each photon’s frequency is 

Doppler shifted by γ(1 + v/c), as shown earlier.  Ergo, 

2
2' ' ' ' 1 1 1 approach speed

v v v
I n E I I I v

c c c
  

     
  = + + = +      

     
, 

as before. 

How Big Is a Photon? 

So what’s the theoretical objection to the above photon-flux model of intensity transformation?  The 

problem is that photons are not point-like particles of small dimensions.  The electromagnetic wave is a 

widely distributed quantum-mechanical wave-function (of sorts) of the photon.  However, in quantum field 

theory (the only valid quantum theory for photons), the photon density is proportional to the square of the 

electromagnetic intensity, just as with massive particles.  The photon itself, though, cannot be localized, or 

thought of as a point, but the density approach is rigorously valid.   

There are many real-world situations in which a single photon is spread over many meters or 

kilometers, e.g., lunar laser ranging which detects an individual photon spread laterally over many square 

km of the earth, and a fraction of that photon is spread over many square meters of the receiving telescope. 

The Pressure of Light 

We can derive the pressure of light from the fundamental relativistic energy momentum relationship: 

( ) ( )
2 22 2E mc pc= + . 

Since light is (i.e., photons are) massless, we have: 

(light or other massless particles)E pc= . 

Now force  F = dp/dt, so for normal incidence light absorbed onto a surface: 

1
power of radiation

dp dE P
F where P

dt c dt c
= = =  . 

Taken per unit area: 
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intensity = power per unit area
I

Pressure where I
c

=  . 

Example: Reflection Off a Moving Mirror 

We show here a novel solution to the classic test question of light reflecting off a moving mirror, using 

conservation of energy entirely in the lab frame. 

The question:  An ideal mirror moves to the right, perpendicularly to its face.  A physicist shines a 

light on it with normal incidence from the left (Figure 5.3).  Find the power reflection coefficient of the 

moving mirror Γ ≡ (Pr / Pi). 

incident light, Pi

mirror
v

reflected light, Pr expanding 

volume

E

B
v

vB

transverse plane

 

Figure 5.3  Light reflecting off a moving mirror. 

The intensity transformation way:  In previous sections, we derived (in two different ways) that E 

and B fields transform like the Doppler shift, and therefore intensity transforms like the square of Doppler 

(the minus sign below is in the numerator because source and observer are receding): 

1 /
' recession speed

1 /
i

v c
I I v

v c

− 
=  

+ 
. 

In this problem, we have two intensity transformations of the same factor: once into the mirror frame, and 

once again from the mirror frame to the lab frame.  The result is then simply 

2 2
1 / 1 / 1 /

'
1 / 1 / 1 /

r i

v c v c v c
I I I

v c v c v c

− − −     
= =   =     

+ + +     
. 

The energy way:  It is perhaps instructive to consider conservation of energy in the lab frame: the 

energy crossing a transverse plane (parallel to the mirror) goes into (1) filling up the increasing distance to 

the mirror with electromagnetic energy, (2) doing work on the mirror from the pressure of light, and (3) 

transmitting light across the boundary back into the laboratory.  Without loss of generality, we can use an 

incident power of 1 (in arbitrary units).  In some time interval, the fraction of the incident energy that gets 

stored in the expanding space up to the mirror is then v/c.  The rest of the light hits the mirror, and reflects.  

Similarly, the fraction of reflected energy that gets stored in the expanding space is Γv/c.   

The work done on the mirror by the incident light is F Δx, where F = P/c, and Δx in a unit time is v.  

Then W = Pv/c.  However, P is not Pi = 1, but just the fraction of Pi that is not stored in the expanding 

volume.  We found above that the stored energy is v/c, so that which hits the mirror is (1 – v/c), and the 

work is W = (1 – v/c)v/c. 

Similarly for the work of the reflected light, but the total work is from the light stored in the expanding 

volume plus the light sent back through the transverse plane into the lab.  The stored energy is Γv/c, and the 

reflected light power is Γ.  Hence the work is W = Γ(1 + v/c)v/c. 

Then by conservation of energy, the incident energy equals the sum of stored incident plus reflected 

energy, plus the incident plus reflected work: 



elmichelsen.physics.ucsd.edu/ Funky Electromagnetic Concepts emichels at physics.ucsd.edu 

12/21/2021  17:12 Copyright 2002 - 2021 Eric L. Michelsen.  All rights reserved. Page 89 of 108 

2 2

reflectedstored storedincident work reflected work into labin space in spaceon mirror on mirror

2

1 1 1 1 2 1 2

1 /

1 /

v v v v v v v v v v

c c c c c c c c c c

v c

v c

        
= + − +  + +  +   − + =  + +                 

− 
 =  

+ 

 

Beaming 

Both Jackson and Griffiths have misleading diagrams for relativistic beaming at high γ.  Both their 

diagrams show no backward emission components at all.  Inspection of the equation shows immediately 

that this is not the case; the power is finite for all angles up to π.  Here are more suggestive diagrams: 

 ~ 0

dP/d

 > 0

dP/d

 ~ 1

dP/d

 

Figure 5.4  Radiation pattern (cross-section) for transverse acceleration at various velocities. 

Remember that the radiation pattern is axially symmetric about the velocity vector, so the “beaming” is 

more like a big hollow cone of light than a pair of headlights. 

Covariant Form of Maxwell’s Equations 

TBS.  Given that F μ is a rank-2 tensor, we can show that J μ is a 4-vector: 

( )
1

0

Define Lorentz transformation matrix from to

Lorentz transformation matrix from to

Then the identity transformation

Note
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x
s s

x

x
s s
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6 Shorts 

Bound and Gagged 

Are bound charges real?  To understand this, we must be more specific: there are real bound charges 

that are responsible for permittivity (and equivalently, for dielectric constant).  However: 

The so-called “bound charge distributions” that one can calculate are not real  

(despite what some references say). 

[e.g., Culwick 1959 p??].  A simple example proves the point.  Consider a broad (i.e., infinite) flat sheet of 

dielectric material:   
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Figure 6.1  (a) Dielectric with no E-field. Blue is positive, red is negative.  (b) Dielectric with 

long dipoles in an E-field.  (c) Dielectric with higher volume density of shorter dipoles in E-field. 

Figure 6.1 shows only a representative volume, but the top and bottom sheets are given as broad.  

Inside the dielectric are molecules with electric dipole moments.  In Figure 6.1a, absent an E-field, the 

dipoles are randomly oriented.  They therefore sum to zero total dipole moment.  Figure 6.1b, in an E-field, 

the dipoles align.  In this example, the dipoles are unrealistically long, and the positive (blue) ends of the 

top two rows land on top of, and cancel, the negative (red) ends of the bottom two rows.  The net result is 

that all inside charges cancel, and we are left with two surface charges, negative on top, and positive on the 

bottom.  These charge densities are what one computes with the standard formula: 

ˆ [Gri ??]bound = P n . 

The induced electric field from the dipoles is uniform throughout the slab. 

However, this is clearly an unrealistic depiction.  Real molecules aren’t that close together; their dipole 

moments are not ideal point charges separated by vacuum; and adjacent charges don’t exactly cancel. 

More realistically (but still idealized), above right, the dipoles don’t overlap (they’re shorter); each one 

has a larger dipole moment, so the endpoint charges are larger; and there are more of them.  However, the 

dipole moment per unit volume is the same as the middle diagram.  Therefore, these dipoles add up to the 

same total dipole moment in the slab as the middle diagram, but they result in larger real surface charge 

densities.  In addition, there are sheet charges at other layers below the surface, which cause the induced E-

field to be large between the charges of each dipole, and zero in the gaps between layers of dipole.  That’s 

because a real dipole moment is spread throughout the volume of the dielectric.  In fact, the standard 

definition of polarization for a dielectric (in an E-field) is dipole moment density (dipole moment per unit 

volume).  The total dipole moment in the slab is the product of moment-density times volume: 

( ) ( ) ;Volume where dipole moment dipole moment density=  p P p P . 

Therefore: 

The bound surface charge densities we compute for dielectrics are model densities which give 

equivalent dipole moment to the real dielectric, but are not real.  

Finally, Figure 6.1 shows cartoon dipoles for illustration, but actual atomic/molecular dipoles are more 

like Figure 6.2.  Influenced by an external E-field, the wave-function of the electron(s) shifts slightly to 

create a small dipole moment of the atom or molecule.  In quantum perturbation theory, wave-function 
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shifts occur at 2nd-order in energy, so calculating the dipole moment requires finding 2nd-order 

perturbations. 

electron 
cloud

nucleus

(a) (b)

applied 
E

induced 
E  

Figure 6.2  (a) Unpolarized atom, with symmetric electron “cloud.”  (b) Polarized atom with 

displaced nucleus/cloud. 

Pole to Pole: Current Loops Are Approximate Dipole Moments 

A current loop has mostly a dipole moment, but any finite-sized loop also has other multipole moments 

in it.  A pure dipole results only in the limit that the loop size goes to zero, while the current increases to 

infinity, in such a way that the product IA remains constant.  (This is similar to an electric dipole, which is a 

pure dipole only in the limit of the charge q → ∞, while separation d → 0, such that the product qd = 

constant.)  For example, in a pure magnetic dipole pointing up, all the magnetic field in the equatorial plane 

points down (except exactly at the origin): 

( )
3

ˆ ˆ3
dipole: ( ) [Jac 5.56 p186, Gri 3.103 p153]

r

 −
=

M r r M
B r  

But in a finite loop, the field inside the loop points up.  Hence, a finite loop cannot be a pure dipole. 

I
A

M

B

M

B

(b) Finite size current loop(a) Pure dipole

equatorial 

plane

 

Figure 6.3  (a) Pure dipole B-field points down everywhere in equatorial plane.  (b) Finite-size 

current loop B-field points up inside loop. 

The Mythical Moving B-field 

Can B-fields move?  No.  B-fields must be computed either (1) in the frame in which they are used (the 

lab frame), or (2) in some other frame, and then transformed into the lab frame.  In either case, there is no 

such thing as a “moving” B-field, although the latter case can sometimes be profitably thought of as such.  

Note that all of electromagnetics is contained in the Lorentz force law and Maxwell’s Equations.  Neither 

of these has any place for a B-field velocity. 

In the first case (computing a B-field in the lab frame), B-fields may vary in space and time, because 

they are derived from currents which vary in space and time.  However, they cannot have any “velocity” 

because there is no such concept in the Biot-Savart Law, or in Ampere’s Law, which are the two primary 

ways of computing B-fields. 

In the 2nd case, we may compute B-fields in a moving frame (in which frame they are not moving), and 

then transform them into the lab frame.  Once in the lab frame, though, they again have no velocity.  In the 

nonrelativistic version of this case, one can sometimes reasonably visualize such B-fields as “moving,” 

which is a shortcut for transforming the fields into E-fields in the lab frame.  However, there is no support 

for moving B-fields in either Maxwell’s equations or the Lorentz force law. 
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Similar considerations apply the vector potential, either 3-vector A(t, r) or 4-vector Aμ.  There is no 

model of a moving vector potential in Maxwell's equations, or in Lagrangian or Hamiltonian formulations 

of EM fields and charges.  The B-field (and the 3-vector A-field) is relative: it is frame dependent.  At 

relativistic speeds, this is unarguable.  Nonrelativistic speeds are just the low-speed limit of the full 

relativistic theory.   

There are no EM equations in which the velocity of the B-field (or A-field) is either defined or used. 

Check Your Gauges 

Gauge freedom, aka gauge invariance, is a very important theoretical tool for electromagnetics.  It also 

has important implications for quantum electrodynamics (QED), and all quantum field theories.  Potentials, 

both scalar and vector potentials, often simplify the calculations of real problems.  But neither the scalar 

nor vector potentials are unique functions for a given system.  Some choices of potentials are easier to work 

with than others, and different questions lead to different choices for the “simplest” potentials.  This 

freedom of choice in the potentials is called gauge invariance.  It turns out that with the concept of a 

vector potential, inescapably goes the concept of gauge invariance.   

We present a brief review of gauge invariance, and then the two most common gauges, “Lorenz 

gauge” and “radiation gauge” (aka “Coulomb gauge” or “transverse gauge”).  We clarify that both gauges 

are actually families of gauges.  This section assumes a thorough understanding of vector calculus, and that 

you have seen the concept of a vector potential. 

Gauge invariance is based on the fact that all physical predictions  

can be made from knowledge of the E and B fields.   

The E(t, x) and B(t, x) fields have simple physical meanings which are summarized by the Lorentz 

force on a test charge at some point in space: 

test charge. gaussian units, relativistically valid
d

q q
dt c

 
 = +   

 

p v
F E B . 

This says that the E field acts on any charge, moving or not.  The B field acts only on moving charges.  The 

E field can do work on a charge, but the B field cannot directly do work on a charge.  The E and B fields 

are directly measurable by their effects on a test charge.  Physically, the sources of E fields are (1) charges 

(moving or not), and (2) changing B fields.  The source of B fields is charge currents (i.e., moving charges). 

Sometimes however, instead of working directly with E and B fields, it is more convenient to work 

with potentials, which generate the E and B fields by a simple mathematical operation.  Two such 

potentials are needed: a scalar potential Φ(t, x), and a vector potential A(t, x).  These potential functions are 

not unique: different choices can produce the exact same E and B fields, and thus the same physical 

predictions.  N  

All known laws of physics, classical and quantum, are gauge invariant. 

The statement of gauge invariance is nothing more than the mathematical fact that I can construct 

multiple pairs of functions, Φ(t, x) and A(t, x), that generate the same measurable E and B fields.  The fact 

that many such pairs of functions exist is gauge invariance.  There is no mathematical requirement that 

these two functions be partitioned in such a way as to have any immediate physical meaning.   

Static Fields 

The defining property of the magnetic vector potential A(t, x) is that ( , ) ( , )t t= B x A x . 

Static fields are not functions of time, so in the static case, the above definition can be reduced to: 

( ) ( ) (static fields)= B x A x . 

Then we can define an electric potential V(x) that directly relates to energy: 
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0

Define ( ) such that ( ) ( ) ( ) ( )

where we choose ( ) 0.

V V V d

V

= −  = −




x

x
x E x x x E x x

x

 

This electric potential has no gauge freedom (only an arbitrary additive constant).  The E-field is given by 

the gradient of the electric potential, which in the static case also serves as a scalar potential: 

( ) ( ) ( ) ( ) electric potential (static fields)V where V= − = − E x x x x . 

V(x) has units of joules/coulomb, or volts.  Both of these equations involve only derivatives of the 

potentials, so adding a constant to Φ or A doesn’t change the fields.  This is a trivial form of gauge 

invariance, which we ignore. 

More importantly, the A-field is not unique because there are many functions A(x) which have the 

same curl.  In particular, any irrotational (i.e., curl-free) vector field can be added to A, and it doesn’t 

change the curl.   

Any irrotational field can be written as the gradient of a scalar field,  

and the gradient of any scalar field is irrotational. 

Our gauge freedom for static fields then means we can add the gradient of any scalar function to A, and 

get another, physically equivalent, vector potential: 

'( ) ( ) ( ) (gauge invariance for static fields)= + A x A x x , 

where A’ is physically equivalent to A, and (x) is any scalar function. 

Time Varying (Dynamic) Fields 

Things get more complicated in the dynamic case.  Following [Jac sec. 6.2-6.5 p239-48], electric and 

magnetic fields can still be specified in terms of a scalar potential and vector potential, but now a time-

varying B-field, and thus a time-varying A-field, contributes to the E-field: 

( )
( , ) ( , )

( , ) ( , ) ( , ) 0
t t

t t t
t t t

   
  = − = −      + = 

   

B x A x
E x A x E x . 

Note that the curl and time derivatives commute, so we can bring the ∂/∂t inside the curl operator.  Since 

the curl of E + ∂A/∂t is zero, it can be written as the gradient of a scalar function which we call –Φ: 

( , )
( , ) ( , ) ( , ) ( , )

( , )
( , ) ( , )

t
t t t t

t

t
t t

t


+ = − =  




= − −



A x
E x x B x A x

A x
E x x

 

For dynamic fields, Φ(t, x) is not the electric potential.  It is the scalar potential, chosen for 

mathematical convenience, which, along with a matching A(t, x), generates E(t, x). 

In fact, the electric potential does not exist (in general) in the time varying case, since the electric field 

has a non-zero curl.  This means that the energy ΔE required to move a charge from a point x1 to x2 

depends on the path, and hence there cannot exist any function V(x) such that ΔE = V(x2) – V(x1).  

Nonetheless, it is possible to define the electrostatic potential, which accounts for only the coulomb forces 

of source charges, but not the dynamics of varying B-fields. 

Since both E and B are found from derivatives of A and Φ, A and Φ are not unique.  Gauge freedom 

(or gauge invariance) is the ability to impose additional mathematical constraints on A and Φ, that don’t 

change the physical system.  [It is sometimes said that E and B are the “physical” fields, and A is not; this 

point is debatable, but the preceding definition of gauge invariance holds either way.]   
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Lorenz Family of Gauges 

You may hear talk of “the” Lorenz gauge (often incorrectly referred to as “Lorentz” gauge [Jac p294]).  

Lorenz gauges are actually a family of gauges, which satisfy 

2

3

0

1 ( , )
( , ) 0 Lorenz gauge [Jac 6.14 p240]

( , ) 0 Relativistic form [Jac 11.133 p555]

t
t

tc

A
or A t

x




 
 =


  + =




  =




x
A x

x

 

[Aside:  As a simple example of gauge invariance, look at the first equation above.  We can generate another 

Lorenz gauge vector potential A’(t, x) by adding any static (i.e., time-independent) divergenceless vector field 

G(x) to a given Lorenz gauge field A.  Since the curl of G must be 0 (to preserve the B-field), G can be written as 

the gradient of a scalar field: 

( , ) ( , )t t= G x x . 

Since we chose ·G = 0 (divergenceless),  is a harmonic function (it satisfies Laplace’s equation): 

2( , ) 0 ( , ) ( , ) 0t t t  =     =   =G x x x . 

For boundary conditions at infinity, this implies that (t, x) = constant.  For restricted regions of space (and 

therefore local boundary conditions),  may be non-trivial.] 

However, in general, a significant gauge transformation involves changing both A and Φ.  We can 

generate another Lorenz-family gauge with any transformation of the following form: 

2
2 2

2 2

1
( , ) ( , ) 0,

( , )
'( , ) ( , ) ( , ) '( , ) ( , ) [Jac 6.19 p241]

Given that t t then
c t

t
t A t t t t

t

 
 −    =   


= +   =  −



x x
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A x x x x x

 

We can see that the new fields are also Lorenz gauge by simply plugging into the gauge definition above: 

( )
2

2

2 2 2 2 2

2
2

2 2 2

1 ' 1 1 1
'

1 1
0

t t t tc c c c t

tc c t
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A

 

This is much easier to see relativistically, where the constraint on  is: 

( , ) 0.

' ' 0

t Then

A A and A A




     
  

   =

= +    =  +    =

x
 

Lorenz gauges are Lorentz covariant: the 4-divergence 0A
 = .  The Lorenz gauge makes the wave 

equations nice and symmetric, and has a simple, covariant relativistic form [Jac p241]. 

Transverse, Radiation, or [gag] “Coulomb” Gauges 

Another family of gauges is radiation gauge, aka transverse gauge, or (misleadingly) Coulomb 

gauge, defined by 

( , ) 0 radiation (aka transverse) gauge [Jac 6.21 p241]t =A x , 

which implies [Jac p241]: 
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2 ( , ) 4 ( , ) (Gaussian units) [Jac 6.22 p241]t t   = −x x . 

The term “Coulomb” gauge can be confusing.  It suggests that Φ(t, x) is the electric (so-called 

Coulomb) potential, which it is not.  Further, the relation of Φ(t, x) to ρ(t, x) looks the same as the 

static field, but that is not physically significant. 

[Jac p242b] says that Coulomb gauge “indicates” that Coulomb forces propagate instantly.  This is 

misleading, since Φ is a mathematical field, not a physical one.  However, [Jac] is quite clear that all EM 

fields propagate at the finite speed of light, and all behavior is consistent with Special Relativity. 

We can generate another radiation-family gauge by adding a static gradient of a harmonic function to 

A: 

2( , ) ( , ) ( ) ( ) 0 preserves radiation gauget t where→ +    =A x A x x x . 

Since  is irrotational, it preserves B.  Since ∂()/∂t = 0, it preserves E.  [As before, for all of space, Λ 

being harmonic implies that (x) = constant.  For restricted regions of space,  may be non-trivial.] 

The radiation gauge is often used when no significant sources are nearby, such as the radiation fields 

far from the source.  Then Φ → 0 in the radiation gauge, and A satisfies the homogeneous (i.e. no-source) 

wave-equation: 

2
2

2 2

1
( , ) 0 [from Jac 6.30 p242] ( , ) , ( , ) [Jac 6.31 p242]t t t

tc t

 
 − = = − = 



A A
A x E x B x A . 

With this additional condition that Φ = 0, the E-field is given by E = –(∂A/∂t).  Note that: 

Far from sources, when Φ = 0, the radiation gauge is also a Lorenz gauge. 

This follows immediately from the definitions: 

2
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( , ) 0, ( , ) 0 ( , ) 0

Lore
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tc
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

x
A x x A x . 

Furthermore, the Lorenz gauge is Lorentz covariant, but neither of the radiation gauge conditions Φ = 0, 

nor •A = 0 is covariant (i.e., they are frame dependent). 

Even a static E-field can use a gauge in which Φ = 0.  This implies that A contains an irrotational part 

which grows unbounded (linearly) with time.  (This part has no curl, and so contributes nothing to the B 

field.)  Such an unbounded A-field, in this gauge, makes it hard to believe the A-field is a physical field 

[but see the Bohm-Aharonov effect in quantum mechanics]. 

In general, for dynamic fields, the scalar potential Φ(t, x) is not the electric potential.  In fact, in 

general, no time-varying “electric potential” is possible (why not??  Note that such a field is usually not 

conservative).  The radiation gauge is no exception.  Φ(t, x) is a mathematical convenience, whose relation 

to ρ(t, x) looks the same as a static field, but whose meaning is very different.  An electric potential cannot 

be constructed, and is certainly not simply the integral of the static Coulomb potential over the charge 

distribution [ref ??]. 

Canonical Momentum Is Gauge Dependent 

Gauge choices often help tremendously in revealing physics properties.  Many calculations are greatly 

simplified by a good gauge choice, which makes it much easier to understand some phenomena.  For 

example, in quantum field theory, there is one property that is very clear in one gauge, and very obscure in 

a 2nd gauge.  But there is a 2nd property that is clear in the 2nd gauge, but obscure in the first.  However, 

because we know the two results are related by a gauge transformation, we know that both properties must 

always hold.  It is important to be clear, though, which quantities are gauge invariant, and which are gauge 

dependent.  Canonical momentum is gauge dependent. 
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Recall that the EM Lagrangian for a charged particle, and its canonical momentum are (gaussian 

units): 

1 1 1

1

1

( , ) ( ) ( ) ( ) ( ,... ) ( ,... ) ( ,... )

( ,... ) are the set of generalized coordinates for the particle

n

n n j j n

j

n

i i i

e e
L T V or L T q q V q q q A q q

c c

where q q

L e e
m or p mq A

c c

=

= − +  = − +




 = + = +



q q q q q A q

q

p q A
q

 

where e is the charge of a partical. 

Because of gauge freedom in choosing A(q), the canonical momentum is gauge dependent, and even which 

components of momentum are conserved is gauge dependent.  Consider a positive charge moving in a 

uniform B-field directed out of the page.  Here are 2 different A fields that describe this situation: 

A(x, y) = xj

y

x

y

x

Bz
Bz

Ay

v v

A(x, y) = −yi

Ax

 

Figure 6.4  Two different gauges for A that describe the same physical situation.  On the  

left, py is conserved and px is not.  On the right, px is conserved and py is not. 

Recall from the Euler-Lagrange equations of motion for any Lagrangian: 

( , , )
0, 0i i

j
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dt q q q q dt q dt
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In the situation above, the particle motion is a circle.  In the left case, 
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and px is not conserved.  You can see this on the left and right edges of the circle of motion.  On the left 

side, v and A point up, and add.  On the right, v opposes A, and they subtract.  The sum in both cases is the 

same, i.e. py is conserved.  But in the right case,  

( )2 21
( , ) , ( , )

2

0 x x

x y y L x y m x y xy

L L e e
p const mx A mx y

x x c c

= − = + −

 
=  = = = + = −

 

A i

 

and py is not conserved.  Here, the top and bottom edges of the circle are examples of v and A combining to 

the same px value at both points. 

Note that any rotation of the A field would produce exactly the same physics, and would be just 

another gauge change.  If we made the A field point at 45°, then the linear combination px + py would be 

conserved, but neither one separately would be conserved. 
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Reflection Symmetry 

When considering magnetic systems, one might encounter reflection symmetry, which is essentially a 

parity transformation.  In such cases, we must distinguish between “polar” vectors and “axial” vectors.  In 

short, polar vectors flip direction under a parity transformation, and axial vectors do not.  So position, 

momentum, and E-fields, for example, are polar vectors.  Angular momentum and B-fields are axial vectors 

(some axial vectors point along an axis of rotation, e.g. angular momentum, hence the name “axial”).  This 

means that when you consider “reflection” symmetry (i.e., parity transformation) in E&M, you have to flip 

the E-field, but not the B-field.  This is a little weird.  You have to be careful with reflection symmetry and 

magnetic fields. 

Bandwidth 

[Taken from my original “Simple English Wikipedia: Bandwidth” page.  As such, this section, and 

only this section, is public domain.]  Bandwidth is a measure of how much frequency space of a spectrum is 

used.  To clarify this, we must define some terms.  Many systems work by means of vibrations, or 

oscillations.  Vibrations are something that goes back and forth at a regular rate. Each complete cycle of 

“back and forth” is called, simply enough, a cycle.  The number of cycles per second of a system is its 

frequency. 

Frequency is measured in cycles per second, usually called “Hertz”, and abbreviated “Hz”. 

However, most systems don’t operate at just a single frequency.  They operate at many different 

frequencies.  For example, sound is vibrations.  Therefore, it has at least one frequency, and usually many 

different frequencies.  People can hear sound frequencies as low as about 20 Hz, and as high as about 

20,000 Hz.  A band of frequencies is a continuous range of frequencies; in this example, the band of 

frequencies people can hear is from 20 Hz to 20,000 Hz. 

Finally, bandwidth is how wide the frequency band is, that is, the highest frequency minus the lowest 

frequency.  In the hearing example, the bandwidth of a person’s ears is about 20,000 Hz - 20 Hz = 19,980 

Hz. 

Bandwidth is often applied to the electromagnetic spectrum: radio waves, light waves, X-rays, and so 

on.  Radio waves are oscillations of electric and magnetic fields.  For example, the lowest United States 

AM radio channel covers the band of frequencies from 535,000 Hz to 545,000 Hz.  It therefore has a 

bandwidth of 10,000 Hz (10 kHz).  All United States AM radio stations have a bandwidth of 10,000 Hz.  

The lowest United States FM radio channel covers the band from 88,000,000 Hz (88 MHz) to 88,200,000 

Hz (88.2 MHz).  It therefore has a bandwidth of 200,000 Hz (200 kHz). 

The term “bandwidth” has been misappropriated into the field of digital data communication.  It is 

often incorrectly used to mean “data carrying capacity”.  However, there is no such thing as “digital 

bandwidth”. The proper term for the data carrying capacity of a communication channel is channel 

capacity. 

It is true that, in general, the channel capacity of a system increases with the bandwidth used for 

communication.  However, many other factors come into play.  As a result, in many (if not most) real 

systems, the channel capacity is not easily related to the channel bandwidth. 

Is an Electron’s Mass Due to Its E-field? 

No.   

There is much speculation about whether the mass of fundamental particles comes from the energy of 

their inherent fields, but it is fairly easy to see that that is not plausible. 

Consider the hypothesis that an electron's mass is entirely due to the energy of its electrostatic field, 

through m = (energy)/c2.  It is reasonable to also assume the positron must be the same.  When we bring an 

electron and a positron close together, their fields cancel to some extent.  The closer the particles, the more 

cancellation, and we can achieve any degree of cancellation we choose.  Therefore, the mass of an electron-

positron system should be less than 2x511 keV, and for some collisions, it would be much less. 
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Electron-positron systems have been widely studied in particle physics experiments for many decades.  

All such experiments show that e-p systems always have rest-mass of 2x511 keV.  Therefore, we conclude 

that experiments rule out the hypothesis. 

In fact, in any system of particles, the energy of any fields around charged particles must be added to 

the rest mass to get the total mass-energy of the system.  The field energy is typically quite small.  For an 

isolated electron, we can calculate the so-called “classical radius:” the radius a spherically symmetric 

charge of an electron would be to have an E-field energy equal to its mass; it is about 310–15 m.   

The energy in the field of a spherical shell of uniform charge density  1/r: 

2
2 2 2

2

1 1
4

classical classical classicalr r r classical

d r dr r dr
rr

 
  

− 
        = 

   
E

E . 

A typical atomic electron is spread over an orbit of about 10–10 m, more than 4 orders of magnitude larger 

than its hypothetical “classical radius.”  Its (uncancelled) field energy would then be more than 4 orders of 

magnitude smaller than its rest mass.  By itself, this would be readily measurable with modern methods, 

but the field of a neutral atom is almost entirely cancelled by the nucleus; the resulting field energy is 

negligible.  The electron remains fully massive, however, at 511 keV.  Despite all these field configuation 

considerations, the quantum mechanical calculation of the size of a hydrogen atom gives the correct, 

measured result only when supplied with the well-known rest-mass. 

Furthermore, in Quantum Electrodynamics (QED), one can compute the gyromagnetic ratio 

(essentially, the magnetic field) of an electron to 14 digits, and it agrees with experiment to the last digit.  

This calculation also uses the standard rest-mass of the electron.  QED is the most accurately verified 

theory known to humans, and it uses the well-known rest-mass in all its calculations, regardless of field 

configurations. 

Note that there is no evidence that an electron has any property related to the hypothetical “classical 

radius.”  About the most we can say is that to confine an electron’s wave-function to (half) this size, you 

need an energy equivalent to (twice) its mass, and you may well generate an electron-positron pair in the 

process.  The created pair’s rest-mass steals the energy from the original electron, and so you can’t really 

squeeze an electron much smaller than (half) its classical radius. 

Still more: A proton is roughly 2000 times heavier than an electron.  If mass were due to a charge’s 

electric field, a proton would be about 2000 times smaller than an electron.  Scattering experiments clearly 

show a proton size on the order of 1 fm, whereas electrons have no discernable fundamental size at all.  

(Their size depends entirely on the spatial extent of their wave-functions.) 

Furthermore, what would be the origin of the mass of a neutron?  Or a neutral pion?  We might guess 

quarks, but neutrons and neutral pions are like “atoms” of quarks, and the energy of any supposed internal 

EM fields would be many orders of magnitude less than the particles’ known masses. 

All experimental evidence is consistent with the notion that a fundamental particle’s mass is a constant 

of nature.  In the standard model, all rest masses are due to interactions with the Higgs boson.  The strength 

of the interaction (a constant of nature) determines the mass.  The standard model is well supported by a 

huge base of varied experiments, which further rule out the “electric field as mass” hypothesis.  In my 

opinion, the origin of mass is less well established than most of the standard model, but the data ruling out 

the hypothesis still stand. 

Skin Depth 

It may seem odd that the skin-depth formula: 

2



=  
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contains μ, but not ε.  The reason is that a conductor (σ > 0) has, at low frequency, infinite permittivity: ε → 

∞.  When ω is high enough that the finite conductivity prevents the conductor from fully expelling the E-

field, then the relevant electrical parameter is σ.  So there are both an electrical and a magnetic parameter in 

the skin depth; it’s just that the relevant electrical parameter for a conductor is σ, not ε. 

Future Funky Electromagnetic Topics 

Let me know what topics you’d like to see. 

It seems that in the universe, there are fundamental electric monopoles (charges), and fundamental 

magnetic dipoles (intrinsic dipoles of charged fermions).  This mean we should include a source to the 

sourced (but otherwise vacuum) Maxwell’s Equations, ρM, for magnetic dipole moment density (a vector 

field), or mq for a point-charge dipole moment.  In practice, though, for fluids (e.g., gasses), the magnetic 

dipole moments (being vectors) average to near zero.  In contrast, the charges sum.  To get the magnetic 

moments to be significant, they must align, which typically requires either a solid material, or an outside 

field to influence the fluid. 

1. Do W+/W- have magnetic moments?  Yes [ref??]   

2. Force between two capacitor plates is ½ what you might think from σAE; must look at it on a 

mesoscopic scale (bigger than atoms, smaller than capacitor).  Also, a charging capacitor always 

dissipates the same power in its resistor as is left on the capacitor.  This means the idealized 

approximation of zero-loss wires is impossible. 

3. Hidden momentum. 
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Glossary 

Definitions of common Electro-magnetic terms: 

<x> the average (sometimes called “expectation”) value of ‘x’ 

current In a wire, current is flow rate of charge passing a point:  
dq

i
dt

 .  In contrast to voltage, 

which is between two points. 

fact A small piece of information backed by solid evidence (in hard science, usually 

repeatable evidence).  If someone disputes a fact, it is still a fact.  “If a thousand people 

say a foolish thing, it is still a foolish thing.”  See also “speculation,” and “theory.” 

linear scales with multiplication by a constant, and summing of two parts.  In other words, it 

commutes with scalar multiplication, and distributes over addition.  E.g., a linear function 

satifies ( ) ( ) ( )f ka b kf a f b+ = + . 

sense Every vector lies along an axis.  The sense of a vector is simply which way the vector 

points along the axis.  In some cases, we know the axis of a vector, but not its sense. 

speculation A guess, possibly hinted at by evidence, but not well supported.  Every scientific fact and 

theory started as a speculation.  See also “fact,” and “theory.” 

theory  the highest level of scientific achievement: a quantitative, predictive, testable model  

which unifies and relates a body of facts.  A theory becomes accepted science only after 

being supported by overwhelming evidence.  A theory is not a speculation, e.g. 

Maxwell’s electromagnetic theory.  See also “fact,” and “speculation.” 

voltage Electrostatic potential energy difference per unit charge between two points.  E.g., if VAB 

= +2 V, it means point A has 2 joules per coulomb higher potential energy than point B.  

If I move 3 C of charge from B to A, I must do 6 J of work on them, which is stored as 6 

J of potential energy.  If I let the charges run free from A to B, the E-field does 6 J of 

work on them, so they acquire 6 J of energy (in this, kinetic energy). 
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WLOG or WOLOG without loss of generality 

Formulas 
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Solutions to Laplace’s Equations 
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