
APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 1 of 103

APOLLO Housctl (Houston Control) Operation
and Design

Last saved by Eric L. Michelsen

Contents
1 Introduction .. 5

Using This Document... 5
Open Issues .. 5

Stuff That Needs To Be Added To This Document.. 5
Pending Software Changes ... 5

TUI... 5
housctl.. 5
housctl Change Log.. 7
Simulator.. 10
Prediction Software (mkpoly.c) ... 10

References .. 10
2 Using housctl (Houston Control) .. 12

Overview of Typical Operations.. 12
Changing the Length or Stopping an Operation Manually .. 12
Killing housctl .. 12
Restarting housctl After a Problem ... 13
Reverting to an Older Version of housctl .. 13

Using housctl To Take Data ... 14
Using housctl To Take Real Lunar Data ... 14
Using housctl To Take Stare Data... 15
Using housctl To Take Dark or Flat Data.. 15
Using housctl To Take FIDLUN Data ... 15
Using housctl to Calibrate the TDC While Flashing Laser (LASERCAL) 15
Using housctl to Emulate a Real Run (FAKERUN)... 16
Using housctl to Generate Real-time Fake Data (FAKEDATA) .. 16
Shutting Down housctl ... 17

Handy housctl Commands .. 17
STV Commands ... 18
Laser Commands.. 18
m33 and m75 Chiller Commands ... 21
TR Motor Commands ... 21
Velocity Offset (Rx) Mirror Control.. 22
DAQ Commands .. 22
Power Commands and Power Override ... 22
Dealing With RTD Failures .. 23
CAMAC NAF Commands.. 23

Detailed Functions of the States.. 23
Known Housctl Problems.. 25

3 Advanced Housctl Information... 26
Laser Blocking ... 26

Auto-Detection of Block File Format .. 26
Comments in Block File Format ... 26
New Format (Since ~2/2008) .. 26
Old Format (Prior to ~2/2008) .. 29

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 2 of 103

Files Used By housctl ... 30
Previous Files Used By housctl ... 31
Using housctl As A Human ICC ... 32
Script Files ... 32
housctl Startup Sequence.. 32
Using Time Offset Hunting... 33

Obsolete Time Offset Hunting... 33
4 Operations Support Software... 35

Lunar Prediction... 35
Using the Prediction Software... 35

5 Houston/ICC/Hub/TUI Interfaces.. 37
APO TUI/Hub/ICC/Control Architecture.. 37
Houston/ICC Overview... 38

Houston Functions .. 39
ICC Functions .. 39
Houston/ICC Logical Interfaces .. 39

Houston/ICC Data & Log Files ... 40
Data File Record Types... 40
Log File Record Types .. 42
Russell’s Comments On Data Formats .. 44

Houston/ICC Data Formats... 45
housctl Parameter Types ... 45
Command Summary... 45
Device Power Codes ... 46
Gettable/Settable Parameter Summary .. 47
Response Summary... 49

TUI Functions and housctl/TUI Interfaces .. 50
General TUI Processing of Housctl Messages.. 50
Keyword Parameters Requiring Additional TUI Processing .. 50
Other Keyword Parameters ... 51

Events and Alarms ... 51
housctl Alarms ... 51
TUI Processing of Alarms and Events... 52
Possible Event/Alarm Future Enhancements ... 53

TUI/Hub/ICC Information .. 55
Telescope Control Computer (TCC) ... 57

6 APOLLO Instrument Control Computer (ICC) .. 58
ICC Processing Details ... 58

Houston to Hub Direction ... 58
Hub to Houston Direction ... 59

ICC Design Notes... 60
The Hardware (Cocoa).. 61

STV Video ... 61
7 Design and Implementation of housctl ... 63

SVN ... 63
Overview.. 63
Common Maintenance Tasks.. 63

makefile.. 63
Changing the Names of Log Parameters ... 63

Current Development Environment .. 64
Privileges ... 65
Threads and Mutual Exclusion ... 65

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 3 of 103

Linux pthread Issues I found out the hard way.. 66
Real Time Issues .. 67
Consistency Checks .. 67
TCP Timeouts .. 67
Quadrant Diffuser Tracking.. 68
Environmental Control ... 68

ILE Temperature Control.. 68
Utah Box Temperature Control ... 68
Dealing With RTD Failures .. 69
On the Prospect of Smoother Utah Temperature Control... 69

Laser Coolant Circulation... 70
Laser Oscillator Voltage ... 71
Weather Data ... 71

Automatic Fetching in Houston .. 71
8 Houston Device Library Software .. 74

Serial Library ... 74
TCP Library ... 75
Asynchronous Library .. 75
Terminal Server Library ... 75
Power Control: houspower.c ... 75

Terminal Server Power Not Used Anymore... 75
Parallel Port.. 75

CAMAC Library .. 76
TR Motor Library... 77
ACM Library.. 77
TDC Library... 77
Bolometer (pwr_meter) Library .. 77
Chiller Library ... 77
GPS Clock Library ... 77
Programmable Resistor Library .. 78

Hardware.. 79
DAQ Library.. 79
RTD Library... 80
Laser Library.. 82
Picomotor Library... 83
STV (Video Camera) Library ... 83
WTI Library... 87

9 Various Issues Desiring Resolution... 88
Lost Data From Temperature Taking.. 88
ICC Connection Issues ... 88

10 Support Software .. 90
HTML Environmental Monitor... 90
Environmental Plot Generation... 90
STV Images.. 90

Lunar Prediction... 91
Determining Shot Time for Prediction From FRC & TWS.. 91
Polynomial Fitting .. 92
Rolling Polynomials ... 94
Aaron Buttery’s Work On One Polynomial Per Night ... 95
Prediction Code Design .. 95

11 Tracking Loops... 102
General Tracking Loop Theory... 102

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 4 of 103

TDC Window Alignment: Acquisition.. 102
TDC Window Alignment: Tracking ... 103
Fiducial Intensity Tracking... 103
Telescope Pointing Tracking .. 103

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 5 of 103

1 Introduction
Many issues are flagged in the text with “??”. So search for “??” (without the quotes) to find open issues.

Using This Document
This document is for APOLLO system operators, and software developers. Operators need only chapters 2
and 3. Developers need the whole thing.

It’s too hard to maintain a separate developer’s document, because developers must
constantly update both the operator sections and the implementation sections to agree.

That’s only feasible in a single document.

Open Issues
1. System too risky with environmental controls running off terminal server. Switch to DAQ or

parallel port. There seems to be a high rate of failure of terminal server lead controls (~1 in 10).

2. Long standing problem with hours-long TCP timeouts. See housctl design chapter.

3. The prediction software is way too strict on agreement with the ephemeris, and this causes us to
require two polynomials per night, instead of one. This is a huge pain, and should be fixed by
loosening the error criterion to ~1 ns (from ~1 ps).

4. Is the resynchronization logic for the diffuser phase motor reliable?

5. The gravimeter will have its own independent data recorder off site. No need to bother
houston/ICC with this. What is its recording mechanism? Computer readable?

Stuff That Needs To Be Added To This Document
Include copy of daily/polytest file.

SVN link.

Pending Software Changes

TUI
1.

housctl
1. Turn off default logging of laser serial traffic

2. housctl: fix the text of pr_read 88: status 0 when setting the PRs when laser is powered off.

3. Fix the initial GPS string to always be right.

4. Make scripts to run housctl.

5. Add statename parameter to send to TUI

6. A few times, TR position returns -141893611 or so on ‘tr sync’.

7. Automatic laser and STV control.

8. Fix STV display update.

9. Make TCP timeouts be seconds.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 6 of 103

10. Interrupt housctl to get to known state?

11. Write multiple copies of log & data files

12. Shut down CAMAC if overtemp

13. safety shutter command

14. Thread STV commands

15. Smoother Utah temperature control

16. GPS clock stats during RUN with threading, so we don’t lose 1 or 2 shots.

As expected, the new feature for getting the GPS DAC stats mid-run (which is important and good)
results in some missed fids. They look like laser dropouts (1 fid missing):

missing 1 fids, prior to shot 383
missing 1 fids, prior to shot 583
missing 1 fids, prior to shot 783
missing 1 fids, prior to shot 983
missing 1 fids, prior to shot 1384

But the pattern is obvious: every 200 shots one fid goes missing.

17. Add periodic power control retry on failure of WTI and maybe DAQ. Is 1 retry enough for term
serv? Move critical controls to DAQ output for greater reliability (no network dependence).

18. Streamline the process of switching filenames (e.g., no longer necessary to issue readblock) when
we switch targets, the spooks will be happier with its robustness. Perhaps we can name multiple
block files similar to naming multiple poly files (which I'm sure we can get rid of). Then we can
have housctl read the right block file when it receives a 'refl' command.
laserblock1 for target 1
laserblock2 for target 2, etc.

19. Why did housctl crash twice when temp thread blocked ? Or lost contact with terminal server.

20. Does DAQ needs mutual exclusion, because DAQ is accessed concurrently for power control and
temperature data? Or does driver handle this OK?

21. renumbering thunt offset shot numbers

22. Built in self-test?

23. A weird problem prevented one of the run files from being processed by the analysis software. It
turns out that the gps0 record after fid shot 2202 in 070529-062657.run had an extra (^A)
character in the DOY:

gps0 gpstrig="^A149:06:28:49.00677"; cpserr=0
Don't know where this came from, but it messed things up. This could be a one-time error.

24. A new problem crops up on occasion. Don't know what to make of it yet, but it's always at the
very end of a run.

******** WARNING *************
Number of dTWS-dFRC errors detected: 4
TWS-FRC Error: at shot 14997: 2*dfrc, dtws, twsfrcerr =
 266627604, 3498516, 63129088
TWS-FRC Error: at shot 14998: 2*dfrc, dtws, twsfrcerr =
 266627610, 3498522, 63129088
TWS-FRC Error: at shot 14999: 2*dfrc, dtws, twsfrcerr =
 266627616, 3498528, 63129088
TWS-FRC Error: at shot 15000: 2*dfrc, dtws, twsfrcerr =
 266627622, 3498534, 63129088

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 7 of 103

25.

housctl Change Log
This log is now continued in the SVN comments, and is no longer maintained here. Dates are executable
file date, not necessarily the date when run on houston.

4/29/2008 Changed time hunting to use 'huntrun' command.

4/16/2008 New block-file format (old still works). ‘status’ updates laser block status. Fixed bug
when “unblock” overlapped block-file time, which caused permission time to be wrong.
Eliminated long delays when blocking during a run. ‘dphase_target’ is preserved across
housctl restarts.

2/20/2008 Added the time-search feature (‘thunt’). Fixed the problem of 'topt' nonzero causing
debug info on every shot in the data file. The debug option is now properly in the
'debug' settable parameter.

12/3/2007 Switch to parallel port instead of terminal server for power 9-16.

11/28/2007 Fixes WARMUP crashes. ILE temp alarm changed to t_ile_hi+3 (now 28C), rather
than t_ile_hi+1 (was 26C).

11/21/2007 Added fakedata (state=13).

11/14/2007 Fixes the inadvertent power cycling of the passive PG cooling pump/fan.

11/11/2007 Escape STV display non-printing as “%XX”. Allow poly files to have day of 0, which
means “today”.

10/27/2007 Eliminated “shot time out of range” on fid -1 records. Fixed ‘help’ on session 2.
Normal ‘disconnect’ does not alarm. Forced disconnect now works, and generates
alarm.

10/17/2007 RTD calibration. Compliance with new alarm scheme, including new Laser blocking
updates to TUI. ICC command error no longer generates alarm.
blockremaining/releaseremaining clean and accurate. Lots of cleanups to make
reportable keywords consistent.

10/3/2007 Norens come on at WARMUP, and go off at IDLE. Norens come on during Utah
heating. Fix formatting of m33/m75 response. Changed RTD name “Laser_rack” to
“MV70”. Removed oscvolt_r from the cums file. Added ‘laser oscvolt up v’ and ‘laser
oscvolt down v’ commands to change arbitrary volts; reports oscvolt_offset for how
much the digipot is decreasing the laser voltage.

9/25/2007 Added chiller temperature records. Temperatures taken immediately on startup, avoids
bogus Laser flow low alarm. Removed Laser power on from WARMUP.

8/29/2007 Swapped CAMAC and Utah_heat plugs (now 1 & 0). Changed tilt calibration.

5/22/2007 The first GPS trigger time corresponds to the first fiducial (shot 1), not the first shot = -
1.

5/10/2007 Turns the IR camera on at WARMUP, and off at COOLDOWN.

4/25/2007 (Put on Houston 5/9/2007 13:50 PT) Progress diagnostics in temperature and GPS
threads (thread_temp_status, thread_gps_status). Attempt/Error counters in power
control (pwr_ctls, pwr_ctl_failed, pwr_ctl_first_failed).

3/23/2007 All symbolic links are now relative, and moved to “fileprefix1/” directory.

3/1/2007 Added oscillator voltage digipot control. Fixed WARMUP TR sync by setting divide
ratio before enabling diffuser.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 8 of 103

2/?/2007 Changed tr_motor_position to always return 0-3999. Fixed read_polynomial() to return
proper status. WARMUP powers on motors first, with 1s delay, then other stuff, as a
test to fix the TR sync problem. Added ‘naf’ and ‘nafl’ commands.

1/30/2007 Added 90 min idle ICC dropout from STANDBY or WARMUP to COOLDOWN.
Fixed fd leak in read_polynomial().

1/27/2007 Removed ‘circulate_laser’, added dphase/TR motor pos & motion display every 0.5s
during sync_diffuser. Fixed log file roll time. DI circulation check now done in all
states (not just IDLE).

1/26/2007 Added TCP maxfd.

1/20/2007 Catch SIGPIPE, so dead ICCs don’t kill housctl. Added ‘unblock’ command. Fixed fd
leak on errors in wti_util.c and ts_util.c. Added more ICC session diagnostic info.

1/5/2007 ‘alarms’ and ‘alarms_unack’ come out on all exc0 records. Removed stdout/stderr
buffering, so nohup.out is up-to-the-second, for better diagnosis of problems.

1/4/2007 Added ‘daq’ diagnostic command. Start of operator power override. Added powerstate
of -1 for unused ids. Fixed readblock day of year problem. Added dphase to ‘tr’
diagnostic. Made ‘set alarms_unack...’ echo par0 to log file. Changed DAQ library to
only retry when reads NaN. Increased power-on delays for TR motor to try to fix TR
sync failure in WARMUP.

11/16/2006 symbolic links in data directory to log file are now relative. Temp safety on ILE temp
when cabinet RTD fails. More ICC session debugs: ICC connects/disconnects now
printf() to nohup.out. t0, tf now 16 decimal places. Added SecFocus memory
parmeter. On log-file rollover, invalidate DRK, FLT, airtemp, pressure, humidity,
SecFocus, reflector, guideOff, boreOff[0], axePos[0], slewtarget[0]. Reduce lost photons
during RUN when taking temperatures. Fixed “mirror queued message” to be i= (info),
rather than text= (error). runfidgw defaults to 7 instead of 6. WARMUP increased TR
motor power-on delay from 1 to 3 sec, to see if it makes TR/diffuser sync work.

8/10/2006 New directory structure. Processes any debug=, doptions=, or fileprefix1=
command line arguments before opening log file.

7/2006 Dark/Flat records now in data file. Normalize DARK/FLAT data when taken.

7/14/2006 Allow any whitespace (e.g. tabs) to lead housctl.blk lines.

6/20/2006 Exceptions now come out to ICC session 2. Removed bogus FRC mismatches from shot
-10. Added STV commands. Removed laser statusline reporting. bolopos was put in a
while ago. Updated lots of operator messages to ‘i=xxx’, and errors to ‘text=blah’.

6/19/2006 STV left on with laser flashing. On in WARMUP, off in COOLDOWN.
DARK/FLAT/FIDLUN/STARE set TR as needed, all but FIDLUN leave clear; FIDLUN
leaves dark. RUN still moves TR to clear space. Added CALTDC to start and end of
RUN.

6/~3/2006 Added wildcards to ‘get’; modified rxx scale factors; added delay to laser ‘activate’
button.

5/11/2006 Programmable resistor for laser power control: laser power 0/1, ampdelay_low,
ampdelay_high

4/~25/2006 Threaded rxx/rxy commands

4/1/2006 No foolin’: added fakerun and caltdc

3/31/2006 Allow 2 simultaneous ICC sessions.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 9 of 103

3/28/2006 Fixed ‘status’ output for unknown state ‘powerstatus’ variables.

3/16/2006 Log files now start with parameter list, like data files.

3/14/2006 Added 0x05 startup reply to laser.

3/9/2006 Added powerstate variable. Made laser keep alive/display thread.

3/7/2006 STARE moves TR to clear, if TR powered on. Added ‘tr’ command. Fixed diffuser
phase tracking in RUN. Added symbolic link creation. Cleanup ICC connection
messages. Enable diffuser motor after all camac_Z(). dphase_target defaults to 850.

3/4/2006 changed to fid0 w/ dphase, & lun0. No exit from COOLDOWN/passive-cool. Split
housctl ICC code into housicc.c. fid/lun format comment in fidlun data files.

3/2/2006 Moved STV on/focus from end of RUN to start of STANDBY. Changed STV power-on
delay from 1->2 s. Changed to t_utah_center, t_utah_push, & t_utah_limit. Changed to
char guideOff[32], boreOff[32], axePos[64].

3/1/2006 TR motor to reflective in FIDLUN. Moved “switch to TR laser zap” to right after gate
widths set, to avoid diff tracking conflict.

2/27/2006 Laser block file no longer needs the “Z” after times.

2/25/2006 Changed all times to UTC. Log file includes comment stating such. Changed log file
roll to 20:00 UTC always (12:00pm PST); each log file now spans 24-hours, regardless
of housctl start time. Data files now named with UTC (normal log files unaffected).
housctl build date/time is local time, as defined by C-language standard.

2/19/2006 Changed initial airtemp, pressure, humidity to -99. Poly files and laser block file now
come from daily/ directory. Laser blocks by default, needs override housctl.blk. Fixed
laser blocking off by 1 year. Alternating gate widths for fiducial/lunar. Added pulse
energy measurement. Major laser control updates. Fixed finding poly file in RUN.

2/18/2006 Added ‘flat’ command. M75 turns on with ‘laser preprun’ command. New filenames,
same old directories. Separate run files, w/o WARMUP. Diffuser synchronization
across all states. TR initialization. Removed shot #’s -2. Diffuser phase in par0 after
each fid in data file. Added statusline reportable. Added GPIB semaphore. Laser block
file lines with ‘AZ’ or ‘TARGET’ in them get logged.

2/6/2006 Alarms in hex, READONLY parameters.

1/14/2006 Day of years works through 12/30/2008. Chillers powered through numbers 17 & 18.
Fixed ‘info’ command. M33 used when dome_air > t_utah_low - 6, or when CAMAC
is on.

12/5-9/05 Sends last drk0, if any, on ‘status’. Added ‘camac’ command. Fixed initial detection of
power states 0-7. Added bunch new RTDs. Polynomials come from polys/ directory,
but I hope to change that to daily/ soon.

12/3/2005 laser & STV turned on in WARMUP; FIDLUN/STARE/DARK return to either IDLE or
STANDBY, depending on whether IDLE or WARMUP was last entered; 50 MHz
counters enabled earlier in RUN; DARK positions TR motor to block telescope light;
read polynomial files from “poly/*”; changed apdtoffs name to apdtofpd & updated
with latest numbers; removed ‘camac 0/1’ command (use ‘power’), added ‘camacz’
command.

11/26/2005 Added Alarm system. Added power control records, 'pow0'. Added retry on terminal
server power controls. Added APD time offsets to fast photodiode, "apdtoffs".

11/23/2005 added diffuser phase tracking, retry on TS power controls, apdtoffs, pow0 records

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 10 of 103

11/12/2005 Added weather and mirror move functions.

11/3/05 Added “circulate_laser” function to avoid freezing.

10/15/05 Fixed “Laser enabled” msg on every shot. Don’t turn on STV at end of FIDLUN.

10/15/2005 housctl.readblock: Added readblock command. Changed default dskew to -48 ns.

Simulator
1. Separate prepulse rates for fids and luns? Does it matter?

Prediction Software (mkpoly.c)
1. Fix round off error in start time

2. Make files more self-documenting

3. Fix instability problems

4. Eliminate the need for sections: loosen accuracy to 1ns. When I did my polynomial fit to the
simulated data points, I couldn't use 'double' for the regression matrix sums. I had to use 'long
double', because summing over 6000 points causes more than 3 digits of precision loss, which
does not allow for ps accuracy. After the sums, I truncate them to 'double' and do the linear
regression equation solutions in 'double' and all is well to ~1 ps.

5. Save the raw ranges in “index time range” file, for easy import to housctl on-the-fly poly fits.

References
APOLLO home page: http://physics.ucsd.edu/~tmurphy/apollo/apollo.html

APOLLO observing manual:
 http://cfa-www.harvard.edu/~jbattat/apollo/docs/observingManual/observingManual.pdf

APOLLO documentation: http://physics.ucsd.edu/~tmurphy/apollo/doc/ (not linked from home page).

housctl svn: svn://svn.apo.nmsu.edu/Apollo/Houston/trunk/

Russell has written a first draft manual on how to write an Instrument Control Computer. It is available
at: http://rowen.astro.washington.edu/ICCManual/. This should be served at APO, once Craig Loomis
has a chance to review it. P.S. Craig: the statement that Reply ID is obsolete and should not be supported
by new instruments may be controversial. Other than that, I think it's mostly a matter of fact checking and
filling out some details to come up with the final version.

Here are some example command sets that are simple and possibly worth emulating:

- DIS <http://tycho.apo.nmsu.edu:81/DIS/DIS_Commands.html>

- expose and tlamps: see links from <http://tycho.apo.nmsu.edu:81/MC2/>

From: James Battat [mailto:jbattat@cfa.harvard.edu]
Sent: Thursday, March 16, 2006 10:39

I've updated my tui install notes, available at:
http://www.cfa.harvard.edu/~jbattat/apollo/TUIInstallNotes.txt

Also, I've updated the notes in the .zip file that includes all necessary install files for a TUI install on
windows: http://www.cfa.harvard.edu/~jbattat/apollo/TUIInstallation.zip

Info about TUI (APO's telescope user interface) can be found here:
http://www.astro.washington.edu/rowen/TUIHelp. To get a copy of the program, read "Installation".
(This is a copy of the html help built into TUI).

http://physics.ucsd.edu/~tmurphy/apollo/apollo.html
http://cfa�www.harvard.edu/~jbattat/apollo/docs/observingManual/observingManual.pdf
http://physics.ucsd.edu/~tmurphy/apollo/doc/
http://rowen.astro.washington.edu/ICCManual/
http://tycho.apo.nmsu.edu:81/DIS/DIS_Commands.html
http://tycho.apo.nmsu.edu:81/MC2/
mailto:jbattat@cfa.harvard.edu
http://www.cfa.harvard.edu/~jbattat/apollo/TUIInstallNotes.txt
http://www.cfa.harvard.edu/~jbattat/apollo/TUIInstallation.zip
http://www.astro.washington.edu/rowen/TUIHelp

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 11 of 103

The hub tries to do very little other than authorize users and route commands. Authentication and some of
the scripts are documented at http://tycho.apo.nmsu.edu:81/MC2/, and in particular, the link
Authentication. The expose info is a bit outdated (especially since it is being overhauled right now).

The TCC is the Telescope Control Computer. It also lives at APO in the computer room. See
http://www.apo.nmsu.edu/Telescopes/TCC/TCC.html for info on the commands and expected replies.

Lantronix Terminal Server Manual http://www.lantronix.com/pdf/ets_ref.pdf

http://tycho.apo.nmsu.edu:81/MC2/
http://www.apo.nmsu.edu/Telescopes/TCC/TCC.html
http://www.lantronix.com/pdf/ets_ref.pdf

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 12 of 103

2 Using housctl (Houston Control)
“houston” is a computer. “Houston Control” or “housctl”is a program that runs on houston. This section
describes how to run and use Houston Control (housctl). ‘housctl’ is one program that runs continuously,
so normally, you don’t need to start it. housctl requires houston’s Unix clock to be synchronized with
UTC. A cron job should do this every hour, but the laser blocking times depend on it, so you should verify
it.

Overview of Typical Operations
Housctl is usually run from TUI. TUI provides many high-level operations to operators, which TUI
translates in to low-level housctl commands. Some operations, however, require operators to directly
enter housctl commands. All housctl commands and parameters are case sensitive. Commands have the
general format (as seen by the operator):

command parameter parameter ...
There are usually only 1, 2, or 3 parameters.

Operators command housctl into one of several states (e.g., idle, warmup, run, cooldown, ...).

When housctl enters WARMUP state, in anticipation of RUN, it increases the rate of some measurements
(e.g., temperature), for better environmental data when collecting lunar returns.

The normal sequence for making multiple runs is:
 warmup
 run (automatically goes to STANDBY when done)

 ... repeated once for each run
 cooldown (automatically goes to IDLE when done)

On entering RUN, housctl creates a data file, and copies housctl.hed into the data file. You can set
housctl.hed to be a set of REM records to better describe the contents of the data file. You can put
any kind of documentation, or even data, that you want in it. Each RUN gets its own data file. Note that
all “log” events are also entered into the data file, so the data file alone contains a complete record of all
events during the measurement period.

Changing the Length or Stopping an Operation Manually
Operators can change the length of a run, while running, by setting ‘nruns’ to a different value, e.g.

set nruns=5000
You can stop an operation (run, flat, dark, stare, fidlun, etc.) with

standby

Killing housctl
Killing housctl freezes everything in its current state, but the environmental page can't see any
temperatures or flows if housctl is not running to fill in the log file.

Kill the running housctl with ($ is normal bash prompt, # is root prompt):
$ cd /home/apollo
$ su
<enter the root password when it asks>
ps aux|grep housctl
root 5673 0.0 0.2 39316 1232 ? S<L Mar01 1:57 ./housctl
root 5677 0.4 0.2 39316 1232 ? SNL Mar01 59:10 ./housctl
root 5678 0.0 0.2 39316 1232 ? SNL Mar01 0:00 ./housctl
root 5679 0.0 0.2 39316 1232 ? SNL Mar01 0:12 ./housctl
eric 6314 0.0 0.1 1728 592 pts/5 S 03:18 0:00 grep housctl

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 13 of 103

The number after 'root' in the first line is the process ID (PID) we need, in this case, 5673.
kill 5673

Note that ‘set state=0’ is designed to turn everything off for hardware operations such as rewiring, or
when major systems will be disrupted. It specifically leaves on houston (avoiding suicide), and the GPS
clock.

Ideally, restarting housctl should turn everything back on, though we don’t do this very often, so I
wouldn’t be surprised if something is overlooked. If so, we should fix housctl to turn everything on that
needs it.

Also, housctl should expect things to be out-of-sorts for at least one environmental measurement cycle,
and shouldn’t turn lots of stuff on for no real reason. I know there was a problem for a long time with the
flow meter causing a laser power cycle at start up, but that should be fixed now. Small things like turning
on the Noren fans for a minute or two don’t matter, and aren’t worth considering.

Restarting housctl After a Problem
Sometimes after testing (or some unforeseen termination or problem), you need to restart housctl itself.
For normal operation, start housctl with no parameters. However, it must be set to run continuously, even
after you log out. There are 2 ways to do this:

bash> nohup ./housctl &
[1] 20632 system responds with process id

For debugging, there’s another way described below. ‘nohup’ has the advantage of appending stdout &
stderr to the file ‘nohup.out’, which can help diagnose crashes.

After starting housctl, you need to increase its priority, such as

ps find the first housctl process id, call it x
su priority increasing requires root privilege
renice -20 x increase housctl’s priority to the maximum
ps lf verify that priority is set properly
 F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
...
100 0 944 1 -1 -20 38964 940 nanosl S< pts/5 0:00 ./housctl
040 0 947 944 13 5 38964 940 do_pol SN pts/5 0:00 ./housctl
040 0 948 947 13 5 38964 940 wait_f SN pts/5 0:00 _ ./housc
040 0 949 947 13 5 38964 940 nanosl SN pts/5 0:00 _ ./housc
exit don’t be a root hog

You can set any parameters from the command line (the same parameters as the ICC “set” command).
E.g.

housctl debug=1 nruns=10000 &
For debugging, you might want to start housctl like this:

bash> ./housctl &
Debug here, where you can see the normal stdout and stderr.

bash> disown
bash> jobs

Verify with the “jobs” command that there are no processes belonging to this shell session (note that ps
will still show the housctl processes). You can still increase its priority, as above.

Reverting to an Older Version of housctl
Whenever I change housctl on houston, I save a copy in houston:/home/apollo/bin directory, as
“housctl.something” where "something" is a mildly descriptive word of the change in *that* version of
housctl (i.e., the word matches the binary).

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 14 of 103

The new binary of housctl goes directly in houston:/home/apollo/housctl. You can always see all the
backups with

ls -lt bin/housctl.*

which sorts them by time, and shows you the timestamps on the binaries.

To run an old version: First, kill the running housctl (see above instructions).

Now the old housctl is dead. Choose the old one you want to run by date by looking at:
ll -t bin/housctl.*
-rwxrwxr-x 1 eric llr 236568 Mar 1 19:17 bin/housctl.oscvolt
-rwxrwxr-x 1 eric llr 235128 Feb 1 05:52 bin/housctl.warmup
-rwxrwxr-x 1 eric llr 233803 Jan 26 22:42 bin/housctl.maxfd
-rwxrwxr-x 1 eric llr 231934 Jan 5 22:13 bin/housctl.alarm
-rwxrwxr-x 1 eric llr 231752 Nov 17 23:52 bin/housctl.relsym
-rwxrwxr-x 1 eric llr 231279 Aug 11 2006 bin/housctl.newdir

...
This is a list of the saved versions in reverse time order. The latest one before the run date you want to
emulate is the one to use. For example, if you want the same housctl as on Jan 9th, the housctl in effect at
that time was housctl.alarm dated Jan 5.

Now follow the instructions above for restarting housctl after a problem, but substitute 'bin/housctl.alarm'
(or whichever one you want) for './housctl':

nohup bin/housctl.alarm &
[1] 20632 system responds with process id, e.g. 20632
renice -20 20632 increase housctl’s priority to the maximum (use the new PID)
ps lf verify that priority is set properly
exit don’t be a root hog

Using housctl To Take Data
To actually record any data (real lunar shots, STARE, DARK, FIDLUN), you must send housctl through a
sequence of states.

Note that only the real lunar data files include log records as well. By design, Fidlun and Stare data files
do not include log records (why is that??).

Using housctl To Take Real Lunar Data
Real lunar data is the only data that uses WARMUP, STANDBY, and COOLDOWN states. For a single
run of real lunar data:

warmup enter warmup state, closes any open data file, read polynomial file, power on CAMAC
crate, increase temperature rate to every 10s, start & synchronize TR & diffuser motors.

run Open data file named yymmdd-hhmmss.run, start TR motor, firing laser ‘nruns’
times, take data. When done, closes data file, stops TR motor, & goes to STANDBY
state. After 90 min of no ICC commands, STANDBY automatically goes to
COOLDOWN. Usually, you will command ‘cooldown’ sooner than that.

cooldown enter COOLDOWN state. APD fan, laser rack, & M75 chiller run briefly. ~30 total
min of cooling, then moves to IDLE state.

For 2 or more runs of data, recorded in separate data files:
warmup enter warmup state, closes any open data file, read polynomial file, power on CAMAC

crate, increase temperature rate to every 10s, start & synchronize TR & diffuser motors.
run Open data file, start TR motor, fire laser ‘nruns’ times, take data. When done, closes

data file, stops TR motor, & goes to STANDBY state. After 90 min of no ICC
commands, STANDBY automatically goes to COOLDOWN. Usually, you will
command ‘cooldown’ sooner than that.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 15 of 103

run issue ‘run’ again to start a new data file and take data. Repeat ‘run’ and waiting for
STANDBY, any number of times.

cooldown enter COOLDOWN state. APD fan, laser rack, & M75 chiller run briefly. ~30 total
min of cooling, then moves to IDLE state.

Using housctl To Take Stare Data
Stare data does not use WARMUP, STANDBY, and COOLDOWN states. From IDLE state:

stare enter STARE state, create data file named yymmdd-hhmmss.str, power on
CAMAC crate, take STARE data. STARE continues until commanded back to IDLE

idle close data file.

Using housctl To Take Dark or Flat Data
Dark data does not use WARMUP, STANDBY, and COOLDOWN states. ‘flat’ state is loosely named,
since the operator chooses what to point the APDs at, which may or may not actually be uniformly lit.
From IDLE state:

dark enter DARK state, power on CAMAC crate, move TR to dark patch, take data (same
method as STARE). After about 15 s, record data in current log file. DARK transits
automatically back to IDLE state. DARK data files are *.drk.

flat flat is the same as dark, except it rotates the TR optic to a clear patch. FLAT files are
*.flt.

With DARK and FLAT data, that TUI can subtract a background dark count, and also take care of pixel-
to-pixel gain variations, to make the APD grid more accurately depict illumination. TUI can then treat
hitgrids as (new - dark)/(flat - dark) before displaying.

Using housctl To Take FIDLUN Data
FIDLUN state is mostly meant to detect fiducials, at a fixed pulse rate. First, be in WARMUP or
STANDBY. The “lunar” gates are just sandwiched in between the laser shots. From IDLE state:

warmup enter warmup state, closes any open data file, power on CAMAC crate, increase
temperature rate to every 10s, start & synchronize TR & diffuser motors.

fidlun enter FIDLUN state, create data file yymmdd-hhmmss.fid, power on CAMAC
crate. FIDLUN continues until ‘nruns’ shots, or commanded to another state. Returns
to STANDBY or IDLE (whichever it came from).

Using housctl to Calibrate the TDC While Flashing Laser (LASERCAL)
LASERCAL state measures the effects of the laser fire (EMI) on the clock/Booster signal. Tom says it
requires a special cable be put in place on the system, but I don’t know why that’s needed. Lasercal works
as follows:

 The laser fires, triggering the fast photodiode

 FPD alerts the ACM

 ACM produces a gate of width parameter W

 As a by-product (LUN_START enabled), a START request goes to the Booster

 The normal STOP request accompanies the end of the gate

 W is cycled between 1, 2, 3, 4, 5

 one minute of this --> 240 events for each gate width

Thus we obtain a TDC calibration very much like the normal calibration, but triggered by the laser and
thus operating during a very noisy time. Thus we can investigate the effect of the laser fire on the clock
pulses. This is important to understanding our fiducial timing performance.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 16 of 103

Processing is a mix of FIDLUN and CALTDC. The APD is disabled. The internal laser shutter remains
closed. LASERCAL also does the FIDLUN trick of producing fake “lunar” gates, so we get an in-situ
calibration of the TDC in a quiescent state for direct comparison. LUN_START enabled is the chief
difference to FIDLUN.

Using housctl to Emulate a Real Run (FAKERUN)
The ‘fakerun’ command runs the same code as ‘run’, except it keeps the laser firing disabled. ‘fakerun’
can test most functions of a real run other than the laser. It can be used for testing housctl, TUI, and other
subsystems.

To use ‘fakerun’, you must use a test reflector of ‘-1’, provide a valid prediction file, and must release the
laser (in the Space Command sense). For the prediction, I keep a file houston:/home/apollo/daily/polytest
with a simple straight-line polynomial in it. Since the actual prediction is irrelevant, this file predicts a
time near 2.5s, increasing by ~10 ns per shot. The file is valid 24 hours a day, and sets the day=0, which
tells housctl that it is valid every day. This polytest file is this:

0
0.000000000000000
0.999
0.000215925
0.0004956036
185.000000
5
2.616835312435575
25.140172
2
2.5
0.01728

To release the laser, even though it won’t fire, use ‘unblock 120’ (2 hours). A complete sequence might
be this:

info
:
exc0 2007-11-09T19:48:01 severity=3; alarms=0x0; alarms_unack=0x10000;
text="Shot time out of range: 313.825021 not in [309.472222, 309.625000]"
0 i dayofyear=313.8250214467593; rtt=2.5
:
refl -1 disable automatic search for poly file
exc0 2007-11-09T19:51:38 severity=3; alarms=0x0; alarms_unack=0x10000;
text="No valid prediction file"
0 f g="Can't find polyfile"
readpoly daily/polytest read the prediction parameters
info verify no “shot time out of range” exception
warmup power up systems, excluding the laser. You may leave the laser

powered off.
set nruns=5000
unblock 120 allow laser firing
fakerun enter RUN state, but keep laser disabled
cooldown shut down normally

Using housctl to Generate Real-time Fake Data (FAKEDATA)
The ‘fakedata’ command generates fake data real-time (20 shots/second). There is no laser firing
involved, and no need to unblock the laser. Set ‘topt’ as a 2 digit number: the 10’s digit is the number of
fiducial APD events per shot, the units digit is the number of lunar APD events per shot. E.g.

set topt=12 one fiducial + 2 lunar APD events per shot.
set nruns=5000
warmup
set state=13 Soon to be fixed with a ‘fakedata’ command

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 17 of 103

FAKEDATA always generates the fiducial fast photo-diode (FPD) event in channel 15. The fake FPD is
always TDC value 2000, and each channel’s TDC value is (2000+channel#). Operators may change
‘topt’ on the fly.

Shutting Down housctl
This is not shutting down for the night; use ‘cooldown’ for that. Shutting down housctl is meant to
precede serious maintenance, when major systems will be disrupted. Shutting down housctl cleanly stops
all functions, including temperature regulation, and powers everything off (except those things we can’t
remotely power back on, such as the bolometer). It is generally advisable to have housctl shutdown only
for short times, so the system maintains proper temperature. To shut down housctl:

set state=0 Stop all functions and hardware (e.g., TR motor), and power down all devices.

Handy housctl Commands
rem The ‘rem’ command simply adds a comment with a timestamp to the log file, and any

open data files. You can put whatever text you want on it, e.g.,
rem At this point, the laser rack caught fire

Note Whenever something unexpected happens, it’s a good idea to enter a ‘rem’ command
describing the anomaly. This allows later analysis of all the logs to help find the
problem.

get The ‘get’ command accepts wildcards, which helps if you're not exactly sure of the name
of a parameter. You can guess a part of it, and surround it with wildcards. E.g.,

get *err*
0 icc0 2006-06-05T17:02:16 (1) get *err*
0 i ts_errorstr=""; comment="term serv error string"
0 i wti_errorstr=""; comment="IP switch error string"
0 i tcp_errorstr=""; comment="TCP lib error string"
0 i las_errorstr=""; comment="laser lib error string"
0 i chil_errorstr=""; comment="chiller lib error string"
0 i pwr_errorstr=""; comment="power lib error string"
0 i pr_errorstr=""; comment="Programmable resistor error string"
0:

set besides the use of ‘set’ to set parameters, there are several “memory parameters,” which
housctl ignores. Setting them makes an entry in the log/data files, and you can ‘get’
them. Our conventions dictate that operators/TUI set these to document important
parameters. They are:
airtemp, pressure, humidity, guideOff, boreOff, axePos.

runnocal for testing: enters run state, but does not run the CALTDC and the beginning and end of
the run.

Forcing errors for testing: Here are some ways:

1. Issue an invalid ICC command:
432 xyz

2. Issue an 'refl' without valid polynomial files. There won't be any files valid for those days we aren't
shooting:

refl 1
Disconnecting a hung ICC session:

Sometimes the hub or network disconnects an ICC session, without closing it properly. Housctl cannot
detect this for a few hours (see “Open Issues”: it’s due to the Linux IP stack implementation). You can
use the other ICC session to force housctl to disconnect a dead session. For example, if session 1 is hung,
connect TUI or Telnet as ICC, and you will be session 2. Then:

disconnect 1

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 18 of 103

This will kill session 1, and free it up.

STV Commands
STV commands give you access to the STV virtual keyboard and display. Each STV command has two
forms: a word form that may be easier to remember, and a 1-character form that matches the ‘stvadam’ 1-
character commands. For example

stv focus and stv f are equivalent.

Note that the 1-character abbreviations are case sensitive: ‘s’ and ‘S’ are different.

The STV LED display is 2 x 24 characters. All STV commands reply with the stv_display parameter, e.g.
974 : stv_display="Filter=Open Please set:+12.8° 70% Date/Time"

stv_display is 49 bytes long, with the two lines separated by a colon (similar to las_display).

stv show STV status, and help

stv focus
stv f enter [focus] mode: fast-frame low-resolution video

The following up down left right abbreviations follow the keyboard pattern of W/S=up/down,
A/D=left/right. Each takes an optional repeat count, e.g. ‘stv right 7’ is equivalent to pushing the
‘right’ button 7 times.

stv left [n]
stv a pushes the [left-arrow] button for setting parameters

stv right [n] pushes the [right-arrow] button for setting parameters
stv d Note that ‘d’ is NOT down

stv down [n] pushes the [down-arrow] button for setting parameters
stv s Note that down is ‘s’, NOT ‘d’

stv up [n]
stv w pushes the [up-arrow] button for setting parameters

stv file
stv o pushes the [File Ops] button for image files

stv image
stv i pushes the [image] button for image files

stv parm
stv p pushes the [parameter] button for setting parameters

stv value
stv v pushes the [value] button for setting parameters

stv setup
stv S pushes the [setup] button for setting parameters

stv hairs
stv h pushes the [cross-hairs/display] button to toggle cross-hairs

stv int
stv I pushes the [interrupt] button to reset the STV

Laser Commands
Laser commands give you access to the laser virtual keyboard and display. Operators can control the
laser, when houston is physically plugged into the CU-601 laser control unit, with the ‘laser’ command.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 19 of 103

‘laser’ commands also give you access to the laser virtual keyboard, but normal operation should not
require any manual button pushes. Higher level commands are preferred.

The ‘laser’ command has several subcommands. Every laser command ends with an update of
‘las_display’, the string which mimics the control-box display. A typical sequence of operations for
shooting the moon is:

warmup enter warmup state, closes any open data file, power on CAMAC crate, increase
temperature rate to every 10s, start & synchronize TR & diffuser motors.

laser powerup turn on laser rack, cycle keyswitch
laser warmup close cavity shutter, start flashlamps (PGM 1)

Wait ~20 min
laser preprun switch to PGM 2, external trigger
run enter RUN state and take data

Detailed descriptions of laser commands:

laser show laser status, and help:
0 i help="laser [powerup, warmup, preprun, stop, cw, ccw, reset, keycycle,
 keyoff, keyon, start, act, shutterclose, shutteropen,
 ampdelay, ampvolt, oscvolt]"
0 i las_display="....................:....................:...."
0 i ampdelay=62; ampvolt=-1; oscvolt=101

laser powerup turn on laser rack, and cycles the keyswitch. Waits for “SHOT COUNT” on
display (gives error if doesn’t come up).

laser warmup activates PGM 1 (closes cavity shutter), and flashes flashlamps.

laser preprun activates PGM 2, and opens cavity shutter. Laser is now ready for external
triggering.

The following commands are diagnostics, and you don’t normally need to use them:

laser keyoff turns off keyswitch

laser keyon turns on keyswitch

laser keycycle turns off keyswitch for 3 sec, then turns on.

laser stop stops a running program (just like STOP button).

laser start starts current program (just like START button).

laser shutterclose closes the cavity shutter.

laser shutteropen opens the cavity shutter.

laser cw rotates second harmonic generator (SHG) clockwise

laser ccw rotates second harmonic generator (SHG) counter-clockwise

laser code xx sends the hex code xx to the laser as a button push

laser activate n activates program n

laser power 0 switch amplifier delay to low power

laser power 1 switch amplifier delay to full power

You can see all the digipot settings with
get osc* amp*
0 i oscvolt_r=101; comment="Laser oscillator Digipot ohms"
0 i ampdelay_low=12696; comment="Laser low power amp delay"
0 i ampdelay_high=62; comment="Laser full power amp delay"

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 20 of 103

You can manually set the amplifier delay digipot resistance to any ohmage with this:

set ampdelay_low=10000
laser power 0

or

set ampdelay_high=100
laser power 1

You can then nudge around from there. Note that ‘set’ting the variable by itself won't change the
digipot setting.

laser ampdelay up amplifier delay up

laser ampdelay down amplifier delay down

laser ampdelay n set amplifier delay resistor to n ohms

laser oscvolt up oscillator voltage up ~5 volts

laser oscvolt up v oscillator voltage up ~v volts

laser oscvolt up30 oscillator voltage up ~30 volts

laser oscvolt up40 oscillator voltage up ~40 volts

laser oscvolt down oscillator voltage down ~5 volts

laser oscvolt down v oscillator voltage down ~v volts

laser oscvolt n set oscillator voltage resistor to n ohms

laser ampvolt up amplifier voltage up

laser ampvolt down amplifier voltage down

All the commands in the above group return the resistance value in ohms.

bolo 1 move bolometer in, sets ‘bolopos=1’

bolo 0 move bolometer out, sets ‘bolopos=0’

unblock n unblocks the laser for n minutes. When the time is up, housctl rereads the current laser
block file from the beginning, thus resetting back to the proper state determined by the
file. 'n' is clamped at 240 min (4 hours). You may issue overriding ‘unblock’
commands at any time (see ‘unblock 0’ below). Note that ‘unblock’ cannot be used to
read a new laser block file; you must use ‘readblock’ for that.

unblock 0 terminates any active ‘unblock’ command, and immediately reverts to the currently open
block file. Note that ‘unblock’ cannot be used to read a new laser block file; you must
use ‘readblock’ for that.

las_display is a string variable that contains the entire laserbox display information: 2 lines of 20
chars, plus the 4 LEDs. It has this format:

las_display="....................:....................:...."
las_display="This is line 1. OK?:This is line 2 below:rgG-"

It is fixed length: 20 chars of the first line, a colon (which need not be displayed in TUI), 20 chars of the
2nd line, a colon, and 4 chars for the 4 LEDs as seen on the laser box (L-R): charging, end-of-charge,
shutter-open, Q-sw. active. The dots indicate the location has not been set by the laser, so it's state is
unknown.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 21 of 103

The LEDs are individually coded: when all on, they would be 'RGGO' (for red, green, green, and On) [I
have never seen the Q-sw. active LED illuminated, so I don't know what color it is]. The LED codes are
as follows:

. (dot) the character is unknown, because the laser has never written it
- the LED is stable off

o the LED is off but has toggled in the last second

r or g the LED is on (red or green) but has toggled in the last second

R or G the LED is stable on (red or green)

m33 and m75 Chiller Commands
Operators can control the m33 and m75 chillers from the ICC command line. There are two identical
commands, ‘m33’ and ‘m75’ that control the chillers. Each command takes a subcommand, and possibly
an argument. The commands are shown below for the m33, but are identical for the m75:

m33 displays chiller status: protocol_version, status (0x100 = on), temperature, setpoint,
alarm lowlimit, alarm highlimit

m33 off turns off chiller

m33 on turns on chiller

m33 setpoint t set setpoint temperature in deg C, ‘t’ forced integer by unit. Unit seems to
enforce a lower limit of 5 C.

m33 lowlimit t set alarm lowlimit temperature in deg C, ‘t’ forced integer by unit

m33 highlimit t set alarm highlimit temperature in deg C, ‘t’ forced integer by unit

TR Motor Commands
Operators can control the TR motor from the ICC command line. Each command takes a subcommand,
and possibly an argument:

tr return motor status, including position measured twice, to see if it’s moving
tr dark move motor to opaque patch on TR glass

tr clear move motor to clear patch on TR glass

tr stop stop motor

tr p move motor to encoder position p

tr sync synchronize diffuser motor to TR motor and dphase_target

tr speed s set motor speed to s

Diffuser tracking occurs, presently, only during RUN, and once at WARMUP. It appears that some motor
actions seem to accumulate diffuser phase errors We don’t know why this would happen, but it might be
due to the TR motor hunting (oscillating); our diffuser logic moves the diffuser forward for all TR encoder
changes, forward or backward, so any TR oscillation would drive the diffuser out of phase. If you
accumulate enough diffuser phase error, then the TR clear space won't work because the diffuser may
block light. You can force a re-sync with ‘tr sync’. Note that issuing WARMUP when you are already
in WARMUP has no effect, and does not re-synchronize the diffuser.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 22 of 103

housctl "parks" the TR motor in a clear spot (position 2000) at WARMUP, and after all non-IDLE states.
housctl carefully enables the diffuser motor to keep the diffuser phase valid between runs, and so will park
the diffuser in a clear space, as well.

Velocity Offset (Rx) Mirror Control
housctl has several commands & parameters for controlling the velocity offset mirror (aka Rx mirror).
These commands return '>' (queued) status immediately, and a final ':' status when the command
completes. After the '>' status, you can issue any other ICC commands while the velocity mirror move is
in progress, except you can't issue another velocity mirror move until the pending one completes. housctl
returns 'f' immediately for any conflicting mirror move request. All commands final response is
something similar to

27 i rxxpcum=n; rxxncum=n; rxypcum=n; rxyncum=n
par0 vposx=vx; vposy=vy
27 : text="Mirror command done"

As always, housctl puts any “par0” record in log (& data) files.

rxx offset units are float-pt arcseconds, frame is Rx mirror frame (NOT az-el). Moves the
mirror by ‘offset’ arcseconds.

rxy offset same as ‘rxx’, but in y-direction.

vnudge dx dy moves mirror by dx, dy, same units as ‘rxx’. Equivalent to ‘rxx dx’ followed

by ‘rxy dy’

vmove vx vy move to mirror position vx, vy, same units as 'vtarget'.

vtarget vx vy units are float-pt arcseconds, frame is Rx mirror frame (NOT az-el). For now,
this command does NOT move the mirror, but just records the target offsets.

vcalibrate set the current position as (vtargetx, vtargety). Note that by definition, after a

"vcalibrate" command, (vposx, vposy) = (vtargetx, vtargety).

"Getable" parameters are:

vtargetx vtargety
vposx vposy
rxxpcum rxxncum rxypcum rxyncum

DAQ Commands
There is a simple DAQ diagnostic, ‘daq’. It has two forms:

daq display all 64 DAQ voltages, read in single-ended mode. The output cannot be seen
from TUI; you can see it from a human telnet session.

daq n display DAQ channel n voltage, read in single-ended mode. This can be seen from TUI.

Power Commands and Power Override
power dev value set power of device ‘dev’ to 0=off, 1=on, 4=force-off, or 5=force-on. E.g.

power 0 1 turns on the CAMAC crate

The power codes are:
// Comments below include plug ID (1a, 2d, ...)
UTAH_HEAT 0 // 1a Utah heater Power
CAMAC_PWR 1 // 1b CAMAC & 2d Booster Power

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 23 of 103

APD_FAN 2 // 1c APD cooling fan
NOREN_FANS 3 // 1d Noren Heat Exchanger Power
APD_PWR 4 // 2a APD and 2b photodiode Power
MOTOR_PWR 5 // 2c diffuser, 3a TR motor, & 3b New Focus
STV_PWR 6 // 3c STV camera

DI_PUMP_PWR 9 // Auxiliary DI pump
ILE_EXHAUST 10 // Large exhaust fan for ILE
PG_PASS_COOL 11 // Heat exchanger and pump for PG loop
IR_CAMERA_PWR 12 // Infra-red airplane spotter
LASER_PWR 13 // Laser 3-phase power

M33_PWR 17 // M33 (Utah) chiller
M75_PWR 18 // M75 chiller

HOUSTON_PWR 21 // Houston power on IP switch
FLOW_MTR_PWR 22 // Flowmeter power on IP switch
RTD_BOX 23 // Resistive Temperature Detector box
GPS_CLOCK_PWR 24 // GPS clock

Dealing With RTD Failures
housctl specifically anticipated failures of one or more RTDs, and the power control commands allow for
overriding automated power controls which are harmful due to invalid RTD data.

Operators can force power outlets on or off, indefinitely, even while normal housctl operations otherwise
continue. This allows for such things as environmental control experiments, and overrides to work
around hardware failures. The ‘powerstatus’ values range from 0 to 7:

0 off
1 on
2 should be off, but can't tell (hardware failure to respond)
3 should be on, but can't tell
4 operator forced off
5 operator forced on
6 operator forced off, but can't tell
7 operator forced on, but can't tell

As bits:
bit 0 off/on
bit 1 can't tell state (hardware failure)
bit 2 operator forced state in effect

CAMAC NAF Commands
These commands send arbitrary data to/from the CAMAC. The actual functions depend on the CAMAC
hardware. You must consult those manuals for specifics.

naf slot adrs func [data] send a 16-bit NAF command. data is optional, and only
meaningful for “write” operations.

nafl slot adrs func [data] send a 24-bit NAF command. data is optional, and only
meaningful for “write” operations.

Detailed Functions of the States
IDLE Just background processing. Temperatures recorded ~1/minute, when dome_air is cold,

maintains laser DI flow to avoid freezing. (Other states assume the laser is on, and so
don’t maintain flow, as it conflicts with laser rack power.)

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 24 of 103

WARMUP Power on CAMAC crate, & laser rack. Increase temperature rate to every 10s, power on
the motors, synchronize the diffuser phase, park the TR motor in a clear spot. STV to
focus mode. After 90 min with no ICC command, automatically goes to COOLDOWN.

RUN Creates a data file named yymmdd-hhmmss.run, and writes to it a timestamp and a
housctl build timestamp. Copies housctl.hed into the data file. Starts TR motor, tracks
diffuser phase, turns off STV camera, choose and read polynomial file. Fire laser
‘nruns’ times, take fiducial and lunar data. When done, stops TR motor, parks it in a
clear spot, turns on STV camera, closes data file, & goes to STANDBY state.
Temperatures ~1 per 10 s. RUN uses the actual lunar range, which changes from run to
run, to spin the TR motor at a speed that exactly interleaves the lunar return photons
with the outgoing laser shots. It can be anywhere from ~19.8 to ~20.2 shots/sec.

 Operators can change the length of a run, while running, by setting ‘nruns’ to a different
value, e.g.

 set nruns=5000
STANDBY STANDBY is similar to WARMUP, except it times out to COOLDOWN. Keeps

equipment powered and “ready.” Can transit to RUN. Continues temperatures ~1 per
10s. STV to focus mode. After 90 min with no ICC command, automatically goes to
COOLDOWN. Usually, you will command a state change sooner than that. Keeps the
diffuser phase in place.

COOLDOWN shut down active operation, power off CAMAC, APDs, laser, TR motor. APD fan, laser
rack, and M75 (laser head cooling) stay on for 4 min. 30 min timeout back to IDLE
state, data collection is same as WARMUP.

FIDLUN Turns off STV camera, move TR to dark patch. Runs FIDLUN test; when done, resets
TR to clear, & returns to IDLE or STANDBY (whichever it came from). FIDLUN is the
only other state (besides RUN) to fire the laser, and is used to for in-dome testing,
mostly of receiving fiducials. The “lunar” gates are opened a fixed ~10 ms after the
fiducial, and generally do nothing. FIDLUN uses the ACM internal timer to generate
20 shots/sec, regardless of the lunar range.

DARK performs a dark count calibration, and IDLEs. Moves the TR motor to block telescope
light. Records the DRK record in the log file and data file, and sends it to ICC/TUI.
Operators must make sure the APDs are really dark from other sources before running
this test. When done, returns TR motor to clear. DARK is similar to STARE, with
different data format.

FLAT performs a light count calibration, and IDLEs. Moves the TR motor to allow telescope
light. Records the FLT record in the log file, and sends it to ICC/TUI. Operators must
make sure the APDs are illuminated with a calibration reference before running this
test. FLAT is identical to DARK, with light allowed in and a different data record
format.

STARE similar to DARK, but leaves TR at clear space. Simply opens gates at a (default) rate of
1000 per second, keeps a count of detections, and reports them every (default) 500 gates.

LPOWER flips in the dichroic to direct the beam to the bolometer, starts the laser firing, and
reports laser power twice per second, and the beam location as read on the bolometer.
Continues until timeout or operator commands a state change. TEMPORARY for now:
you must ‘set topt=1’ to make the laser actually fire. Otherwise, with no laser, the
bolometer reads near zero. The laser power and position will come out as

cmdid i bolopower=2.29; bolox=1.12; boloy=0.54

 where the x, y positions are in mm, and the number of decimal places is subject to
change.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 25 of 103

CALTDC makes 1000 start/stop pairs to the TDC at each of 5 different spacings: 20, 40, 60, 80, &
100 ns. Records all measurements in the *.cal file (and updates cal.last symbolic link).
Takes about 6 seconds.

LASERCAL Similar to a combination of FIDLUN and CALTDC: makes ‘nruns’ laser shots, with
start/stop pairs to the TDC for both fiducials and “lunars” at each of 5 different
spacings: 20, 40, 60, 80, & 100 ns. Records all measurements in the *.las file (and
updates las.last symbolic link). Tom says it requires a special cable be put in place on
the system, but I don’t know why that’s needed.

FAKEDATA Generates fake data real time. Parameter ‘topt’ specifies how many Fid APD events per
shot in its 10’s digit, and how man Lun APD events per shot, in its units digit. For
example, ‘topt=12’ generates 1 Fid + 2 Lun APD events per shot. There is always a Fid
FPD event per shot. Operators may change ‘topt’ on the fly.

Background processing All states perform background processing: record temperatures, control
temperature of ILE and Utah box. Record GPS DAC ~1 per 10 s. Maintain laser head
flow, as needed. Process ICC commands.

Known Housctl Problems
housctl crashes when laser log file too big

Problem: housctl crashes when powering up the laser if the laser log file (async.log) is > 2 GB.

Workaround: delete or rename the (async.log) file. housctl will start a new one. See “Files used by
housctl” for exact filepath.

The failure of housctl on files > 2GB is likely due to the old C runtime library that we use. It can't handle
big files. It is almost certainly fixed in the newer C libraries, but we can only switch to them if we
upgrade our drivers and retest.

We can turn off the default logging now, since we aren't using it. We might see if there is a workaround
that housctl can implement.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 26 of 103

3 Advanced Housctl Information
This information is for advanced users of housctl, and/or the data files it produces.

Laser Blocking
Space Command can issue block times when we must not fire the laser into the sky. New format files give
times to 1s precision; old-format gives to millisecond precision. Blockages have been as short as ~20 s,
and as long as ~10 minutes. housctl reads a laser blocking file in the format given by Space Command,
and allows laser firing only during release times. Since we’re only given release during times we request,
the laser is blocked most of the time we’re not running. No file means no release. housctl logs all block
and release events.

The only states affected are RUN, FIDLUN, and LASERCAL, since (as of 10/2007) they are the only
states that fire the laser.

If the block time is < 2 min, housctl disables the laser, but continues in the same state. When the block is
released, housctl resumes laser firing automatically. If the block time is >= 2 min, housctl moves to
STANDBY, thus aborting the operation.

On startup, housctl read the file ‘housctl.blk’. At any time, the command ‘readblock’ reads the current
file of that name.

On Thu, 16 Mar 2006, Eric L. Michelsen wrote:
> What is the accuracy requirement for Space Command?

From: Tom MurphySent: Thursday, March 16, 2006 10:42
To: Eric L. Michelsen
Cc: 'APOLLO Core'
Subject: RE: [Apollo_core] houston clock

I don't rightly know. There are three relevant timescales here:

 the one ms resolution of their request to us

 the 50 ms resolution imposed by 20 Hz firing

 a relevant angular intrusion: if our avoidance has a half-angle of 0.5 degrees, and it typically
takes 15 seconds for a satellite to cross the full degree, then it seems 0.5 sec accuracy makes the
edge of our avoidance acceptably fuzzy.

But they've never hit us with a strict requirement. I would protest if they did (so many things are arbitrary
here, like 0.5000 degree cone angle).

Auto-Detection of Block File Format
Housctl auto detects each line of the file separately, because this is simpler (it’s stateless). If the line
begins with a number between 2008 and 2100 (inclusive), it’s a new-style permission line. If it begins
with a number > 1000000, it’s an old-style permission line.

Comments in Block File Format
housctl logs any line containing “TARGET” or “AZ:” or “Report Date” as a ‘rem’ in the log file.

All other lines are ignored.

New Format (Since ~2/2008)
Here is their sample new-format file. This one has only one target, but they also have a file with 2 targets.

 Classification: UNCLASSIFIED

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 27 of 103

UNITED STATES STATEGIC COMMAND LASER CLEARINGHOUSE (LCH) TIME WINDOWS REPORT

Date: 2008 Jan 11 19:19:26
From: JFCC-SPACE/J95 (LCH)
To: APACHE POINT
Subject: LCH Authorized Shoot (Open) Windows

1. The attached information contains the coordinated and approved
 spatial parameters

 (a) Authorized Shoot (Open) Windows

 During Authorized Shoot Windows, the laser owner-operator (O/O) is authorized
 to operate the approved system laser in accordance with the Source/Target
 geometry definitions contained in this report.

2. The laser O/O may perform Hybrid Predictive Avoidance (HPA) during Authorized
 Shoot Windows, if previously certified in writing by USSTRATCOM to do so.

3. Any deviation from this authorization must be immediately reported
 to the Laser Clearinghouse at: Commercial 805-605-6565,6578. DSN=275-(xxxx).

4. See below for comments specific to this mission.

5. If you have any questions, please don't hesitate to contact LCH at
 the above listed phone numbers.

JFCC-SPACE/J95 (LCH)
747 NEBRASKA AVE RM B209
VAFB, CA 93437

Mission ID: Apache Point_08011191926_P
Laser Owner/Operator: APACHE POINT
Report Date/Time (GMT): 2008 Jan 11 19:19:26
Mission Name: Apache Point
Mission Start Date/Time (GMT): 2008 Jan 13 00:09:51
Mission Stop Date/Time (GMT): 2008 Jan 13 01:48:00
Mission Duration (HH:MM:SS): 01:38:08
Type of Windows in this report: Authorized Shoot (Open) Windows
Comment: None
Number of Targets: 1

YYYY MMM dd (DDD) HHMM SS YYYY MMM dd (DDD) HHMM SS MM:SS
------------------------- ------------------------- -------
2008 Jan 13 (013) 0009 51 2008 Jan 13 (013) 0148 00 0098:09

Percent = 100.00%

Source Geometry: (WGS-84)

Method: Fixed Point
Latitude: 32.7803 degrees N
Longitude: 105.8203 degrees W
Altitude: 2.788 km

Target Geometry: (WGS-84)

Method: Right Ascension And Declination
Catalog Date: J2000
Right Ascension: 346.723 degrees
Declination: -4.27 degrees

Here’s the 2-target file:
 Classification: UNCLASSIFIED

UNITED STATES STATEGIC COMMAND LASER CLEARINGHOUSE (LCH) TIME WINDOWS REPORT

Date: 2008 Jan 11 19:22:00
From: JFCC-SPACE/J95 (LCH)
To: APACHE POINT
Subject: LCH Authorized Shoot (Open) Windows

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 28 of 103

1. The attached information contains the coordinated and approved
 spatial parameters

 (a) Authorized Shoot (Open) Windows

 During Authorized Shoot Windows, the laser owner-operator (O/O) is authorized
 to operate the approved system laser in accordance with the Source/Target
 geometry definitions contained in this report.

2. The laser O/O may perform Hybrid Predictive Avoidance (HPA) during Authorized
 Shoot Windows, if previously certified in writing by USSTRATCOM to do so.

3. Any deviation from this authorization must be immediately reported
 to the Laser Clearinghouse at: Commercial 805-605-6565,6578. DSN=275-(xxxx).

4. See below for comments specific to this mission.

5. If you have any questions, please don't hesitate to contact LCH at
 the above listed phone numbers.

JFCC-SPACE/J95 (LCH)
747 NEBRASKA AVE RM B209
VAFB, CA 93437

Mission ID: Apache Point_08011192200_P
Laser Owner/Operator: APACHE POINT
Report Date/Time (GMT): 2008 Jan 11 19:22:00
Mission Name: Apache Point
Mission Start Date/Time (GMT): 2008 Jan 13 00:09:51
Mission Stop Date/Time (GMT): 2008 Jan 13 01:48:00
Mission Duration (HH:MM:SS): 01:38:08
Type of Windows in this report: Authorized Shoot (Open) Windows
Comment: None
Number of Targets: 2

YYYY MMM dd (DDD) HHMM SS YYYY MMM dd (DDD) HHMM SS MM:SS
------------------------- ------------------------- -------
2008 Jan 13 (013) 0009 51 2008 Jan 13 (013) 0101 19 0051:28
2008 Jan 13 (013) 0101 23 2008 Jan 13 (013) 0148 00 0046:37

Percent = 99.93%

Source Geometry: (WGS-84)

Method: Fixed Point
Latitude: 32.7803 degrees N
Longitude: 105.8203 degrees W
Altitude: 2.788 km

Target Geometry: (WGS-84)

Method: Fixed Azimuth/Elevation
Azimuth: 180.0 degrees
Elevation: 80.0 degrees

YYYY MMM dd (DDD) HHMM SS YYYY MMM dd (DDD) HHMM SS MM:SS
------------------------- ------------------------- -------
2008 Jan 13 (013) 0009 51 2008 Jan 13 (013) 0023 10 0013:19
2008 Jan 13 (013) 0102 21 2008 Jan 13 (013) 0148 00 0045:39

Percent = 60.08%

Source Geometry: (WGS-84)

Method: Fixed Point
Latitude: 32.7803 degrees N
Longitude: 105.8203 degrees W
Altitude: 2.788 km

Target Geometry: (WGS-84)

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 29 of 103

Method: Fixed Azimuth/Elevation
Azimuth: 180.0 degrees
Elevation: 45.0 degrees

The formatting is flexible. Housctl verifies the following:

1. Any line containing “Type of Windows” also contains “open” after the colon.

2. Any line containing “Number of Targets” specifies 1.

For release/block, housctl considers only lines that start with numbers > 2000. The START and STOP
times use day of year: DDD, and must be in parentheses. DDD=001 for Jan 1. housctl uses only the start
and stop times. The first line following the open windows that does not start with a number > 2000
terminates the permissions. All other lines in the file are ignored.

The ‘unblock’ command largely eliminates the need for hand-made block files. However, a hand-made
release/block file might be as simple as:

Report Date: Handmade file. “Report Date” line required. Comment highly
recommended
2008 (013) 0009 51 (013) 0101 19
2008 (013) 0101 23 (013) 0148 00

Old Format (Prior to ~2/2008)
Here’s a typical old-format block file from Space Command:

OAAUZYUW RUWRSPD5255 2921500-UUUU--RUWRCAW.
ZNR UUUUU
O 191500Z OCT 05
FM CMOC SPADOC4 CHEYENNE MOUNTAIN AFS CO//SDD// TO RUWRCAW/1SPCS SCC
CHEYENNE MOUNTAIN AFS CO BT
UNCLAS FOUO
SUBJECT: SPADOC NOTIFICATION (U)
(U) REAL

1. (U) MESSAGE TYPE: SPADOC DE SITE CLEARINGHOUSE REPORT 2. (U)
PREPARATION DATE TIME: 191458ZOCT05
3. (U) VALID FOR DE EMITTER SITE/VESSEL/MISSILE/SAT # APACH
4. (U) DE TARGET TYPE:
 FIXED BORESIGHT:
 AZ: 180.00 DEG EL: 45.00 DEG
 PERIOD OF INTEREST: 05293040500.000Z - 05293123300.000Z 5. (U)
SAFE IRRADIATION TIMES FOR EMITTER:
 START TIME DURATION TIME STOP TIME WAIT TIME
 293040500.000Z 030051.804 293070551.804Z 000153.253
 293070745.056Z 025035.089 293095820.145Z 000014.375
 293095834.520Z 005057.132 293104931.652Z 000013.602
 293104945.253Z 003743.236 293112728.490Z 000017.975
 293112746.465Z 010513.535 293123300.000Z
6. (U) REMARKS:
BT
#5255

The formatting is flexible.

The START and STOP times are in day of year: DDDHHMMSS.SSS, and must contain a decimal point
followed by at least 1 digit. DDD=001 for Jan 1. The Z means Zulu, or UTC, and is optional. The
duration and wait times are in HHMMSS.SSS. housctl uses only the start and stop times (it requires
numbers in the file for duration, but ignores them). All other lines in the file are ignored.

The ‘unblock’ command largely eliminates the need for hand-made block files. However, a hand-made
release/block file might be as simple as:

TARGET: Handmade test file. A comment is optional, but highly recommended
293040500.0 0 293070551.0
293070745.0 0 293095820.0

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 30 of 103

Files Used By housctl
Goals: We want our file/directory structure to achieve the following:

1. Complete record of both production and experimental activity

2. Allow for software development (with its bugs), while protecting real data

3. Accessible enough with standard Unix commands for humans to find what they need

log files go into a unified ‘log’ directory. (The development directory [src/, bin/, etc.] is completely
separate, and described in the development chapter.)

Housctl uses UTC for filenames with embedded dates/times. It’s not yet clear...

 When the daily/ files are copied to the date-specific directory. How do we keep old
poly/block/eopc files from being replicated each day to new directories?

 We need to insure that the simple globbing formats eliminate the need for links

 We don’t know if NFS supports UNC (Universal Naming Convention filenames, so we avoid
them for now). This is a procedural issue, and does not affect the final file structure.

Relative paths below are relative to the working directory when housctl was run. Our directory structure
looks like this:

/home/apollo
 housctl the current version of the executable
 housctl.rc the startup script run when housctl starts
 housctl.cum the permanently “remembered” values, across startups
 housctl.hed the file prefixed to every data file, usually comments
 housctl.rtdcal the current temperature calibration file

/home/apollo/data this is the default setting of variable ‘fileprefix1’
 log.last symbolic link to the current log file
 run.last, etc. symbolic links to the most recent run, fid, drk, etc. files

 daily/
 PolysReflrSecn written by operator for today’s polynomials
 eopc(??) eopc file that created the Polys* files
 housctl.blk written by operator for today’s laser blocking
 2006/
 log/ common directory for all log files
 yymmdd/ one directory for each date
 yymmdd.log symbolic link to currently active (running) log
 (all the files for this date:
 *.fits, *.str, *.drk, *.flt, *.cal, *.fid, *.run)
 mmddyy.cum (not yet implemented) copy of housctl.cum at

end of this date

 yymmdd/ one directory for each date

 2007/ ... as above

The directory names are implemented partly by housctl, and partly by the directory prefixes we give
housctl. housctl puts a symbolic link to the log file (with same name as log file) in the data directory at
data directory creation time, and at cooldown. This may (rarely) make 2 log symlinks, which is what we
want.

Housctl does not yet implement data file redundancy: There is only ‘fileprefix1’, and no ‘fileprefix2’
as of 4/2009. For redundancy, there would be copy of this tree on houston, and another copy on
cocoa. To achieve the above directory structure, we mount “cocoa:/home” on houston as “cocoa”,
then set the housctl parameters in housctl.rc as follows:

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 31 of 103

fileprefix1=”/home/apollo/data”
fileprefix2=”/cocoa/apollo/data”

and run housctl with a working directory of “/home/apollo/data”. Note that if either ‘fileprefix1’ or
‘fileprefix2’ is a relative path, it is relative to the working directory when housctl was run. This is useful
for testing.

Below, files that housctl writes that start with (prefix) are those that housctl writes 2 copies of, one with
each of ‘fileprefix1’ and ‘fileprefix2’. If either of these 2 files cannot be opened, housctl continues
operation with the one that can be opened.
/home/apollo/housctl.cum

housctl reads and updates this file for cumulative parameter storage, such as laser shots,
and the rxxpcum (etc.) totals. This filename can be overridden by command line or
housctl.rc (for special testing), but beware that moving the Rx mirror with a different
*.cum file screws up the mirror position.

housctl.rc housctl reads this file at startup as a list of ICC commands. This can override built-in
defaults. In particular, this specifies file path prefixes. housctl reads this file from the
current working directory.

housctl.rtdcal RTD calibration and name file. housctl reads this file from the current working
directory at startup, and on an ‘readrtd’ command.

(fileprefix1)/daily/PolysReflrsecn These files contain the prediction polynomials. Housctl
searches these files on the ‘refl’ command, and on each ‘run’ command. r is the
reflector number (defined elsewhere), and n is the section number, where each section
spans a different time during the night.

(fileprefix1)/daily/housctl.blk housctl reads this file during operation to
automatically block the laser as needed.

(prefix)/yyyy/log/yymmdd.log The log files: every day at UTC 20:00 (the roll time), or
when housctl starts, it opens a log file, named with the current 24-hour interval at the
time of opening. If the file exists, housctl appends to it, so no data is lost. Each log file
therefore contains 24-hours of logs.

(prefix)/yyyy/yymmdd/yymmdd-HHMMss.run The run data files.

(prefix)/yyyy/yymmdd/yymmdd-HHMMss.str The stare data files.

(prefix)/yyyy/yymmdd/yymmdd-HHMMss.drk The dark data files.

(prefix)/yyyy/yymmdd/yymmdd-HHMMss.flt The flat data files.

(prefix)/yyyy/yymmdd/yymmdd-HHMMss.fid The fidlun data files.

Whenever the laser is powered on, and laser logging is enabled, housctl appends the log to the file:

async.log in the current directory of housctl when it was run (usually /home/apollo/).

housctl.hed The housctl.hed file in use as of 4/2009 consists of a single line:
rem TDC RTDs reordered to go from bottom to top.

Previous Files Used By housctl
Previously: Housctl uses PST for filenames with embedded dates/times. All files were in the working
directory when housctl was run.

/home/apollo/housctl.cum
housctl reads and updates this file for cumulative parameter storage, such as laser shots,
and the rxxpcum (etc.) totals.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 32 of 103

housctl.rc housctl reads this file at startup as a list of ICC commands. This can override built-in
defaults.

PolysReflrsecn These files contain the prediction polynomials. Housctl searches these files on the ‘refl’
command, and on each ‘run’ command. r is the reflector number (defined elsewhere),
and n is the section number, where each section spans a different time during the night.

housctl.blk housctl reads this file during operation to automatically block the laser as needed.

yymmdd.log Previously: The log files: every day at local noon, or when housctl starts, it opens a log
file, named with the current date at the time of opening. If the file exists, housctl
appends to it, so no data is lost. The next noon with a different date, housctl rolls to a
new log file. This means a log file could contain as much as 36 hours of data, if you
start housctl at 0:00 (midnight), and it rolls at noon the following day. Note: If you are
doing testing in the morning, and you start housctl, the log file gets the current date, not
yesterday's date. I found this to be more natural than 24-hour windows that were offset
from the current date.

Using housctl As A Human ICC
I frequently telnet into housctl port 5320 and act as a human ICC (bold blue denotes human
commands to housctl, normal is housctl response):

telnet houston 5320
rem Accepted ICC conn, fd = 10, from 127.0.0.7:38624

You can now enter commands exactly as from the TUI “apollo houston” command, and see directly the
responses destined for ICC. All ICC commands are lower case. ‘help’ gives a summary of settable
parameters and ICC commands. Remember, this is intended to be a machine-machine interface, so is not
the most user friendly. Eventually, common commands will be implemented in TUI in a friendlier way.

Warning At a machine-machine interface, you must be careful to command ONLY VALID
operation sequences. For example, from IDLE, entering ‘set state=3’ (RUN) may
produce unexpected results.

Here are annotated examples of selected functions. The annotations provide a summary of the state
processing, but full details of each state are given later.

Script Files
Currently, the only housctl script file is housctl.rc. It is simply a list of ICC commands that housctl
executes on startup. Lines that start with “#” are script comments, and completely ignored (not written to
the log file). Lines that start with “rem” are ICC comments, and are written to the log file just like all
other ICC commands. A typical housctl.rc file is this one from 4/3/2009:

This is a startup .rc file for Apollo data files.
housctl executes it as ICC commands.
set runfidgw=7
set t_utah_push=-.25
set t_ile_low=20
set t_ile_hi=25
set flow_interval=30000
set nruns=5000
set nstares=5
set dskew=-41
dphase_target is now a 'cum' parameter (non-volatile)

housctl Startup Sequence
In more detail, when housctl starts, it performs the following sequence:

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 33 of 103

 Processes any debug=, doptions=, or fileprefix1= command line arguments. It is
helpful to process these before opening the log file.

 opens the log file (based on current date)

 executes housctl.rc (if it exists) as a sequence of ICC commands. Like all ICC commands, they
are recorded to the log file. Typically, you don’t need any housctl.rc file, however, you can do
things such as override defaults, etc. with it.

 processes remaining command line arguments

 Listens on TCP port 5320 for ICC connections

 Enters IDLE state

This order allows most command line arguments to override everything (compiled-in defaults, and
housctl.rc settings). However, it means the command line sets take place after housctl.rc is executed.

Using Time Offset Hunting
If there is a large uncertainty in the RTT of the target, you may not know where (in time) to look for the
return. housctl has a feature to automatically vary the time offset, to make it faster and more reliable to
search through time offsets. The time-hunt feature steps through 5 (default) different time-offsets,
running for ‘nruns’ shots at each time offset! Therefore, the total shots is 5 nruns.

The “time-hunt” feature is enabled by using the ‘huntrun’ command instead of ‘run’:
huntrun offset(ns) [nsteps] [huntdelta (ns)]

‘offset’ is required. The default nsteps is 5, and default huntdelta is 80 ns.

‘thunt’ is a readable parameter that tells (at any instant) the current time-search offset. housctl sends
‘thunt’ to the TUI status-line each time ‘thunt’ is set. The time-offset starts at ‘offset’, and alternates
from side to side in a widening search. E.g.:

thunt=
80

step 2

thunt=
160

step 4step 5 step 3

thunt=
0

step 1

thunt=
-160

thunt=
-80

time
offset

To stop a run, you must use ‘standby’. Lowering ‘nruns’ will change the number of
shots per time-step, but does not terminate the run.

‘thunt’ and ‘offset’ add to ‘predskew’, so each has the same sign and direction effect as ‘predskew’.
Therefore, you can experiment with ‘huntrun’ without “screwing up” predskew. ‘offset’ skews the hunt to
one side; it does not widen the window. For example, if you have a good predskew at A15, and you want
to look for Lunakhod 1, you can poke around for a while, and your old predskew is still intact.

Obsolete Time Offset Hunting
Historical info for older housctl, which we will eventually remove from this document: before we had the
‘huntrun’ command:

The time-hunt feature steps through 9 different time-offsets, running for ‘nruns’ shots at each time offset!
Therefore, the total shots is 9 nruns.

The “time-hunt” feature is enabled by setting the ‘huntdelta’ parameter to the time-search offset in ns (a
positive number):

set huntdelta=80

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 34 of 103

Now, every RUN will invoke the time-search feature. ‘thunt’ is a readable parameter that tells (at any
instant) the current time-search offset. The time-offset starts at 0, and alternates from side to side in a
widening search. E.g.:

thunt=
80

step 2

thunt=
160

step 4

thunt=
240

step 6

thunt=
320

step 8

thunt=
-320

step 9

thunt=
-240

step 7 step 5 step 3

thunt=
0

step 1

thunt=
-160

thunt=
-80

To stop a run, you must use ‘standby’. Lowering ‘nruns’ will change the number of
shots per time-step, but does not terminate the run.

‘thunt’ and ‘huntstart’ (see below) add to ‘predskew’, so each has the same sign and direction effect as
‘predskew’. Another parameter, the ‘huntstart’ parameter defines at what time offset to start (in ns). It
simply adds to ‘predskew’, so you can experiment without “screwing up” predskew. ‘huntstart’ skews the
hunt to one side; it does not widen the window. For example, if you have a good predskew at A15, and
you want to look for Lunakhod 1, you can mess with ‘huntstart’, which adds to ‘predskew’, poke around
for a while, then set ‘hunstart=0’ and your old predskew is still intact.

‘huntstart’ is still in effect, even when ‘huntdelta’ is zero.

Turn off the time-search feature by setting ‘huntdelta’ and ‘huntstart’ to zero:
set huntdelta=0 huntstart=0

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 35 of 103

4 Operations Support Software

Lunar Prediction
From: Tom Murphy
Sent: Monday, June 09, 2008 11:29
To: APOLLO Core
Subject: [Apollo_core] New Predictions

The prediction software has a fresh face on it, and should be more robust in the future. The new software
is installed and working properly on Houston. I did comparisons between the new predictions and
archived predictions from four different nights over the last few months—all checked out perfectly, so I
am comfortable with the update.

The prediction code is (at long last) part of the APOLLO SVN repository, providing a central, single
origin for updates (revertible).

Specific improvements are:

 no longer sensitive to different “setting” times of the various reflectors, so runs should always work
for a given start time, provided there are enough data points for the fit. No more tweaking by a
minute or two to get all reflectors on the same “page”

 result is that polynomials may span slightly different time ranges for the various reflectors: no longer
required to be in lock-step

 some code clean-up, including some changes in naming conventions (raw output times now called
pred* instead of fit*)

 more portable, in that path variables are now part of a pred_files.h header file rather than hard-coded
in C source

 and, of course, this is all on SVN now

I archived the old prediction code onto cocoa, along with the historical poly files and auxiliary files that
have been produced for all our nights of ranging.

Using the Prediction Software
From: Tom Murphy
Sent: Tuesday, January 02, 2007 15:25
To: Russet McMillan
Cc: James Battat; Eric Michelsen; C.D. Hoyle
Subject: new poly procedure

As of now, there is a new procedure for the polynomial generation: the mkpoly routine does it all,
replacing the get_eopc (autoget), eop_now.py, and mkpoly sequence. Now, just:

mkpoly MM DD YYYY HH MM SS (or just mkpoly with no arguments)
The eopc04.YY file is retrieved (YY based on YYYY entry or "now" if no args). The eopc04.YY is
propagated to the mkpoly start time (whether based on cmd-line argument or "now"), becoming
eopc04.YY_mod (no longer overwrites original file).

The eop_now.py command is run with (new) command line arguments specifying the "propagate-to"
time: again, the mkpoly start time.

Then mkpoly does all its usual business, creating the polynomial segments.

I have a slight preference for using command line arguments explicitly, because the extrapolation of earth
orientation parameters will be the most up-to-date possible by doing so, though a few hours should make
very little difference.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 36 of 103

In any case, the three-step dance is now one-step. More improvements to come (EOP's extrapolated for
each time step). Let me know if you encounter difficulties.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 37 of 103

5 Houston/ICC/Hub/TUI Interfaces

APO TUI/Hub/ICC/Control Architecture
From http://rowen.astro.washington.edu/ICCManual/:

http://rowen.astro.washington.edu/ICCManual/

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 38 of 103

Hub

Telescope
Control

Computer (TCC)

Telescope

Instrument
Control

Computer (ICC)

Apollo ICC
(cocoa:)

User Interface
Computer

Internet

Remote User
Interface
Computer

Apache Point
Observatory

TUI

TUI
Remote User

Interface
Computer

TUI

TCP

TCP

TCP

TCP

Terminal
Server

TCP

ICC

EIA-
232ICC

Houston:
Apollo

hardware
control

TCP

TUI is a program that runs on a user’s computer. The Hub is a computer at APO running Hub software.
TCC is the Telescope Control Computer, which physically controls the telescope. It is essentially an ICC
for the telescope itself.

Each experiment has its own customized TUI for its own needs. The APOLLO TUI comprises an
APOLLO-specific layer called APOLLO-TUI or ATUI. ATUI is built on an APO-provided TUI base. In
this document, almost all references to TUI actually refer to ATUI, i.e. to the TUI seen by APOLLO
operators.

Houston/ICC Overview
Houston is the direct hardware control. ICC (Instrument Control Computer) is a function that interfaces
the telescope Hub to Houston. Multiple TUIs can connect through the hub to ICC.

Despite its name, ICC is a function, not necessarily a computer. ICC runs on cocoa:, a separate computer
from Houston. For testing, ICC ran on Houston. Later, we needed to raise the priority of housctl to meet
its real-time requirements.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 39 of 103

Houston Functions

Houston
Linux PC

EIA-232

PC
I

M75 Big
chiller

M33 Little
chiller

TR Motor

GPS
clock

Laser

PC
I CAMAC

Interface

motherboard

TDC
Apollo Command

Module
Booster

(no CAMAC connection)

proprietary
(SCSI cable)

Ethernet

EIA-232
EIA-232
EIA-232
EIA-232

PC
I Data

Acquisition

analog
temperature,
flow meter,
pulse energy, ...

Ortec 9327
Discriminator

NIM

Laser cooling
group
Utah (Noren)
heat exchanger

Photo-
diode

Detects
laser pulse

PC
I

GPIB

IR (STV)
Camera

APDs
15

CAMAC crate

NF
actuators

tip/tilt, beam
expander,
instrument focus

relays

Terminal
Server

:

:

relays
:

ECL
Gate
Laser shutter

Bolometer

Houston runs one control program continuously.

Overview of operating states: IDLE, WARMUP, RUN, STANDBY, COOLDOWN. All states perform
background functions of temperature control, monitoring, etc. Detailed descriptions of states later
(Detailed Functions of the States p23).

Houston records to disk two types of files: log files, and data files. Houston writes two copies of each type.
We will configure housctl to put the two copies on different physical disks, and probably different
computers, via NFS.

Houston sends a verbatim copy of all log and data records to ICC. ICC can ignore much of this.

ICC Functions
 Read Houston data records, reformat, send to TUI

 Read Houston log records, discard some, reformat others, send to TUI

 Feed Hub/TUI

 Read/process TUI commands, forward to Houston

 Read/process Houston’s command responses and other ICC records, forward to TUI.

Houston/ICC Logical Interfaces
There is one TCP connection between Houston and ICC:

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 40 of 103

 Port 5320 Command/response (bidirectional)

They are all ASCII, line oriented. Houston requires \n termination, and ignores any \r in the stream (the
\r allows a human to play ICC with Telnet). Houston terminates its lines with \n. The maximum line
length that Houston will tolerate and generate is 511 bytes, including \n (there is no \0 over ASCII
interfaces). Houston tries (unsuccessfully) to keep replies within 80 chars, for easier human inspection.

Houston/ICC Data & Log Files
Data and log files have same high-level format. As currently defined, for any time period that spans both
files, the log file is the same as the data file minus fid and lun records. However, we expect the log files to
span longer periods, probably 24 hours per file. The data files will be much shorter, typically 5 minutes
for a single run. We expect to shoot all 4 retroreflectors within a 1/2 hour window, at 5 minutes per
reflector. We'd like to have those in 4 separate data files. The log info is pretty sparse, but some of it is
relevant to the photon data (fid and lun), so we have all the log info duplicated in-line right in the photon
files, to make connections between log info and photon data easier to analyze.

We also expect Houston (the hardware control computer) to write two copies of all log and data files.
Probably one file will be a Houston hard disk; the other file will be an NFS share on another computer
(the Apollo ICC?).

The data file is open during WARMUP, RUN, STANDBY, and COOLDOWN states. All log file records
are duplicated in any open data file. Photon timing records (fid and lun types) are specific to the data file.

Files are ASCII for 3 reasons, in order of importance: (1) Machine independence of numeric formats
(big/little endian, floating point), (2) ability to sort/filter with standard unix programs (grep, sort, etc.),
and (3) human inspection for sanity.

File format: Each record is an ASCII line terminated with \n (linefeed). The first 3 characters define
a record type, the 4th is a version for that record type. Each type/version pair has its own format beyond
that, though most will be simply “keyword=value” sets.

Data File Record Types
A data file starts with date/time information, followed by a snapshot of all the housctl variables. Here’s an
excerpt from a real data file:

rem
rem Apollo run Sat May 13 07:41:15 2006
rem Houston Control v. May 12 2006 16:37:37
rem TDC RTDs reordered to go from bottom to top.

par0 logfile="060512.log"
par0 datafile="060513-074115.run"
par0 state=3
par0 icc_session=0
par0 debug=0
par0 houstbase=1147478929416
par0 houstime=27146411
par0 logfile_due=71470584
par0 motrps=20.0975119656049
...
par0 pr_errorstr="pr_read.86: status 0"
rem fid0 shot# accsec tws*2 frcount gw bright phase fpd nhit
rem lun0 shot# accsec tws*2 frcount gw ppred tpred nhit
par0 polyname="daily/PolysRefl3sec1"
par0 reflector=3; t0=133.231296296; tf=133.384074074; polyspan=220.000000; ncoef
f=9
par0 a0=2.565978565796585
par0 a1=-0.091589809773129263
par0 a2=0.58279683568352503
par0 a3=0.42266978591166771
par0 a4=-1.8552913261166151
par0 a5=-0.86810426921978268
par0 a6=2.5946125203131092
par0 a7=1.1637917030900531

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 41 of 103

par0 a8=-2.8191440084312989
...
rem 2006-05-13T07:41:21 Laser enabled
lun0 -10 6 28589054 000000010 8 -1073743368 -1073743368 0
lun0 -10 11 65459966 000000010 8 -1073743368 -1073743368 1 6:0180
gps0 gpstrig="133:07:41:15.918006"; cpserr=0
lun0 -10 17 2330878 000000010 8 -1073743368 -1073743368 0
tmp0 ILE_air=29.43; UTAH=23.19; cabinet_air=16.39; Laser_air=25.48; Laser_Bench=
24.39; AOML=24.44; TDC1=24.71; TDC2=27.42; TDC3=32.71; TDC4=37.54; TDC5=37.00; P
G_in=14.89; Noren_out=19.25; PG_out=16.11; DI_out=28.18; DI_in=28.55; DI_plenum=
16.71; CAB_plenum=15.32; dome_air=15.00; Laser_rack=25.02; ILE_wall=33.46; ILE_i
ntake=17.69; GPS_clock=32.21; PG_shuttle=15.13
pow0 2006-05-13T07:41:32 power11=0; name="Passive_cool"
par0 powerstate=1,0,1,1, 1,1,0,0, 2, 0,1,0,0, 1,0,0,0, 1,1,2,2, 1,1,1,1
pow0 2006-05-13T07:41:32 power17=1; name="M33"
par0 powerstate=1,0,1,1, 1,1,0,0, 2, 0,1,0,0, 1,0,0,0, 1,1,2,2, 1,1,1,1
pow0 2006-05-13T07:41:32 power3=1; name="Noren_fans"
par0 powerstate=1,0,1,1, 1,1,0,0, 2, 0,1,0,0, 1,0,0,0, 1,1,2,2, 1,1,1,1
pow0 2006-05-13T07:41:32 power1=0; name="UTAH_heat"
par0 powerstate=1,0,1,1, 1,1,0,0, 2, 0,1,0,0, 1,0,0,0, 1,1,2,2, 1,1,1,1
fid0 1 18 19374890 058522016 6 -2147483648 1100 2307 4 9:2235 13:3082
14:1363 15:2307
fid0 2 18 24341420 061005281 6 3076 1100 1458 7 2:2956 5:4066 8:1638
10:3976 11:1720 13:1693 15:1458
fid0 3 18 29333490 063501316 6 3060 1100 1389 7 1:1623 4:1641 5:3992
7:0452 9:1376 14:1631 15:1389
fid0 4 18 34293444 065981293 6 3222 1100 927 6 2:1187 5:3535 9:3232
14:1184 15:0927 16:0121
...
fid0 51 20 68174734 182921938 6 3261 1099 1137 7 5:3738 6:1406 10:3651
11:1399 12:3146 13:1389 15:1137
fid0 52 20 73140868 185405005 6 3196 1099 1294 3 5:3903 10:3798 15:1294
lun0 1 20 75637062 186653102 8 2250 2250 0
fid0 53 20 78133100 187901121 6 3034 1100 1148 4 5:3755 10:3671 14:0828
15:1148
lun0 2 20 80603594 189136368 8 1814 1814 3 1:1332 9:1188 11:2898
fid0 54 20 83092972 190381057 6 3209 1100 1328 4 1:1571 5:3944 10:3737
15:1328
lun0 3 20 85595666 191632404 8 2157 2157 0
fid0 55 20 88078888 192874015 6 3136 1100 1604 4 7:1012 11:1856 15:1604
16:1872
lun0 4 20 90555622 194112382 8 2109 2109 0
fid0 56 20 93054612 195361877 6 3233 1100 1135 3 5:3738 12:1422 15:1135
lun0 5 20 95541580 196605361 8 1940 1940 1 9:2217
fid0 57 20 98020832 197844987 6 3210 1099 1137 3 5:3744 8:0798 15:1137
gps0 gpstrig="133:07:41:36.005172"; cpserr=0
lun0 6 21 517216 199093179 8 1878 1878 0
fid0 58 21 3013074 200341108 6 2956 1099 986 5 4:1248 5:3590 10:3478
12:1203 15:0986
lun0 7 21 5483996 201576569 8 2373 2373 0
fid0 59 21 7973056 202821099 6 3224 1100 2326 2 14:3859 15:2326
lun0 8 21 10475358 204072250 8 2083 2083 2 11:2334 12:3611

fid0
The fid and lun records are described in ‘rem’ in the data file, so we can track changes more easily.
fid are fiducial records. There are some fixed columns, followed by variable number of TDC values.
E.g.,

rem fid0 shot# accsec tws*2 frcount gw bright phase fpd nhit
fid0 2 18 24341420 061005281 6 3076 1100 1458 7 2:0956 5:4066 8:1638
10:3976 11:1720 13:1693 15:1458

Early fiducials, before a valid GPS time stamp for example, are flagged with shot # -1, to indicate they are
not used for anything. Housctl cannot know when a fiducial shot is missed by the FPD (fast photodiode),
so fiducials always increment by 1, even when some shots were lost by the hardware.

The FPD brightness is measured by a circuit that takes time to settle; housctl repeatedly reads the ADC
waiting for convergence. If the reading does not converge in a reasonable time, housctl reports the last
value, but negated, to flag that it is unreliable.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 42 of 103

The FPD entry is just a copy of the channel 15 TDC measurement (which is also retained in the hit list).
If a fiducial record has no Fast PhotoDiode (FPD) measurement in the TDC, housctl uses a dummy value
of 4999 TDC counts, which is outside the valid range of 0 - 4095. This causes the lunar gate to open at a
meaningless time, but the record is still taken.

The hitlist uses 4-digit, leading zero TDC values, so that each TDC channel:value pair has no spaces, for
easier parsing. Channels are numbered 1-16.

Note that housctl cannot know which fiducials are odd or even, so there is no indicator for this in the data.

lun0
The fid and lun records are described in ‘rem’ in the data file, so we can track changes more easily. lun
are lunar return records. There are some fixed columns, followed by variable number of TDC values .
E.g.,

rem lun0 shot# accsec tws*2 frcount gw ppred tpred nhit
lun0 2 20 80603594 189136368 8 1814 1814 3 1:0932 9:1188 11:2898

If the ACM gets a “lunar” gate with no corresponding fiducial gate in the queue, the ACM can’t know
any shot number, so fills in shot # = –10. This usually means the FRC hit the target leftover in hardware
before a valid target got written.

The hitlist uses 4-digit, leading zero TDC values, so that each TDC channel:value pair has no spaces, for
easier parsing. Channels are numbered 1-16.

str0
Stare data files (*.str) have stare records which look like ?? They are normalized how??

Log File Record Types
Each record begins in column 1 with a 3 char record type. All types except “rem” have a 1 char version
code suffix attached to the record type. The following record types are defined:

rem A comment of arbitrary text

tmp0 sensor=temp; ... Uncalibrated temperatures. Sensors are names, temps are in deg C.

tmp1 sensor=temp; ... Calibrated temperatures. Sensors are names, temps are in deg C.

icc0 ansitime command verbatim copy of received ICC command

drk0 chan1 chan2 ... chan16 see below

flt0 chan1 chan2 ... chan16 see below

All keywords have the same meaning across all record types, by design, and you can
count on it always being so.

Each record type is further described below.

par0
a list of arbitrary parameters, such as time-to-moon estimation polynomial. E.g.

par0 reflector=3; t0=263.166667; tf=263.319444; polyspan=220.000000;
ncoeff=10
par0 polyname="housctl.poly"
par0 a0=2.4465802250443649
par0 a1=-0.16897226866481169
par0 motrps=19.938; t=263.273675; rtt=2.432493

Keywords: can be any of the parameters, including these:

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 43 of 103

day float current time in days (including fraction), where 1/1 = day 1

polyname string name of polynomial file

reflector int 0=Apollo 11, 1=Lunakod 1 (never seen), 2=14, 3=15, 4=Lunakod 2

t0 float start time of polynomial, as defined elsewhere in this document

tf float end time of polynomial

polyspan int span of polynomial, in minutes

ncoeff int # coefficients = order + 1

a1..a50 float polynomial coefficients

t float time of polynomial evaluation

rtt float round trip time from polynomial at time t, in sec

motrps float motor speed, in rps

thunt float time hunt offset, in ns, for automated time searching

atime string generic ANSI time stamp

gatewidth int current gatewidth parameter for DARK, STARE, etc.

apdtoffs int list of 16 APD time offsets (from fast photodiode to fiducials, in TDC units) as
apdtoffs=636.207,688.602,0,654.450,0,671.388,675.043,0,
 687.673,673.837,662.598,614.974,648.818,629.876,0,668.248

exc0
exc0 denotes an exception (unexpected event) with related parameters, e.g.

exc0 2007-01-04T17:36:54 severity=1; bits=0x20000;
 text=”Unknown 'set' parameters: refl=3”

See “Events and Alarms” for description.

gps0
GPS time, DAC and other status. E.g.,

gps0 gpstrig="263:06:34:14.222062"; cpserr=0
gps0 gpstime="F03 UTC 09/20/05 06:44:58"; gpsdac="F71 phase= 1.049E-07 s
offset= 2.487E-11 drift= 3.649E-09/DAY DAC= -187"

Keywords:

gpstrig string trigger time of ACM’s 1 pps, as "263:06:34:14.222062"

cpserr int counts per second discrepancy from 1 second.

gpstime string asynchronous gps time, as "F03 UTC 09/20/05 06:44:58"

gpsdac string DAC statistics, directly from clock, as
"F71 phase= 1.049E-07 s offset= 2.487E-11 drift= 3.649E-09/DAY DAC= -187"

tmp1
Sensors are names, temperatures are type float, in deg C. Sensor names are subject to change. E.g.,

tmp0 ILE=29.09; UTAH=31.21; cabinet_mid=16.55; TDC1=34.62; TDC2=45.21;
TDC3=47.06; TDC4=43.09; TDC5=29.34; Noren_in=23.54; Noren_out=20.18;
dome_air=15.90;

Sensor names above are as of 9/21/2005.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 44 of 103

icc0
verbatim copy of received ICC command, with timestamp, e.g.

icc0 2005-09-19T23:34:13 775 get houstime

drk0/flt0
APD dark or flat count calibration, e.g.

drk0 2005-09-19T21:47:14 195 10000 0 318 10000 142 258 302 253 152 405
319 368 448 0 322
flt0 2005-09-19T21:47:14 923 10000 0 899 10000 952 688 823 953 952 805
919 768 948 0 822

The 16 columns are the dark counts, normalized to 10,000 gates, for channels 1 through 16.

flw0
Flow rates of the laser head loop, and the Noren propylene-glycol loop:

flw0 laser_flow=0.350 noren_flow=2.123
The old flow rates in early code had the propylene-glycol loop and the dionized water loop (laser head)
reversed. Thus “pg_flow” was really laser head, and “di_flow” was really Noren.

flw0 pg_flow=0.350 di_flow=2.123

pow0
Power control records. For example,

pow0 2005-11-26T10:38:39 power13=1; name="Laser"
pow0 2005-11-26T10:38:42 power10=0; name="ILE_exhaust"

Every time a log file is opened, housctl queries the hardware for the full current power state, and records it
in the log file.

chl0
Chiller status:

chl0 m33_inttemp=17.0; m75_inttemp=20.0

Russell’s Comments On Data Formats
- Consider always putting the time stamp in the same column (1 or 2) for easier parsing. Right now it will
be in column 2 or 3, depending on what is in the first column. Time in column 1 means your data will sort
naturally, for what that is worth.

- Consider adding the date to the time string to eliminate ambiguity, e.g.
 2004-12-10T12:17:05.243000

This is ANSI standard format, but many folks use a space instead of a "T". It uses a few more characters
than just time, but is standard, clear and sorts easily.

- Sparsely encoded data would be safer to parse with a separator, since there is no possibility of mixing
channel #s and values, e.g.:

 chan#=value chan#=value

rather than

 chan# value chan# value...

- Consider keyword=value format. It's widely used at APO (ICCs must use it for replies) so parsers are
readily available. To avoid a time keyword, you'd have to put the time first and parse it separately. Thus:

 TIME cmdx="command string"

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 45 of 103

 TIME lunx=tdc01, tdc02, ... (all channels format)

or if you prefer sparse format:

 TIME lunx; 1=tdc02; 14=tdc14

Houston/ICC Data Formats
ICC sends commands as simple text lines, of format ([] indicate optional items):

[id] command [keyword=value ...]
where id is a number chosen by ICC, which Houston returns in all responses to this command. For
debugging, and hand typing commands, note that ‘id’ is optional, and defaults to 0.

Example: turn on debug mode:
483 set debug=1

The “set” command is commonly used.

Note that this interface is primarily designed as a machine-machine interface, so is not especially human-
friendly. However, in practice, while the TUI-Apollo and the ICC are under development, humans must
frequently connect to Houston Control (housctl), and send ICC commands directly, and read the
responses. Hence, there are some human-friendly features in housctl.

WARNING Consistent with a machine-machine interface, error checking is minimal. For example,
mistyping a number in a command usually results in a value of zero. For example,
typing “power q 0” will turn off the CAMAC power, because ‘q’ is not a valid number,
and defaults to a value of 0.

housctl Parameter Types
Note: I think housctl’s parameter model is quite different from TUI, where call-back functions make
setting a parameter an active operation that can have any immediate effect.

housctl has 3 parameter types: getables, setables, and reportables.

Getables are parameters that ICC can request on demand, e.g.
get state

Setables are parameters that ICC can set:
set nruns=500

All setables are also getables. Getables and setables can be either integer, floating-point, or string. Each
parameter has a fixed size and precision, which normally the operator needn’t know about. Getables and
setables are all single-valued, i.e. they cannot have a list of values (which the APO protocol allows).

Setting a parameter usually has no immediate effect; it simply sets a value that will be used later in the
execution of housctl commands. There are some exceptions to this, because housctl is constantly using
some parameters, such as ‘state’.

Reportables are parameters that housctl sends to ICC/TUI, but cannot be “gotten” or set. Reportables can
be either single or multi-valued. E.g., ‘powerstate’ is multi-valued:

par0 powerstate=1,0,1,1, 1,1,0,0, 2, 0,1,0,0, 1,0,0,0, 1,1,2,2, 1,1,1,1
housctl sends reportables either unsolicited, or as responses to some commands.

Command Summary
In general, commands with question marks are queries for operator help, rather than for system status.

[] => optional parameters; { } => exactly one value is allowed
get keyword [...] get parameters
set keyword=value [...] set various arbitrary parameters
status returns all getable parameters

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 46 of 103

power show current stored power status
 power check query each device, and show current status
 power dev {0, 1} turn AC power off/on for device
camac return fun CAMAC facts
camacz reset CAMAC
bolo {0, 1} put bolometer (laser power meter) out/in laser path
rxx angle angle is float, ~arc-sec. Nudge rx path x-mirror
rxy angle ditto, but in y-direction
vtarget vtargetx vtargety record rx-mirror target offsets
vmove vx vy move rx-mirror to (vx, vy), arc-sec in mirror frame
vcalibrate define current rx-mirror pos as (vtargetx,
vtargety)
idle enter idle state; equiv to 'set state=1'
warmup enter warmup state; equiv to 'set state=2'
run [runcomment] enter running state; equiv to 'set state=3',
 but adds the comment to the data file.
standby enter standby state
cooldown enter cooldown state, closes data file
stare [comment] enter stare state, with 'comment' -> data file.
dark [comment] enter DARK state, with 'comment' -> log file
fidlun enter fidlun state, no comment allowed
readpoly [filename] read polynomial from filename,
 Defaults to current value of 'polyname'
readblock read laser block times from housctl.blk
time reports the fractional day and RTT to moon
cums write cumulative parameters to disk
disconnect houston disconnects ICC TCP connection
 This is MUCH safer than dropping from the ICC side
laser {powerup, keyoff, keyon, keycycle, warmup, stop, start,
 preprun, shutterclose, shutteropen, display} Laser control sequencing
m33 [{off, on, setpoint, lowlimit, highlimit}] chiller ctl, blank for
status
m75 [{off, on, setpoint, lowlimit, highlimit}] chiller ctl, blank for
status
help print this help

To exit Houston Control, send “set state=0”. This causes a careful shutdown of all systems, including
temperature and other regulating systems, and housctl exits.

Examples (bold denotes ICC->housctl, normal is housctl->ICC):
get state gatewidth xyz
0 i state=1
0 i gatewidth=180
exc0 Unknown get parameter: xyz
0 w text=”Unknown get parameter: xyz”
0 :

34 set predskew=2
34 i predskew=2
34 :

Device Power Codes
The “power” command encodes AC Power plugs, and the M33 and M75 chillers.
From: Tom Murphy
Sent: Monday, May 23, 2005 19:16
To: apollollr@u.washington.edu
Cc: dwoods@apo.nmsu.edu; Mark Klaene; bketzeba@apo.nmsu.edu
Subject: [LLR] APOLLO Power Scheme
As arrangements for switching power become more well defined, I am trying to keep track of the scheme.
Here is what I have at present. Power will be controlled from a variety of devices: Some will be switched
via the UW relay boxes, receiving digital controls (7 total) from the National Instruments DAQ card on
houston. Some will be controlled via the UW relay box receiving digital input from the terminal server

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 47 of 103

(via port control lines). Some will be switched via the 4-port IP-accessed power switch in the phone-
booth/cabinet.

The UW relay boxes are each 4-outlet units, and there are 4 such boxes. Labeling these boxes 1, 2, 3, 4
and the outlets on each a, b, c, d, we can lay out a map designating who is where, and which signals
control each.
Box 1 is in the Utah laser enclosure
Box 2 is in the phone-booth/cabinet
Box 3 is in the phone-booth/cabinet
Box 4 is in the intermediate level enclosure (ILE)
On the terminal server (located in the ILE), ports 1-8 are reserved for communications. Ports 9-16 are
usable for relay switching (this division is arbitrary).

The IP power switch is plugged into the UPS.

The devices controlled by the NI-DAQ on houston are as follows:

bit # box/outlet equipment max pwr
0 2a APD Power supply
0 2b Photodiodes/9327 supply
1 1a CAMAC crate 175
1 2c Booster power supply 35
2 3a T/R motor power supply 65
2 3b diffuser motor pwr sup.
3 3c STV CCD camera ctrl 25
3 3d NF optics actuators 35
4 1b Utah box heater 110
5 1c Noren Lower fan
6 1d Noren Upper fan

Updated by Eric Michelsen, 10/29/2008: The devices controlled by the parallel port are:

port # box/outlet equipment max pwr
9 4a Plenum fan banks
10 4b ILE exhaust fan
11 4c Aux. cooling pump & fans
12 4d Cabinet circulation fan
13 -- Laser keyswitch relay <1
14 -- Laser 208 V 3-phase (3 relays) 2500

The devices supported on the UPS-fed IP switch are:

port# equipment max pwr
0 houston 150
1 flowmeter box
2 RTD box
3 GPS clock

Then there are some devices left always powered:

type equipment max pwr
UPS XL-DC clock 25
UPS Interlock box & shutter
utility Laser Power Meter 3
utility ILE heater (own thermostat) 420
220V M33 Chiller (RS-232 activated) 1500
220V M75 Chiller (RS-232 activated) 2000

Gettable/Settable Parameter Summary
Following is a response to an ICC help command. It lists all the gettable and settable parameters and
their current values. If no “set” commands have been issued, the parameters all have their default values
(below are as of ??). Note that default values are subject to change as needed. Always use the help
command in the version of housctl that you actually use to find its default values.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 48 of 103

 logfile ="060512.log" log file name
 datafile ="" data file name
 state = 1 0=EXIT, 1=IDLE, 2=WARMUP, 3=RUN,
4=COOLDOWN, 5=STARE, 6=FIDLUN, 7=STANDBY, 8=DARK, 9=FLAT, 10=LPOWER,
11=CALTDC, 30=TEST, 31=TEST2
 icc_session = 1 ICC session: 0, 1, or 2
 debug = 0 debug level
 houstbase = 1147466408986 epoch time base
 houstime = 3753294 execution time
 logfile_due = 83991014 time to next logfile
 motrps = 0. T/R speed setpt, rps
 t_utah_center = 20.25 Utah center temp
 t_utah_push = -0.25 Utah push temp offset
 t_utah_limit = 0.75 Utah limit temp offset
 t_ile_low = 20. ILE low temp
 t_ile_hi = 25. ILE hi temp
 t_ile_alarm_low = 8. ILE alarm low temp
 reflector = -1 Lunar reflector: 0=Ap11, 2=Ap14,
3=Ap15, 4=Lunakod
 polyname ="housctl.poly" polynomial file name
 nruns = 5000 RUN, FIDLUN # of shots to make
 flashrate = 20. FIDLUN flash rate
 mirrorphase = 170 encoder to fire laser
 dphase_target = 850 quadrant diffuser target phase, -1
disables
 dphase = -1 quadrant diffuser phase
 dskew = -41. RUN delay skew (fudge)
 huntstart = 0. Time-hunt starting offset, ns
 huntdelta = 0. Time-hunt increment, ns
 thunt = 0. Time-hunt current offset, ns
 predskew = 0 tpred = ppred + predskew
 gatewidth = 8 RUN lunar, STARE, FIDLUN width, ACM reg
 runfidgw = 6 RUN fiducial gatewidth, ACM register
 starerate = 1000 STARE, DARK gate rate
 nstares = 20 # STARE records to make
 binning = 500 STARE binning
 ndarks = 10000 DARK/FLAT # gates to take
 vtargetx = 0. Velocity offset mirror x-target
 vtargety = 0. Velocity offset mirror y-target
 flashcum = 147701 Cumulative flash count
 rxxpcum = 0. Cumulative optics x+ offset
 rxxncum = 0. Cumulative optics x- offset
 rxypcum = 0. Cumulative optics y+ offset
 rxyncum = 0. Cumulative optics y- offset
 vposx = 0. Velocity offset mirror x-position
 vposy = 1.5 Velocity offset mirror y-position
 ampdelay_low = 7500 Laser low power amp delay
 ampdelay_high = 0 Laser full power amp delay
 bolopos = -1 bolometer: 0/1 = out/in
 laserpower = 1 ampdelay: 0/1 = low/high power
 fakertt = 0. Forced round-trip time
 topt = 0 test options
 doptions = 0 diag options: 1=No Noren off, 2=no term
serv, 4=Noren on heat
 energy_count = -1 pulse energy convergence iteration
 airtemp = -99. weather air temperature, deg C
 pressure = -99. weather pressure, mbar
 humidity = -99. weather humidity, %
 guideOff ="" guide offset
 boreOff ="" boresight offset
 axePos ="" axes position
 slewtarget ="" telescope pointing target
 las_display ="....................:....................:...." laser
control box display
 circulate_temp = 2 Temperature to enable laser DI
circulation
 laser_log = 0 Turn laser display log off/on=-1,1

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 49 of 103

 flow_interval = 30000 Flow measurement interval, ms
 alarms = 0 :4..0: utah_temp, ile_temp, write_cum,
read_cum, di-low-flow
 alarms_unack = 0 bits 18..16: laser_block, ICC_cmd,
nonspecific
 ts_errorstr ="" term serv error string
 wti_errorstr ="" IP switch error string
 tcp_errorstr ="" TCP lib error string
 las_errorstr ="" laser lib error string
 chil_errorstr ="" chiller lib error string
 pwr_errorstr ="" power lib error string
 pr_errorstr ="" Programmable resistor error string

The ‘status’ command also returns

 the APD time offsets (from fast photodiode to fiducials, in TDC units) as
apdtofpd=636.207,688.602,0,654.450,0,671.388,675.043,0,
 687.673,673.837,662.598,614.974,648.818,629.876,0,668.248
 the latest drk0 record, if any. If there has been no DARK done since housctl was started, housctl

sends no drk0 record. This allows TUI to retain DARK counts across housctl restarts.

Response Summary
Houston sends 3 kinds of records to the ICC:

(1) ICC records: keyword=value responses, that start with a cmdid and status character;

(2) log records: measurements and other data written to the log files, that start with a 4-character
record identifier (no cmdid or status char). All log records (measurements except for fid and lun)
also use keyword=value format for their data.

(3) fid & lun records: high volume time measurements of fiducial and lunar events.

ICC Records
Houston sends ICC records both in response to ICC commands, and unsolicited. Keyword=value
responses follow the ICC/hub format:

id status keyword=value [;...] convey values of parameters
Houston sets id=0 for unsolicited data. Status is one character, per the ICC/Hub interface:

: command finished successfully
i information
w Warning: something is unusual, but the command will continue to execute.
> command queued; final response will come later
f command failed

Houston does not currently send the “!” (fatal error requiring reboot) status char.

The keywords can be any keyword of any type; i.e., any of the settable parameters, plus any of the
measurement parameters from any record type.

Log Records
Houston sends log records verbatim to ICC, because some if it is interesting to TUI and the operators. See
section “Log File Record Types” for log-record descriptions.

fid and lun Records
The fid and lun records compose over 99% of both the data recorded on disk, and the traffic Houston
sends to ICC. Its volume is noticeable, and hence fid/lun records are “compactified” by omitting
keywords. Individual fields are identified by parsing the known record format.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 50 of 103

Errors
There are two kinds of errors: ICC command errors, and exceptions. housctl responds to ICC errors with
the APO standard “f” and “w” status characters described above. housctl responds to exceptions with
“exc” exception records (described in “Events and Alarms”).

TUI Functions and housctl/TUI Interfaces
APOLLO TUI must perform the functions described here, in addition to others documented in TUI
documentation.

housctl uses the concept of a “record” of information from housctl to TUI. Many parameters are
interpreted within the context of the record in which they appear. For example, the “i=...” augments the
information from other parameters in the same record. TUI has the ability to keep the entire text of each
record available for any parameters later processed in that record. For example, when housctl replies with
an “f” (failure) status, TUI displays the whole reply, and then processes each parameter in the record.

General TUI Processing of Housctl Messages
TUI maintains 3 display boxes (possible on different tabs): (1) a housctl reply box, (2) a hub log box, and
(3) an alarm text box. Each box is a scrolling window of text.

(1) housctl reply box: displays all command replies (i.e., solicited), and all “i=...” parameter text. All
“text=...” should display in red. Note that “f” status and “text=...” also go in the alarm text box.

(2) hub log box: displays all traffic from the hub. Operators can filter it to only show APOLLO messages
??, or to have those from APOLLO ICC highlighted..

(3) alarm text box: display all failed command replies (“f” status), and “text=...” parameters. Note that
“f” status also goes in the housctl reply box. See also “Events and Alarms,” below.

TUI should display all solicited messages from housctl, in the housctl reply box. Messages with “i” status
(or “>”) display in normal text, “w” status in blue, and “f” status in red. It also display here additional
information as described elsewhere. Note that “f” status also goes in the alarms box.

Keyword Parameters Requiring Additional TUI Processing
TUI should process all keywords the same, whether solicited or unsolicited. Note that there is a command
reply status “i”, and a parameter “i”, but they are two different things.

powerstate TUI should use the ‘powerstate’ variable for its Power tab. This keeps the power state
up-to-date. Note that the states are 0-7, not just 0 or 1. A powerstate of -1 means that
number is not connected. (As of 10/5/2007, TUI seems to take the power state from the
‘powerstatus’ strings.)

polyname TUI should prominently display the poly file name, and set polyname window red if
blank. Note that we hope to soon replace “polyname” with “predictname”, since we
hope to eliminate the polynomial fits altogether.

blockremaining Seconds remaining to block laser. During a space-command blockage, housctl sends an
unsolicited “blockremaining=...” message occasionally. housctl sends the messages
every few seconds near the end of the blockage. TUI should display this information,
possible color coded. During a blockage, the main tab should display blue.

releaseremaining Seconds remaining with laser released. During a space-command release time (allowed
to lase), housctl occasionally sends an unsolicited “releaseremaining=...” message. Near
the end of the release time, housctl sends them every few seconds.

statusline TUI should display this text on the status line of the entire window, visible on any tab.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 51 of 103

others? there are probably several parameters missing from this list

housctl debug parameters: TUI simply ignores any parameter it does not understand. There are many
parameters that are just for human interpretation.

See also the list under “Events and Alarms."

Other Keyword Parameters
See the list under “Events and Alarms."

Events and Alarms

The event/alarm model is of global importance: every piece of the system must use it
consistently.

It appears that there is no pre-existing event scheme in APO-standard parts of TUI, so housctl chose a
simple, consistent model. Here’s some background information:

Typical industry event models define event as an unsolicited happening with data associated with it. The
data are often transient in nature, and cannot be read after the fact (such as how far off the diffuser phase
was before the system corrected it). All events would have some common data fields: timestamp, event-
type, severity. Each type of event then has type-specific fields; e.g., the “diffuse phase error too big” event
would include the phase error that triggered the event.

An alarm is just a high-severity event. However, usually, “alarmed” is also a state of the system. The
system has a model for how alarms get cleared after they are declared. There are typically 3 kinds of
alarm, defining how long they last and how they are cleared: (1) transient, (2) persistent-auto-clearing,
and (3) persistent-operator-cleared.

Transient alarms are by nature transient, and do not persist for any length of time; e.g., “photon count
too low” during the last measurement interval. The system never actually enters “alarmed” state from a
transient alarm.

Persistent-auto-clearing alarms persist in “alarmed” state as long as the alarming condition persists;
e.g., “cable unplugged” persists until the cable is plugged in, when the system clears the alarmed state by
itself.

Persistent-operator-cleared alarms remain “alarmed” until the operator manually clears it; e.g., “safety
door open”: even if the door swings shut, you might want to be sure the operator checks that it is secured
(later we’ll see that the “unacknowledged alarms” record might also serve this purpose).

The choice of which kind of alarm a given condition will be is subjective, and driven by needs.

System-management systems (TUI, log-files, APOLLO system manager) typically log all events, and
provide some way for operators to scan/cull/filter/sort through the list.

If we regularly get an alarm, and we're not alarmed by it, then it shouldn't be an alarm.
When ignoring an alarm is regular practice, it encourages people to ignore alarms,

which completely defeats their purpose.

Question Does APO maintain an IP Syslog server that is useful to APOLLO? If so, would it help
if our exceptions, or environmental failures, were logged there?

housctl Alarms
housctl currently (7/2008) implements only transient alarms and persistent-auto-clearing alarms.
However, each alarm sets one of the bits in the ‘alarms_unack’ parameter; when an operator connects,
‘alarms_unack’ provides a summary of what’s gone wrong before the operator connected. Operators must

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 52 of 103

review exception logs to find details of any such alarms; usually the APOLLO System Monitor web page
is current enough. Operators clear ‘alarms_unack’ when they choose, typically when they have
understood the alarms.

housctl alarms generate ‘exc’ records in the log & data files. housctl generates both persistent auto-
clearing and transient alarms. Persistent alarms put housctl in an “alarmed” state, and continue until the
cause of the alarm is removed (self clearing). For example, if the laser DI flow is low, housctl remains
alarmed until the flow is restored. Per APO’s original ICC recommendations, housctl maintains current
persistent alarm state in bits of the getable “alarms” parameter. Like all getable parameters, “alarms” is
included in the ‘status’ command response.

In addition, any event that sets a bit in the “alarms” parameter, also sets a bit in the “alarms_unack”
parameter. When alarms clear, housctl clears the “alarms” bit, but does not clear the “alarms_unack” bit.
Operators “acknowledge” past alarms simply with ‘set alarms_unack=0’ (or any other value, if operators
want to acknowledge only some of the bits set). In this way, operators can easily see if any alarms have
occurred since the last acknowledgement.

Transient alarms are caused by one-time events, for which there is no corrective action, and therefore no
“alarmed” state. For example, a communication error (checksum error) is a transient alarm. It generates
an ‘exc’ (exception) record, but no further action. It sets a bit in the “alarms_unack” parameter, but not in
“alarms”, because by definition, there is no such thing as a “current transient alarm.”

There are currently (7/2008) these alarms defined. These are likely to change over time:

// Persistent alarm bits:
#define AL_DILOWFLOW 1 // laser head DI flow low
#define AL_READCUM 2 // can't read cumulative value file
#define AL_WRITECUM 4 // can't write cumulative value file
#define AL_ILETEMP 8 // ILE temperature out of bounds
#define AL_UTAHTEMP 0x10 // Utah temperature out of bounds
#define AL_LASERBLOCK 0x100 // invalid laser blocking file

// Transient alarm bits:
#define AL_NONSPECEXC 0x10000 // nonspecific exception
#define AL_QOVERFLOW 0x40000 // lunar queue overflow

The nonspecific-exception is any exception that does not have a specific alarm bit assigned to it. We can
define more alarms (and their bits) as needed.

TUI Processing of Alarms and Events
See also the “General TUI Processing of Housctl Messages,” above.

TUI maintains an “Alarm” tab. It includes a “acknowledge alarms” button, which sends a “set
alarms_unack=0” command. The alarms part of the screen might look something like this:

12:34:56 Laser on fire
12:35:00 Laser temperature 300 C
12:35:30 Other alarm text

0x0001 0000

0x0000 0000

alarms_unack

alarms

acknowledge
alarms

The ‘alarms_unack’ box is writeable by the operator (like many parameters are). With this, operators can
selectively clear unacknowledged alarm bits.

TUI sets the alarm tab to one of 3 colors:

normal when alarms=0, and alarms_unack=0

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 53 of 103

pink when alarms not 0, and alarms_unack=0

red when alarms_unack not 0

The APO TUI standard “warning” color is blue, which TUI uses for “w” responses.

Alarm and Event Keywords from Housctl
text This should be called “error_text”: Displays in red in the housctl reply box, and the

alarm text box.

i This should be displayed in the housctl reply box, which allows housctl to get
unsolicited information into the housctl reply box.

h help text. Someday, TUI could accumulate all help text into a tab, which operators
could switch to for online text help.

w (not implemented as of 10/2007) This could be like ‘i’, only displayed in blue.

alarms_unack TUI displays alarms tab in red if this is non-zero. If zero, tab color depends on ‘alarms’.
See “Events and Alarms”. This is state, and housctl sometimes sends it redundantly, so
TUI should not log anything in any text windows on receiving this parameter. TUI
displays ‘alarms_unack’ in hex in a box beside the Alarm text box: red if non-zero,
black if zero.

alarms TUI displays alarms tab in pink if this is non-zero, and alarms_unack=0. See “Events
and Alarms”. This is state, and housctl sometimes sends it redundantly, so TUI should
not log anything in any text windows on receiving this parameter. TUI displays
‘alarms’ in hex in a box beside the Alarm text box: red if non-zero, black if zero.

g arbitrary text for humans. TUI should not do anything special with it, and let it be
displayed normally with the command reply in the housctl reply text box.

Exception Records from Housctl
When an unexpected event occurs, housctl sends an exception record, with related parameters, e.g.

exc0 2007-01-04T17:36:54 severity=1; bits=0x20000;
 text=”Unknown 'set' parameters: refl=3”

Keywords:

severity int 0=information, 1=warning, 2=severe

bits int alarm bit that was set

text string human readable text

housctl clears an alarm with an exception record like this:
exc0 2008-07-08T02:59:14 clear; bits=0x8; alarms=0x0; alarms_unack=0x10008;
i="ILE temperature 24.95"

The “clear” parameter indicates this is an alarm clearing. The ‘alarms’ & ‘alarms_unack’ parameters
give the current alarm state after the cleared alarm. Note there is no ‘text’ parameter, but there may be an
‘i’ parameter.

Possible Event/Alarm Future Enhancements
*Add a warning for moderately high temperatures, that are not yet alarming. Things like “a little high”
temperature are exactly what “warnings” are designed for. I think a warning would work well for
moderately high temperatures.

We must then define a housctl/TUI interface for the passage of these warnings. One possibility is that
TUI interpret the ‘text’ keyword in the context of its accompanying ‘severity’ keyword (this is a little

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 54 of 103

stateful). Another possibility is that housctl use a ‘warn_text’ keyword instead of ‘text’ for warnings. The
APO standard for warnings in TUI is to display them in blue. We might want the alarms tab color to then
have some blue indication of warnings, but that’s not trivial. There is no warning state, so there could
only be “unacknowledged warning” status. Maybe just blue log lines without tab color is enough.

* housctl could maintain a list of the error text for each bit set in the ‘alarms’ parameter. When TUI
connects, housctl could upload this list as part of ‘status’. TUI could use this information to augment the
Alarms tab.

* We could provide more information with status variables: for each event type, housctl would maintain a
set of variables:

1. event-type

2. # times event happened since last reset

3. timestamp of last occurrence

4. timestamp of last reset

5. - n: snapshot of event-specific data associated with the last event of this type

* Interlock enhancement
From: James Battat
Sent: Monday, November 13, 2006 13:57
To: Eric Adelberger
Cc: apollo_core@u.washington.edu
Subject: Re: [Apollo_core] (no subject)

In thinking about Eric Adelberger's comment on the APOLLO interlock/warning system, I've come up
with a few potential failures that we should certainly be alerted to when they occur. By no means is this
list complete.

 Houston down

 gps antenna lost lock (prevents detection of lunar photons)

 cocoa down (icc)

 flow meters stopped (perhaps combined with temperature readings)

 (danger of freezing)

 ILE temp too high/low

 Utah temp too high/low

Of course, we have to determine what is meant by "alerted" (email?, to whom?). As far as I know all the
alerts/alarms that we have implemented require the user to be looking at the right website or screen and
can therefore easily go unnoticed. To do this right will likely require a significant amount of system
(re)design.

Let's at least come up with a more complete list of failures that we must be alerted to, to help inform our
interlock/warning system design. Please send your suggestions. I am happy to compile them for the
group.

In some instances, we may have to build in some flexibility/tolerance into the system in the event that our
sensors (e.g. RTDs) are not doing their job correctly.

On Mon, 13 Nov 2006, Eric Adelberger wrote:
We need to have a more sophisticated interlock system that looks at all recorded parameters and checks if
they are within their proper ranges. If any one is out of range, it announces this in a prominent way
(forcing the observer to respond) which parameter(s) are out of range.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 55 of 103

TUI/Hub/ICC Information
Hub capacity:

From: Craig Loomis [mailto:cloomis@apo.nmsu.edu]
Sent: Friday, December 03, 2004 15:34
To: Tom Murphy
Cc: emichels@physics.ucsd.edu; hoyle@npl.washington.edu;
owen@astro.washington.edu
Subject: Re: APOLLO architecture and dataflow

It appears that you can run ~100 replies/sec through the hub with three listening TUIs. The hub itself
barely noticed that traffic, for what that's worth. The size of the replies is not important, btw.

Hardware & Low Level Interface:
From: Craig Loomis [mailto:cloomis@apo.nmsu.edu]
Sent: Monday, August 02, 2004 19:09
To: Eric L. Michelsen
Cc: 'Russell E Owen'; 'Tom Murphy'
Subject: Re: architecture

 We have a 100Base-T switch in the intermediate level. We run copper to that from all but the _most_
essential/expensive devices. But if you want fiber, TX/FX converter boxes are cheap & easy. SC
connectors preferred; ST connectors accepted.

> For our ASCII command interface, are there any Telnet/NVT (Network
> Virtual Terminal) requirements? It doesn't seem like it to me. Can we
> just open a TCP connection, and read/write ASCII to it?

Opening a TCP socket and chatting is the preferred method. If you will be sending commands, I will
assign you a pseudo-userID that the obs-specs can use to disable your commands.

ICC
The current ICC reference is http://rowen.astro.washington.edu/ICCManual/.

Here are a few details from Russell that may be of interest:

 The communication channel from the mountain to the rest of the world is rather slow. If this is a
problem for Apollo then it may have to be run on site.

 Hub/ICC communication is usually an ASCII command/reply stream, plus perhaps data to a
shared disk.

However, there is also a binary version of the hub/ICC protocol which some older instruments use to send
back data. This is discouraged because it ties up the command/reply stream while data is being read out.

 TUI/Hub communication is only ASCII. TUI also can automatically fetch images via ftp. In
theory TUI can open additional lines of communication if necessary, but it makes for a messy
architecture.

 The Hub supports ICCs that use an RS-232 interface for the command/reply stream (via a
terminal server). If you prefer direct TCP, that's fine.

The "hub" is a computer that lives at APO in the computer room. The hub routes commands from
"commanders", such as TUI users, to "actors" such as:

 the instruments

 the Telescope Control Computer (TCC)

 various other scripts, including perms (a permission system)

The hub tries to do very little other than authorize users and route commands. Authentication and some of
the scripts are documented at <http://tycho.apo.nmsu.edu:81/MC2/>.

mailto:cloomis@apo.nmsu.edu
mailto:cloomis@apo.nmsu.edu
http://rowen.astro.washington.edu/ICCManual/
http://tycho.apo.nmsu.edu:81/MC2/

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 56 of 103

The hub passes commands "unmolested" to the various Instrument Control Computers (ICCs). However,
it expects replies to be in standard keyword-value format (more on that in the P.S.).

The TCC is the Telescope Control Computer. It also lives at APO in the computer room. See
<http://www.apo.nmsu.edu/Telescopes/TCC/TCC.html> for info on the commands and expected replies.

There is no standard name for a client machine running TUI. The person running TUI is a "user".

TUI: <http://www.astro.washington.edu/owen/TUIHelp> (this is a copy of the html help built into TUI).

Hub: <http://tycho.apo.nmsu.edu:81/MC2/>, and in particular, the link Authentication.

The syntax for command/reply format for your instrument control computer (ICC):

 All commands and replies are ASCII

 Each command and each reply should take only one line. However, there is no line length limit.
Also, one command can generate more than one reply.

The format for commands to your ICC is up to you (within the rules given above). However, if you can
execute more than one command at the same time, or if you permit unsolicited output, then you must
allow an initial command ID integer (which will then be included with all replies for that command).
Even if you don't meet the requirements you may want to accept a command ID integer; most of our ICCs
do. I suggest making the command ID optional (defaulting to 0). This makes it easier to test by hand.

Here are some example command sets that are simple and possibly worth emulating:

 DIS <http://tycho.apo.nmsu.edu:81/DIS/DIS_Commands.html>

 expose and tlamps: see links from <http://tycho.apo.nmsu.edu:81/MC2/>

Replies from your instrument controller MUST be in APO-standard keyword-value format. This is, by
example:

cmdIDInt cmdStateChar keyword1=val11, val12,...; keyword2; keyword3=value3
 cmdIDInt is the command ID integer for the command which triggered the reply. If your output

is not in response to any command (i.e. unsolicited), then use 0. If you don't allow command ID
numbers then always use 0.

 cmdStateChar is one of the following characters:

: command finished successfully

> command queued (this is only relevant for systems that can execute more than one
command at a time, e.g. the TCC)

i information

w warning

f command failed

! system failure (e.g. the command interpreter or a subprocess died); init or reboot
required to proceed

 Solicited replies (triggered by a command) must end with exactly one ":", "f", or "!" reply. Before
that, you may issue as many "i" or "w" replies as you like. (You may also issue more than one ">"
reply, but it violates the intent of that message code.)

 Unsolicited replies (not triggered by a command, thus CmdID = 0) do not have any such
restrictions.

 keywords are words. I suggest you stick to legal C identifiers. Case is ignored.

http://www.apo.nmsu.edu/Telescopes/TCC/TCC.html
http://www.astro.washington.edu/owen/TUIHelp
http://tycho.apo.nmsu.edu:81/MC2/
http://tycho.apo.nmsu.edu:81/DIS/DIS_Commands.html
http://tycho.apo.nmsu.edu:81/MC2/

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 57 of 103

Typically the user interface or hub will set up a callback to be triggered by a particular keyword, so its
state display can be kept up-to-date. For these to work well, keywords should:

 Always be output when the relevant state changes. Remember that we can have more than one
user at the same time. Other users should not have to parse commands to know what is going on.
For example, if one user says "focus=50", you should output a keyword indicating the new focus.

 Self-contained and non-modal. The keyword data is much easier to use if all one has to know is
the values for that one keyword, rather than looking at the rest of the reply, or worse, knowing
what the ICC was doing at the time.

Examples:
 Bad: Duration=... (duration of what?)
 Good: PulseDuration=...
 Bad: MirrorID=1; MirrorData=data1, data2...
 (the MirrorData user also has to look at MirrorID)
 Good:
 if you only have a few mirrors:
 SecData=data1, data2...
 PrimData=data1, data2....
 if you have a lot of mirrors:
 MirrorData=id, data1, data2...

You will probably also want a keyword for command warnings and error messages (data for the user to
read, but not for the user interface to parse). I suggest simply using the keyword Text for all these.

Keyword values can be:

 Quote (")-delimited strings (escape any contained " or \ with \)

 numbers (int or float or nan; ints can be in any base using C notation)

 dates and times (yyyy-mm-dd hh:mm:ss.sss or yyyy-mm-ddThh:mm:ss.s) Please stick to UTC
(or TAI if leap seconds are an issue); avoid local time if at all possible

 keywords (same rules as keywords)

Telescope Control Computer (TCC)
The TCC is essentially an ICC for the telescope itself.

From: Russell E Owen
Sent: Monday, July 11, 2005 15:28
To: apollollr@u.washington.edu
Subject: [LLR] TCC keywords for offset

Here is the output of the TCC for a sample guide offset.

10944 5 > Started; Cmd="offset guide 0.000139,0.000042"
10944 5 I MoveItems="NNNNNNNYN"; Moved
10944 5 I GuideOff = 0.000139, 0.000000, 4627497670.43000, 0.000042,
0.000000, 4627497670.43000, 0.000000, 0.000000, 4627497670.43000
10944 5 :

The keywords are described in the TCC Message Keywords Dictionary:
<http://www.apo.nmsu.edu/Telescopes/TCC/MessageKeywords.html>

Typical keywords for a given command are listed with each command in the TCC Commands Manual:
<http://www.apo.nmsu.edu/Telescopes/TCC/Commands.html>

P.S. This output is for an uncomputed offset, as usual for a guide offset. Uncomputed offsets are small
offsets which happen quickly but with known end time and no jerk limiting. The other option is a
computed offset. Computed offsets are used for large moves or when you really need to know when the
move is finished. Computed offsets are basically slews; they take longer and generate much more output,
but are much gentler on the drives and report an accurate (if conservative) end time.

http://www.apo.nmsu.edu/Telescopes/TCC/MessageKeywords.html
http://www.apo.nmsu.edu/Telescopes/TCC/Commands.html

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 58 of 103

6 APOLLO Instrument Control Computer (ICC)
ICC is a function, not a piece of hardware. For a long time, we have run ICC on Houston itself. We plan
to soon migrate the ICC function to the 1U rack-mount computer “cocoa”.

The main purposes of ICC are these:

(1) to pass commands from the Hub to Houston, and

(2) to pass APO standard responses from Houston to the Hub, and to reformat log/data records from
Houston into APO standard format, and send to the Hub.

ICC Processing Details

Houston to Hub Direction

ICC should perform default processing on all unrecognized record/version types, so
Houston and TUI can easily change without changing the ICC. Such transparency is

standard encapsulated software design.

I’d like to have ICC changed to strip timestamp-like things: that on all record types, it checks the 2nd
“word” (delimited by spaces). If this “word” starts with a number of digits and a hyphen, ICC discards
that word. For example:

tmp0 2007-01-01T12:12:12 dome_air=5
would be equivalent, from ICC's point of view, to:

tmp0 dome_air=5
Note that ICC must preserve all the numeric fields in data records such as fid0, lun0, str0, etc, which start
with numbers (but no hyphen).

This would allow me to remove the long-standing kludge for DRK and FLT records, as well as allow us to
add timestamps to any record type without needing to change ICC again.

Log records:

First, for all record types, whether recognized by ICC or not, check for and remove any 2nd word which
starts with a digit. For example:

tmp0 2007-01-01T12:12:12 dome_air=5
would be equivalent, from ICC's point of view, to:

tmp0 dome_air=5
Then, other record-type-specific processing as follows:

default: ICC should strip any time stamp-like thing from records (described above). E.g.,
exc0 ansitime a=b; ... becomes 0 i exc; a=b; ...

rem and icc0: ICC discards rem and icc* records (i.e., icc records of any version). Should we change
ICC to pass them on so all TUI users can see what others are doing??

par0: ICC changes par0 records as
par0 key1=val1; key2=val2 ... becomes
0 i par; key1=val1; key2=val2 ...

drk0 and flt0: ICC changes dark records as
drk0 ansitime 10 5 ... 22 becomes
0 i drk; Dark=123, 190, 0, 225, 10000, 126, 165, 225, 212, 146, 317, 233,
285, 336, 0, 274

Note that the timestamp is handled by the general timestamp removal function.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 59 of 103

str0: ICC changes stare records as
str0 ansitime 10 5 ... 22 becomes
0 i str; Stare=175, 193, 0, 261, 10000, 163, 190, 263, 175, 155, 348, 269,
294, 359, 0, 254

Note that the timestamp is handled by the general timestamp removal function.

Note: ICC need not know all the record types, as it should apply the default processing to any unknown
record type.

Data (fid/lun) records: require the most processing. Note that ICC discards TWS and FRC, leaving:
Fiducial=1, 0, 1500, 1912, 3, "5:3970, 13:2755, 15:1912"
 The numbers are shot #, Accumulated Sec, pulse energy, photodiode TDC, “chan:time...”
Lunar=1, 0, 1912, 1912, 2, "5:1590, 14:0572"
 The numbers are shot #, Accumulated Sec, ppred, tpred, “chan:time...”

In the TUI log, fid and lun records look like this:
21:53:27 .apollo.0 0 apollo i Fiducial=1,0,-438,0,2000,2,"1:2001, 15:2000"
21:53:27 .apollo.0 0 apollo i Lunar=1,0,2000,2000,1,"1:2001"

Hub to Houston Direction
Hub commands can be intended for either ICC itself, or for Houston. ICC recognizes and intercepts the
very few ICC commands. They are the “built-in” Apollo ICC commands:

connDev [dev1 [dev2...]]

 Connects ICC to houston

disconnDev [dev1 [dev2...]]

 Disconnects ICC from houston. Does this really work??

exit Log me off (leaving everything else running)

quit Same as exit

users Show info about users

houston [cmd...] Send cmd... to houston ("unmolested")

This last ICC command, “houston” tells ICC to pass the remaining text of that command as-is to Houston,
as a Houston command. For example, if ICC receives from Hub

cmdid houston set blah=3.14
then ICC sends to Houston:

cmdid set blah=3.14
Currently ICC also recognizes several Houston commands explicitly, and passes those to Houston even
without the “houston” command. TUI does not currently (7/2008) use this feature of ICC. Ideally, since
99+% of all traffic is for Houston, if we want to economize to remove the “houston” word on Houston
commands, the ICC should pass all unrecognized (i.e., non-ICC) commands to Houston. Again, this
allows Houston and TUI to change without requiring ICC changes, and is standard encapsulated software
design. ICC need not know explicitly about Houston commands. Nonetheless, the known houston
commands that are sent directly through to Houston without need for a preliminary “houston” command,
as of 9/26/2005, are:

HoustonCmds = (
 "status",
 "set",
 "get",

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 60 of 103

 "camac",
 "bolo",
 "rxx",
 "rxy",
 "stare",
 "idle",
 "warm",
 "run",
 "readpoly",
 "disconnect",

We are not adding to this list, because we don’t need or use this feature.

ICC Design Notes
Subject: Some thoughts on the Apollo ICC
From: "Russell E Owen" <rowen@u.washington.edu>
Date: Thu, July 14, 2005 7:28 am
To: "Tom Murphy" <tmurphy@physics.ucsd.edu>
 "Craig Loomis" <cloomis@apo.nmsu.edu>

I was thinking about how the Apollo ICC could command the hub.

The "RO" package (a utility package distributed as part of TUI) includes code to parse hub messages and
call functions based on code that registers interest in a particular keyword (RO.KeyVariable and
RO.KeyDispatcher are the pieces that are most directly relevant). In particular, the key dispatcher just
needs to be fed a hub message to the "dispatch" method do its magic.

You can use all this within the confines of the "select" loop, though it may require very minor changes to
deal with the lack of Tkinter (the code in question doesn't care at all about tk, but I think there is at least
one indirect references in imported code that would be easy to get rid of).

This would be completely adequate for code that runs as a result communications with Houston or the
hub, specifically this means: data from Houston, messages from the hub or commands sent to Apollo via
the hub.

If that suffices, I think it's a great path to take. I'm willing to clean out the Tkinter references in
RO.KeyVariable and RO.KeyDispatcher so you can use standard off-the-shelf code.

However, if you want to execute anything based on time (e.g. wait 3 seconds and then...) I think it is not
so easy with the select loop. Craig can correct me here if I'm wrong, but I think your choices with select
are:

- Threads. You really should avoid these if possible because it makes for very fragile code that can have
extremely subtle bugs.

- Separate processes. These are perfectly reasonable if the amount of data communicated is limited (i.e.
the process if fairly standalone). They get messy if tighter integration is needed.

Another option is to use the tk event loop for everything. Then socket-based communication and time-
based communication are both trivial. If you go this route, you can use the whole RO package.
RO.Comm.TkSocket for talking to Houston and the hub. RO.ScriptRunner to execute code like "wait for
this and then do that but don't block anything else".

A potential third option is to use the Twisted Framework for communication. Frankly if I was writing TUI
from scratch today I would do this. It has an excellent reputation and integrates with all the standard
loops (select, tk, wx...). It may also give you time-based execution but I don't know whether that is so.

I strongly suggest trying to make this decision now, so that your early code can be built upon rather than
restarting from scratch or, worse, spending way too much time trying to make a square peg fit into a
round hole. This would be a good discussion to have while the three of us are all in the same place.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 61 of 103

The Hardware (Cocoa)
Cocoa is a 1U rack-mount computer (speed, RAM, etc?) that runs ICC, and serves web functions such as
streaming video from the STV, and Houston monitor data.

[root@cocoa ~]# uname -a
Linux cocoa.apo.nmsu.edu 2.6.14-1.1644_FC4 #1 Sun Nov 27 03:25:11 EST 2005
i686 i686 i386 GNU/Linux

STV Video
From: James Battat [mailto:jbattat@cfa.harvard.edu]
Sent: Thursday, January 26, 2006 15:50
To: 'Adam Orin'; Eric L. Michelsen; Tom Murphy
Subject: streaming video

WinTV PCI card that does the hardware encoding of an input video stream the company that
makes the card is Hauppauge and the model of the card is the WinTV-XXX (where
XXX is either 150 or 250, I'm not sure if tom got the former or the latter).

IVTV the linux driver for the WinTV card.

VLC Video Lan Client which is a media player and streamer. We can use VLC to stream
video from cocoa and to view it on another computer.

ok, after much ado, we are now able to stream video via HTTP at a user-defined bit rate. We also have a
much better understanding of the WinTV+IVTV+VLC system than before.

1. VLC can change the driver settings for the WinTV card so when you adjust any WinTV parameter
from within VLC the WinTV the card continues to encode using the previously set parameters even after
you close VLC.

2. This suggests that it is cleaner to set the WinTV parameters using IVTVCTL from the command line
before launching VLC because you can get into many confusing states otherwise.

3. The software transcoding in VLC seems to produce a much nicer image at a lower bit rate (by a factor
of >2) than an equivalent bit rate chosen on the WinTV card itself (Adam can explain more about that
one).

4. In aorin's home directory on cocoa there is a file called streaming.txt in which I describe two functional
setups. One in which there is no software transcoding and one in which VLC provides the software
transcoding (at a CPU consumption rate of 15%).

There is a printout of this document on the cocoa keyboard.

From: Adam Orin [mailto:aorin@physics.ucsd.edu]
Sent: Thursday, January 26, 2006 18:39
To: emichels@physics.ucsd.edu; jbattat@cfa.harvard.edu
Subject: ivtv codec parameters

I think when we thought we were changing the hardware mpeg encoder settings with ivtv and vlc we were
not. Evidence:

(1) Capture card's manual only states several discrete encoding modes, while we were able to encode at a
lower bitrate.

(2) I think the capture card's hardware encoder is an MPEG-2 encoder, yet we were able to select MPEG-1
as the encoding method, and other more exotic codecs were also available.

(3) Many (cheap) capture cards do not have hardware encoders, yet the bitrate and encoding options in
ivtvctl seem to be card independent.

Think the settings we thought were capture card settings are actually ivtv settings, not capture card
settings. I'm just guessing here.

mailto:jbattat@cfa.harvard.edu
mailto:aorin@physics.ucsd.edu

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 62 of 103

It all doesn't matter, since it's prettier and lower filesize to let VLC transcode the stream.

From: James Battat [mailto:jbattat@cfa.harvard.edu]
Sent: Thursday, January 26, 2006 20:03
To: Adam Orin
Cc: emichels@physics.ucsd.edu
Subject: Re: ivtv codec parameters

ok, but if that's the case then we should see the CPU being eaten up by some sort of IVTV software
transcoding even if VLC is not running. perhaps you can look for this tomorrow.

but you're right that, in the end if the ivtv settings somehow do not consume cpu and the quality is
acceptable we are in good shape. it would, of course, be nice to understand the system fully though...

mailto:jbattat@cfa.harvard.edu

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 63 of 103

7 Design and Implementation of housctl

SVN
housctl svn: svn://svn.apo.nmsu.edu/Apollo/Houston/trunk/

The first housctl checkin is Rev 497 from 2005-10-20 tar file.

497 first housctl checkin from 2005-10-20 tar file.

498 from 2007-09-29 tar file.

499 from 2007-10-06 tar file.

500 from 2007-10-19 tar file.

501 from 2007-10-28 tar file. (compressed tars from here on.)

502 from 2007-11-15 tar file.

503 from 2007-10-22 tar file.

504 from 2007-11-29 tar file.

505 from 2007-12-04 tar file.

506 from 2008-02-21 tar file.

507 from 2008-04-09 tar file.

508 from 2008-04-17 tar file.

509 from 2008-04-30 tar file.

Overview
Warning Mutual exclusion is critical! You must understand the mutex information below before

changing housctl code. Deadlocks can cause housctl to hang, and stop environmental
control.

housctl runs continuously. The main thread is responsible for all real-time work, and in RUN state,
blocks only to wait for either fiducial or lunar photons. When not in RUN, it blocks for lots of things,
because there are no time-critical functions outside RUN.

Common Maintenance Tasks
When testing new housctl code, it’s nice to send email to apollo_core notifying team members of the test.

makefile
The makefile does not currently have a proper set of dependencies (for any of the targets). All the *.o files
use the default dependency on only the *.c file, so none of the *.h file dependencies are recognized. This
means that after changing a *.h file, you usually need to do:

make clean
make housctl (or ‘make whatever’)

Changing the Names of Log Parameters
mapping.h defines the names and numbers of the powered items, and other things such as CAMAC slots,
etc.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 64 of 103

Changing the names of log parameters requires coordination between housctl, the html activity monitor,
and the summary plot scripts that make the web graphs, so that they all use/recognize the same names.

In housctl:
To change the names of powered items, edit mapping.h, macro POWERNAMES.

To change the names of RTDs, edit housctl.rtdcal. Then issue a ‘readrtd’ command to housctl. To
change critical RTD numbers, edit the names, and update ‘mapping.h’ to match the T_xxx definitions.

Changing housctl does not change the names of the html monitor. Adam, what about the graphs??

Current Development Environment

UCSDUCSDInternetInternet Murphy
Lab

Murphy
Lab

Linksys
NAT/
router

outside
grlab.ucsd.edu

132.239.146.224

Eric M’s
laptop
Pokey

grcad
WinXP

gdot
Linux

houston1
old Linux

grlab Linux
main

source

HP printer
2 sided,

color

SVN ideal

*.10

*.4:9100

192.168.1.1

Apache Point
Observatory

APO
firewall

default
server:
grlab

Eric M
at home

any from
grlab/zap

houston

SSH from
any

cocoa

any from
any

hub
Note that housctl source is now in SVN!

Here’s what Eric M. does now (4/2008) to make a new version of housctl, but many other variants are
possible:

1. Edit housctl source locally on Pokey.

2. SSH to grlab shell.

3. grlab> timesync to fix grlab’s time of day clock

4. SSH file transfer source to grlab (with SSH client 3.2.9 build 283), using the file window.

5. grlab> ssh houston1

6. houston1> timesync to fix houston1’s time of day clock.

7. houston1> cd /home/apollo/src
8. houston1> make housctl
9. Fix compile errors, repeat. Proceed when build is successful

10. Send mail to apollo_core informing of impending testing of housctl

11. houston1> ssh houston from grlab, SSH to houston:

12. houston> kill housctl (described elsewhere)

13. houston> mv housctl bin/housctl.description

14. houston1> scp -p housctl houston:../apollo/

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 65 of 103

15. From a new (2nd) grlab shell window: grlab> ssh houston

16. houston> start housctl (described elsewhere)

Privileges
Though we run housctl with root privilege, housctl does not, in general, require root privilege. However,
it does attempt to improve its performance by locking all it’s virtual memory into real memory, with
mlockall(). It’s not clear if this improves performance noticeably or not, but it doesn’t hurt.
mlockall() requires root privilege, but housctl continues to run even if the call fails.

Threads and Mutual Exclusion
In RUN state, dealing with slow serial (and even GPIB devices) is a problem because the main loop
cannot block for them.

housctl blocks only to wait for either fiducial or lunar photons; all other blocking
functions are relegated to child threads.

Some operations must block for unknown times exceeding ~10 ms. Houston Control real-time processing
cannot stop for so long, so the main thread launches threads to handle blocking tasks. Most threads
perform one function, and terminate, allowing for simple communication to the main thread. An
exception is the ICC read thread, which continues forever. Threads that run and die include fetching GPS
information, picomotor adjustments, and laser controls.

Mutual exclusion semaphores are needed for some shared resources, such as any file I/O, and the GPIB.
We use “recursive” semaphores, which must be unlocked as many times as locked to be free. This is
necessary for insuring continuity of multi-statement data/log-file lines. Of course, a child thread hogging
a mutex can block the main thread. This is especially true of the I/O mutex.

Warning Taking only one mutex at a time insures no deadlock. Avoid locking two mutexes
simultaneously. Because of mutex lock recursion, even if you think you’re locking two
mutexes in “proper” order, it’s hard to insure that a higher level lock is not already in
place. As of 6/1/2006, there is no place in housctl that locks two mutexes
simultaneously.

When not IDLE, any operation that can block must be done by a child thread of the main thread. To
insure proper synchronization, all data/log file I/O are synchronized with a mutex. ICC commands are
read by the ICC thread, and written by the main thread. Many threads return results and busy status in a
structure, which other threads (usually the main thread) can poll. This leads to potential problems with
optimization, because the compiler may squeeze out a load of a volatile memory location.

housctl is not compiled with optimization, to avoid the usual problems of optimization
and multi-threading.

We could probably work around this by declaring the status variables volatile, but this is tedious and
error-prone, so (as of 10/2007) we have not done this. We should probably declare the things we know to
be volatile, but that shouldn’t give a false sense of security that everything that needs to be volatile is so
declared.

Threads:

Main owns data socket (TCP port 5321). Executes ICC commands

ICC read owns ICC input (TCP port 5320). Passes ICC commands to Main thread.

GPS locks GPIB resource

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 66 of 103

Picomotor locks GPIB resource. This is a slow machine that requires special processing. See
APOLLO’s Picomotor library documentation elsewhere.

Temperatures

Maybe we also need:

Laser owns async I/O handle

STV camera owns async I/O handle

TR Motor owns async I/O to motor

No threads are needed for the Data Acquisition (DAQ), or CAMAC operations, because they don’t block.

Mutual exclusion:

Our mutexes MUST be recursive, because high level functions often need to lock a resource, then call a
low-level function which must lock the same resource.

Warning Stunningly, “man pthread_mutex_unlock” states “On ``error checking'' mutexes,
pthread_mutex_unlock actually checks at run-time that the mutex is locked on entrance,
and that it was locked by the same thread that is now calling pthread_mutex_unlock. If
these conditions are not met, an error code is returned and the mutex remains
unchanged. ``Fast'' and ``recursive'' mutexes perform no such checks, thus allowing a
locked mutex to be unlocked by a thread other than its owner.”

Thus, all code MUST unlock a mutex ONLY if it is sure it owns it! This is stunningly bad behavior of the
library. Further, so far as I know, there is no workaround, i.e., no way for a thread to know if it does or
does not own a mutex. The upside is that it is not hard to follow this, but very dangerous if you fail.

There are currently (3/2006) 3 mutexes:

mutexIO for log/data/icc I/O

mutexGPIB for GPS and Picomotor GPIB devices

mutexLaser for laser control/display access

We probably need one for DAQ.

Properly written drivers would not require mutual exclusion between threads, but I cannot find any
documentation on the drivers to confirm this. As a result, DAQ and GPIB use mutual exclusion
semaphores, because DAQ is accessed concurrently for power control and temperature data. GPIB covers
the Picomotor and GPS clock. It’s too hard to schedule around these conflicts, so we use the native
“recursive mutex” functions in the pthread library.

Note that we do not use the (awkward) “semaphore library,” which is just layered on top of the native
pthread library.

We use shared-memory variables for limited communication between threads, mostly to indicate thread
completion. For this, we assume 32-bit writes are atomic, and in-order (between threads, at least). This is
almost certainly valid on a single processor machine, due to the Linux process/thread context-switch time.

I’m not sure what would happen on a multi-processor machine.

Linux pthread Issues I found out the hard way
When starting a child thread, the Linux pthread library creates an additional thread. I guess that this is
for thread control, but I don’t know for sure. So, if you do a ps after creating a child thread, you see 3
threads (not 2): parent, system, and child. There is only one system thread no matter how many
concurrent child threads run.

Also, see the nice() notes below in “Real Time Issues.”

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 67 of 103

Real Time Issues
Priority Scheduling: renice requires root privilege. renice affects the dynamic scheduling of
“interactive” processes, but does not give a constant (“static” in Linux-talk) higher priority. Testing has
shown that ‘renice pid -20’ , along with efficient coding of the temperature acquisition loop,
eliminates most of the missed lunar returns.

If renice doesn't work, or we don't trust it, we can go to static scheduling. However, then you always
have to have a high-priority shell available, in case the high-priority process dies in an infinite loop.
When that happens, all normal processes stop, including all the normal shells. Without a high priority
shell to kill the errant high-priority process, you must reboot the machine. The need for this high-priority
"emergency-stop-shell" is somewhat problematic for our remote access. We may be able to do it through a
serial port on houston, and the terminal server. I wonder if ssh or etc/passwd has an option to make some
users high priority when they log in. Will ssh even work with a high priority cpu hog?

In sum, renice may be all it takes, or it could be much more involved. We have known all along that
"winging it" may fail at some level of loading, and we have now reached that level. As of 8/2006,
‘renice’ seems to work.

Note the nice() call from within housctl is no good, because all child threads inherit the high
priority. However, using renice from the shell can change the main thread, but child
threads still get launched with nice = 5.

All child threads get a nice()=5 from the system (I don’t do it), which is lower priority than the default of
nice = 0. I don’t know why this happens, but it seems to be OK, so I let it go.

From: swanson: I think this url at the Oreilly site does a bit better job than the man page in describing
scheduling. http://www.oreilly.com/catalog/linuxkernel/chapter/ch10.html

Memory locking: Beside priorities, page faults (not seg faults; page faults are normal in virtual
memory) can cause delays. Other processes, even lower priority ones, can cause page faults in housctl, so
we may have to lock memory with mlockall(), and do one or two other tricks to insure the needed memory
is really there.

mlockall() requires root privilege, but housctl continues to run, even if the call fails.

From 'man mlockall':
If MCL_FUTURE has been specified and the number of locked pages exceeds
the upper limit of allowed locked pages, then the system call which
caused the new mapping will fail with ENOMEM. If these new pages have been
mapped by the growing stack, then the kernel will deny stack expansion and
send a SIGSEGV.

Optimization: see Multi-threading, elsewhere, for a discussion of optimization.

Consistency Checks
In RUN state, housctl checks the FRC on each fiducial shot, and if we passed an expected lunar gate,
moves on to the next lunar gate. housctl skips ahead as far as needed until the next lunar gate is in the
future, so housctl recovers as best it can from any number of missed gates.

TCP Timeouts
A long-standing problem is that of TCP timeouts. The Linux system defaults are hours, which means a
network problem can hang housctl for hours (i.e., “forever”). The digipots are on the terminal server
(TS), connected with TCP. Eric M. doesn't know how to change these timeouts on a per-connection basis.
As of 10/2007, some of the environmental controls are also fed by the TS, and can suffer a similar fate.
We need to move these onto the parallel port.

http://www.oreilly.com/catalog/linuxkernel/chapter/ch10.html

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 68 of 103

Quadrant Diffuser Tracking
Ideally, once the quadrant diffuser phase is set, it should never need adjusting. However, for unknown
reasons (see outstanding issues section), the diffuser phase sometimes drifts off. The diffuser phase is
measured in TR motor steps of 1000 per revolution (divided down from maximum of 4000 steps/rev).
Operators should set the ‘diffuser_target’ parameter to the desired phase. On entry to RUN, housctl sets
the diffuser phase to ‘diffuser_target’. During shooting, housctl checks the phase each second, and
corrects it. Each time housctl checks the phase, it sets ‘diffuser_phase’, and sends it to the ICC:

0 i diffuser_phase=976
Seems like we should log these with ‘par’ records??

Eric M has seen the TR motor go into persistent oscillations when it was supposed to be stopped, which
supports the theory that diffuser phase drifts due to overshoot and settling in the TR motor. Note that our
diffuser divide chain counts TR encoder pulses, without regard to what direction the TR motor is moving.
It’s only supposed to move forward, but if it oscillates, it will step the diffuser forward without any net
gain in TR position.

Environmental Control
The Intermediate Level Enclosure (ILE) and Utah box environments are temperature controlled.

ILE Temperature Control
The ILE temperature is not critical; the goals are to keep it from overheating, and avoid freezing. Housctl
controls an exhaust fan than blows out ILE air, and takes in ambient intermediate level air. If either ILE
or cabinet temperature is above t_ile_hi, housctl turns the fan on. If both are below t_ile_low, the fan is
turned off. This provides some hysteresis, to avoid excessive cycling of the exhaust fan. As of 3/16/2006,
the defaults are 20 and 25 C.

ILE temperature >1 C above set point, or less than t_ile_alarm_low, generates an alarm.

In additoin, the ILE has a self-contained thermostatically controlled heater (what wattage??), currently
(3/16/2006) set for ~10 C.

Utah Box Temperature Control
There is a small temperature range in which the Utah box is stable, and does not require active
temperature control. housctl then issues no control commands.

Utah box temperature is more critical than the ILE, because the laser and lots of electronics are in the
Utah box. Utah box temperature is controlled by 3 parameters:

t_utah_center desired set point, typically 20.25 C

t_utah_push how far heat/cool will go past (above/below) center point, typically -0.25 C

t_utah_limit how far below/above center point triggers heat/cool

Warning Before the Norens were turned on during heating, if t_utah_limit < t_utah_push + ~.75,
heat and cool will sometimes compete. We don’t know if that’s true now.

Cooling: When the temperature exceeds t_utah_center + t_utah_limit, housctl cools it to t_utah_center -
t_utah_push. With typical values of 20.25 and -0.25, housctl cools down to 20.5 C.

There are 3 components to Utah box temperature control: passive cooling, M33 chiller cooling, and
heating.

Passive cooling: When the dome_air is more than ~7 C cooler than t_utah_center – t_utah_limit, and the
CAMAC is off, housctl turns on the Noren heat exchangers in the Utah box, and cycles the propylene-

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 69 of 103

glycol through a small heat exchanger in the intermediate level. This provides adequate cooling. If the
dome_air warms to less than ~6 C cooler than t_utah_center – t_utah_limit, housctl switches to active
refrigeration with the M33 chiller. Again, hysteresis avoids excessive switching between passive and
active cooling.

M33 chiller cooling: When the intermediate level air is too warm for passive cooling of Utah, housctl
uses the M33 chiller. housctl turns off the passive cooling pump, and turns on the M33, which takes over
pumping and chilling the coolant.

Utah heating: When the Utah box is too cold, housctl turns on the internal heater. This heater has its
own thermostat set to ~32 C, which we use as an over-temperature safety stop. housctl provides the actual
heating regulation by turning off the heater at a lower temperature. When the temperature goes below
t_utah_center – t_utah_limit, housctl heats it to t_utah_center – t_utah_push. With typical values of
20.25 and -0.25, housctl heats up to 20.5 C. As of 10/2007, housctl turns on the Noren fans when
heating. This makes the heating cycle much longer, as the heat is uniform throughout Utah, which takes
longer during heating, and stays warm longer when idling.

Utah temperatures >1 C outside set points generates an alarm.

Background:
From: Adam Orin [mailto:aorin@physics.ucsd.edu]
Sent: Wednesday, November 23, 2005 14:16
To: Tom Murphy
Cc: Eric L. Michelsen
Subject: Re: proposal for utah temp control algorithm

It looks to me like right now there is about a 1.5 C window in the allowed Utah temp. If you decrease the
window, the heater is going to come on a lot more often at night (the Utah RTD heats and cools rapidly).
Right now when it's cold, the heater comes on once every 15-30 mins, for about 4 mins at a time.

From: Tom Murphy
Sent: Sunday, November 06, 2005 20:58
To: Eric L. Michelsen
Subject: RE: Why is Utah so hot?

I think a few things are going on here:

1) the Norens are more effective than the external heat exchanger, so the fluid temperature is closer to the
Utah than the external.

2) the Noren airflow is not yet baffled fully so that some of the output can get right back to the intake, not
fully circulating in the box

3) the hot air collects in the top of Utah, so the Noren temperature readings are often lower than the
temperature in the top of the box.

The net effect is that the passive cooling can't handle a small delta-T.

Dealing With RTD Failures
housctl specifically anticipated failures of one or more RTDs, and the power control commands allow for
overriding automated power controls which are harmful due to invalid RTD data. See the “Handy housctl
Commands” section for more information.

On the Prospect of Smoother Utah Temperature Control
From: Tom Murphy
Sent: Saturday, July 15, 2006 12:30
To: Michelsen Eric
Cc: Swanson Erik; Battat James; Orin Adam; Murphy Tom
Subject: temperature control scheme

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 70 of 103

It's worth taking a look at the thermal data plots from last night. The sequence went like:

Run laser flow for an hour with no flashing to see warmup rate in water: conclude that heat addition does
not come from flashlamps because DI at laser (called Laser Air, AOML) shows no differential on either
side of the flashlamps.

After short pause, flash for 30 minutes to warm up, using M33 setpoint of 10

Start regular schedule of flash for 10 min, off for 5. for next 30 minutes, stay at M33=10.
Go to M33=11 for 30 min
Go to M33=10 for 30 min
Go to M33=9 for 30 min
Go to M33=8 for 30 min
These periods are well-defined by looking at the PG temps--you can see the steps clearly.

Utah temperature stabilized quite well in initial M33=10 stage. Went up in M33=11, back down (slightly)
at M33=10. Think there was longer term upward trend as large therrmal masses contribute to long time
constant. M33=9 brought down further. M33=8 drove down to 20.50 lower level and shut off cooling,
after which there is a bounce (the thing we're trying to eliminate).

So the lesson is: if we want to control temperature smoothly (without introducing spikes in the all-
important TDC), we need to keep the fans on and the M33 on, but vary the setpoint for control. Last
night's exercise was a proof of concept and also a decent caracterization of response.

It looks like initially, a higher M33 setting does the job, but we will want to increment downward as time
goes on over long runs as the thermal mass catches up. It doesn't have to be too smart. A possible rule set
is:

 If CAMAC is on, don't shut off M33 or fans if the temperature falls below lower limit: bump up
M33 setpoint in this case

 If upper limit is hit, turn on M33 and fans if not on yet, with M33=10. If already on, bump M33
temp down a notch

 If above upper limit, and reduction of M33 by a notch is not effective after some interval (10-15
minutes?) then down another notch

The last is the trickiest. We do, after all have to deal with the non-instantaneous response in some smart-
ish way. We may also want to set limits on the allowed M33 setpoints (e.g., 7 to 13) just so we don't run
away from a sensible position. If Utah RTD fails right now, it could drive the system batty if not for this
protection.

Laser Coolant Circulation
Houston is now (11/3/2005) running a version with a preliminary flow-sustaining function. It works only
in IDLE state (for reasons given below), thus:

If the dome_air temp < circulate_temp (default 2) deg C, housctl circulates the laser head loop, to avoid
freezing. Set ‘circulate_temp’ high (say, 40 deg) to make it circulate all the time.

If, when circulating, the flow < 0.3 for 2 flow measurements and the laser rack is off, housctl declares an
alarm, turns on the laser rack (and hence pump), and turns off the passive pump.

If the flow is good for 2 measurements, housctl turn on the passive pump, and turns off the laser rack.

This function includes at least 3 "firsts" for housctl:

First #1: There is a conflict over laser rack power. What to do if the operator powers on the rack during
an alarm? When the alarm clears, currently housctl will turn off the rack, likely surprising the operator.
Also, the operator can command the laser off at any time, temporarily defeating circulation, though
housctl will resume it after 2 low measurements. Fixing this requires separate "requests" for laser power,

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 71 of 103

and an internal priority scheme. During non-IDLE state, the laser is expected to be on, so the
"circulate_laser" function is disabled, again to avoid conflicts.

First #2: "Low laser-head flow" is the first persistent alarm, and it is self-clearing.

First #3: This is housctl's first use of stored temperature for internal operation. Until now, temperatures
were reported, and immediately acted on for environmental control, but not stored for future use. This
means we better keep the dome_air RTD functioning properly (or manually [and riskily] enable
"circulate_laser"), or we risk freezing.

Laser Oscillator Voltage
housctl controls the laser cavity flashlamp voltage through a digipot (see James B’s
http://www.cfa.harvard.edu/~jbattat/apollo/docs/oscillatorVoltage/ for calibration info).

The digipots have internal non-volatile RAM, and so housctl does not include their settings in the “cums”
file.

housctl has hard-coded the volts/ohm calibration to implement voltage control commands. Note that the
PR (programmable resistor aka digipot) library converts ohms to DAC steps. We derive the volts/ohm
calibration from James’ plots as follows:

23

23

3 2.42.49 = digipot resistance in
10 3 2.4

7k for our typical threshold setting
1000
1.337934

D
D

dial

R k kV V where R
R k k k

R
V

V

Evaluating V– at RD = 100 and 200 ohms, we find ΔVdial = 0.09544 V/.

Weather Data
housctl provides 3 settable parameters for recording weather data, so all TUIs can be kept up to date.

set airtemp=degc pressure=mbar humidity=percent
housctl does not use these for anything, but they are recorded in the log/data files for data analysis. Of
course, you can send these as separate 'set' commands if you want. housctl has no hard limit, but expects
these to be updated ~once/minute, or less.

From Russell: Weather as reported by the TCC:
sho weath
0 4 I AirTemp= 13.30; SecTrussTemp= 12.17
0 4 I PrimF_BFTemp= 10.54, 0.06; SecF_BFTemp= 10.00, 0.00
0 4 I Pressure= 73097.0; Humidity= 0.22; TLapse= 6.50
0 4 I WindSpeed= 6.3; WindDir= 297.0
0 4 I TimeStamp= 4638110846.58
0 4 : Cmd="sho weath"

See <http://www.apo.nmsu.edu/Telescopes/TCC/MessageKeywords.html> for the units (which are all
metric, I believe).

Automatic Fetching in Houston
Houston can be modified to fetch weather data automatically:

From: Eric L. Michelsen
Sent: Sunday, March 11, 2007 19:28
To: Fritz Stauffer (fstauffer@apo.nmsu.edu)
Cc: 'Tom Murphy'; 'jbattat@cfa.harvard.edu';
'hoyle@npl.washington.edu'

http://www.cfa.harvard.edu/~jbattat/apollo/docs/oscillatorVoltage/
http://www.apo.nmsu.edu/Telescopes/TCC/MessageKeywords.html

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 72 of 103

Subject: Automated barometric pressure
Hi, Fritz. In Apollo, we are running at the limit of accuracy on barometric pressure, and could really
benefit from having more frequent barometer readings in our data file. Is there a simple way for a C
program to fetch barometer readings whenever it wants? Ideally, some simple UDP/TCP session? What I
hope to avoid is complex authentication. Or is there any documentation or other people to which you
could direct me?

From: Fritz Stauffer
Sent: Sunday, March 11, 2007 19:49
To: Eric L. Michelsen
Cc: 'Tom Murphy'; jbattat@cfa.harvard.edu; hoyle@npl.washington.edu
Subject: Re: Automated barometric pressure

Eric, Here's a python script which does what you want. If it is run at APO, then there is no
authentication. If it run outside of APO, then I need a fixed IP to open up the firewall.

I checked, and currently the pressure is read every minute. I can decrease the interval, but, I don't know
offhand what is the time needed to make a pressure measurement. Let me know what you need.

#!/usr/bin/env python
'''
Example of a custom script to process weather server messages.

Weather server returns a string like this:

Received: 0 -3 i timeStamp=1143747047 pressure=21.372 tempout=4.67
tempin=14 humidout=29 windd=237.8 winds=13.6 gusts=27.8 gustd=254.1 temp=6
dpTemp=44.1 dewPoint=14.0 dpErr=P dusta=16363 dustb=1364 dustc=4569
dustd=142 airtemp=6.7 dewpoint=-10.0 humidity=29.1 dperr=P structtemp=4.67
sectemp=6.34 end

Clever fiddling lets one exec() the string and bring the variables into
the program name space.
'''
from socket import * # import *, but we'll avoid name conflict

sock = socket(AF_INET, SOCK_DGRAM)
messout = "all"
sock.sendto(messout, ('weather.apo.nmsu.edu', 6251))
messin, server = sock.recvfrom(512)
sock.close()

print received string
#print messin

strip off beginning.
replace = with =', and replace space with space'
for example dewPoint=14.0 becomes dewPoint='14.0'
start = messin.find('timeStamp')
stop = messin.find('end')
stuff = messin[start:stop].replace ("=","='").replace (" ","'; ")

exec - causes the pieces to become global variables
exec(stuff)

print 'pressure=%s, airtemp=%s, humidity=%s' % (pressure,airtemp,humidity)

Here’s a tutorial on sockets with Python examples: http://gnosis.cx/publish/programming/sockets2.html.
It has this note:

In Python, the socket object keeps track of the temporary socket number over which the message actually passes.
We will see later that in C you will need to use this number from a variable returned by sendto()

His knowledge of C sockets is limited, though, because this claim is not true:

http://gnosis.cx/publish/programming/sockets2.html

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 73 of 103

The [Python] client gets three arguments: server address, string to echo, and the port. Being that Python wraps
up more in its standard modules than do roughly equivalent C libraries, you can specify a named address just as
well as an IP address. In C you would need to perform a lookup yourself, perhaps first testing whether the
argument looked like a dotted quad or a domain name.

In fact, the C-library routine gethostbyname()handles both DNS names and IP addresses
transparently.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 74 of 103

8 Houston Device Library Software
The philosophy is to name the devices and functions somewhat generically, so that if we replace
equipment, we can hopefully just replace the library, while the master program uses the same high level
commands (e.g., get_time()).

‘as_util’ is a superset combined-serial/telnet library, where the caller need not know whether the interface
is hardware serial or telnet.

The libraries are mostly reentrant, with the exception of static error strings, and the laser library. This is
too hard to fix right now.

Library Name Dependencies Blocking? Comments
ser_util read() blocks Generic serial package
tcp_util read() blocks Simple way to open TCP connections.

Tightly coupled to serial
as_util tcp_util,

ser_util read() blocks General async package supporting both
TCP and serial ports, transparent to client

ts_util tcp_util read() blocks Terminal server set/clear control leads.
camac Non-blocking
gpib ?
daq Non-blocking National Instruments DAQ card
tdc camac Non-blocking
acm camac Non-blocking
gps_clock gpib ? XL-DC Model 151-602-949
optics gpib move blocks New Focus optical actuators
tr_motor ser_util read() blocks
chiller ts_util only on comm

failure Thermo NESLAB chillers

laser ser_util button pushes Continuum laser
stv_lib ser_util ? STV video camera
pwr_meter ser_util only on comm

failure laser power meter

wti_util tcp_util blocks WTI IPS IP Power Switch
pr_util as_util

(tcp_util,
ser_util)

blocks Programmable resistor

Serial Library
Provides open, close, read, write, poll, and EIA-232 lead get/set functions.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 75 of 103

TCP Library
Duplicates most functions of serial library.

Asynchronous Library
Provides all the functions of the TCP and serial libraries, transparently between hardware serial and TCP
session. If the device name starts with a “/”, as_open() assumes it is a hardware serial port; otherwise,
as_open() opens it as a TCP connection. Other as_xxx() functions work transparently (poll, flush, etc.).

Soon it will have diagnostic features such as time-stamped logging of bidirectional traffic to a file.

Terminal Server Library
Provides EIA-232 lead get/set functions. There seems to be a high rate of failure of terminal server lead
controls (~1 in 10). Clients should retry terminal server lead control commands, if they fail the first time.

Power Control: houspower.c

Terminal Server Power Not Used Anymore
In the past, houston used the terminal server EIA-232 control leads for some power outlet controls. There
seems to be a high rate of failure of terminal server power controls (~1 in 10). housctl now retries
terminal server power commands, if they fail the first time. The cause of the failure is some kind of TCP
failure or delay of several seconds. One retry is probably not enough, because there may be still a 1 in 100
chance of failure. Eric M has seen it fail both times, to make an actual failure.

Parallel Port
We have switched from the TS for critical power control (e.g., environmental control), to the parallel port.

UCSD made a power-distribution box specially for the parallel port, with a D25 connector wired for the
parallel port. The cable from the parallel port to the new power distribution box is a straight-thru DB25
cable, currently (10/2007) a 15 foot commercial cable.

Eric M prefers to use the pseudo-file approach, because it is clean and reliable, requiring neither root
privilege, nor special compilation options. See people.redhat.com/twaugh/parport/html/x623.html, or web
search for “parport0”, “lp0”, or “ppdev”. Eric M has verified that we can open ‘/dev/parport0’, and use
the PPCLAIM, PPWDATA, and PPRDATA ioctl() to take exclusive control, write to data lines, and read
back data lines. Reading back the data is critical for a restarted housctl to learn the current system state,
in this case, the power states of all parallel port devices.

The parallel port is a female D25 connector, with 8 data lines
[www.geocities.com/nozomsite/parallel.htm]:

http://people.redhat.com/twaugh/parport/html/x623.html
http://www.geocities.com/nozomsite/parallel.htm

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 76 of 103

D25 Female

Pin No (DB25) Signal name Direction Register - bit Inverted
1 nStrobe/ Out Control-0 Yes
2 Data0 In/Out Data-0 No
3 Data1 In/Out Data-1 No
4 Data2 In/Out Data-2 No
5 Data3 In/Out Data-3 No
6 Data4 In/Out Data-4 No
7 Data5 In/Out Data-5 No
8 Data6 In/Out Data-6 No
9 Data7 In/Out Data-7 No
10 nAck In Status-6 No
11 Busy/ In Status-7 Yes
12 Paper-Out In Status-5 No
13 Select In Status-4 No
14 Linefeed/ Out Control-1 Yes
15 nError In Status-3 No
16 nInitialize Out Control-2 No
17 nSelect-Printer/ Out Control-3 Yes
18-25 Ground - - -

There is also a crude, low-level way to control the port, which requires both root privileges and compiling
with optimization [as6edriver.sourceforge.net/Parallel-Port-Programming-HOWTO/accessing.html]. Eric
M prefers to avoid these restrictive methods. The optimization is required to replace the “library” call
with in-line code, because there actually is no library function. It will show up as unresolved in the linker
if compiled without optimization. Recall that housctl is not compiled with optimization, to avoid the
usual problems of optimization and multi-threading (see elsewhere in this doc). We could, however,
compile only the parallel port utility library with optimization, but not other modules. Note that ioperm()
is inherited by exec() processes, even if they are not root. fork() does not pass on the ioperm(). See
ioperm(2) in man pages.

CAMAC Library
The CAMAC hardware and driver are barely documented, so some things are vague. We found out the
hard way that a machine (or a process) can open multiple handles to the CAMAC, but it is senseless to do
so, because closing the first handle invalidates all the others. This is probably because closing the
CAMAC handle resets the hardware in some way.

We are at the mercy of the crummy CAMAC driver, which does not allow timeouts on waiting for
CAMAC interrupts. If the CAMAC does not interrupt, housctl will hang waiting for it, and there is
nothing we can do about it. A better CAMAC driver would allow housctl to set a timeout on the wait for

http://as6edriver.sourceforge.net/Parallel-Port-Programming-HOWTO/accessing.html

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 77 of 103

interrupts (say, 40 ms), which would allow housctl to keep functioning even on CAMAC failure, or other
hardware or software errors that lead to no interrupt. Perhaps a newer version of the driver has this
feature, which is usually standard on any driver.

TR Motor Library
The TR motor is a large, intelligent motor, driven by an asynchronous serial EIA-232 interface. The
motor takes cryptic commands, and provides cryptic responses.

The TR motor library uses a serial port file handle as a its handle.

Motor positions use the 0-3999 encoder, for 4000 steps/revolution.

Note that the diffuser motor is controlled from the ACM library. Resetting the CAMAC or ACM will
disable the diffuser.

ACM Library
Note that the diffuser motor is controlled from the ACM library. Resetting the CAMAC or ACM will
disable the diffuser.

TDC Library
The upper and lower thresholds do not work, and we don’t know why. The TDC is supposed to count as
“no measurement” any count less than (or <=??) the lower threshold, or greater than (>= ??) the upper
threshold. It should not set such channels in the hit mask, and should not return values from them in
sparse reads. Currently, it’s as if the thresholds aren’t enabled, and we get measurements from all
channels that had ‘start’ pulses.

Prepulses (where the APD fires before the TDC gate opens) cause the maximum time (4095 bins) on the
TDC. This results in a large number of bogus “hits”, and this even bogs down TUI. We should change
housctl (as of 3/3/2008) to filter these outliers in software, and not write them to the data file.

Bolometer (pwr_meter) Library
The bolometer is plugged into the UPS power strip directly, because it requires a manual button push after
power up, so we don’t want it to lose power.

Chiller Library
The female DB9 plugs directly into a PC (DTE = Data Terminal Equipment), with a straight through
cable. (In other words, the female DB9 is a DCE [Data Communications Equipment], no crossovers, null-
modem, etc.). Functions include:

 turn on/off

 get operating status

 get temperature, limits, parameters

 set temperature, limits, parameters

GPS Clock Library
Hardware: XL-DC Model 151-602-949, with low-phase-noise 10 MHz reference option, and GPIB

interface. Operating temperature: -40 to +70 C. Storage: -55 to +85 C.

Page 1-11 of the manual describes the pinout. It says explicitly that it is a DTE, with a male DB9, so that
pin 3 is data out of the XL-DC and pin 2 is data in. This means we need a null modem between the clock

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 78 of 103

and PC. The XL-DC is on /dev/ttyM3 (3/31/2006). It is a 7E1 9600 interface (changeable with keypad
function 04, but we don’t know if it survives power cycles, so we leave it at the default).

Closed up in the XL-DC box, we expect temperature to be 40 C or so. The clock is on the WTI IP switch,
plug 4. This way if the clock overheats, we can shut it down.

Programmable Resistor Library
The new resister boards use Analog Devices AD5262 (branded AD5262B20), with no NVRAM
(http://www.analog.com/UploadedFiles/Data_Sheets/618372110AD5260_2_0.pdf). The NVRAM is now
in the controller, but that is transparent to the serial interface. Microchip's spec sheet says the EEPROM
is rated for 100,000 cycles. These resistors are true 3-terminol potentiometers, but we use them as 2-
terminal variable resistors.

Library resistor 0 <-> RES1; Library resistor 1 <-> RES2.

NDAC steps=256
min ~60 ohms (DAC=0)
max 20 kohm (DAC=255)
James Battat designed an RDAC board, with this interface (as written by the man who wrote the
microprocessor code, with updated instructions by ELM):

Date: Wed, 11 Jan 2006 13:36:08 -0500
From: Jim MacArthur <macarthur@physics.harvard.edu>
To: James Battat <jbattat@cfa.harvard.edu>
Subject: RemoteRes protocol

The terminal settings are 9600, 8 bits, 1 stop, no parity.

The basic command format is a single alphabetic character, followed by an optional (decimal) numeric
field, followed by a delimiter. The Remoteres processor echoes all characters. Lower-case characters
control RES1, and upper-case characters control RES2 (if any).

Supported commands:
D = Decrement current RDAC value
I = Increment current RDAC value
N = No operation, enter low-power mode
R = Retrieve the contents of the non-volatile memory into the RDAC
S = Store the RDAC setting into the non-volatile memory
Q = Query the RDAC setting
W = Write the following decimal field to the RDAC

Recognized delimiters are: ,-./:;

All characters other than ‘0123456789DdIiNnRrSsQqWw,-./:;’ are ignored. When a processor receives a
delimiter, it performs the command specified by the last valid alphabetical character. Thus:

‘kldfj2 234 wer.’ is interpreted by the processor as ‘r.’

which retrieves the contents of the non-volatile memory into RDAC 1. The following commands are
identical:

W100.
W 100;
W 0100,

They all write the decimal value "100" into RDAC 2. The "W" command is the only one that requires a
following numerical field. All others just need an alpha character and a delimiter.

"Q" is the only command that returns information (before echoing the delimiter): a 4-digit numerical field
with the setting of the selected RDAC. Thus, typing: ‘Q.’ echoes as ‘Q0123.’ assuming the value of
RDAC 2 is 123.

http://www.analog.com/UploadedFiles/Data_Sheets/618372110AD5260_2_0.pdf

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 79 of 103

I've attached the assembly code: digipot1.asm

Hardware
The female DB9 plugs directly into a PC (DTE = Data Terminal Equipment), with a straight through
cable. (In other words, the female DB9 is a DCE [Data Communications Equipment], no crossovers, null-
modem, etc.).

Board dimensions are 2.4" x 3.4". A board layout is viewable at:
http://www.cfa.harvard.edu/~jbattat/apollo/docs/remoteControlOfLaserPower/boardView.PNG

From: James Battat
Sent: Wednesday, March 15, 2006 15:14
To: apollo_core@u.washington.edu
Subject: [Apollo_core] DIGIPOT board

I've done the schematic and layout for the DIGIPOT board which should work in all three desired
locations (the capacitor bank and the power units for the oscillator and amplifier). It is based around a
digital-potentiometer chip (DIGIPOT) that can take up to 15V across the pot. In our case we will have no
more than 12V across the pot.

See an image of the board and PDFs of the circuit schematic (there are 2 pages) at:
http://www.cfa.harvard.edu/~jbattat/apollo/docs/digipot/

From: James Battat [mailto:jbattat@cfa.harvard.edu]
Sent: Thursday, May 11, 2006 14:34
To: Eric L. Michelsen
Subject: pot stuff

1. The capacitor bank manual potentiometer is 100k full scale.
2. The PU manual pots are 10k each.
3. Low power mode on the capacitor bank should give ~50 mW power.

I've put the pot mapping that Tom made up at the top of:
http://www.cfa.harvard.edu/~jbattat/apollo/docs/remoteControlOfLaserPower/

From: James Battat [mailto:jbattat@cfa.harvard.edu]
Sent: Thursday, May 11, 2006 18:46
To: Eric L. Michelsen
Subject: RE: pot stuff

I did a visual check of the 10k pots in the PU610c and PU620c. They both have the same labeling.

If I turn the pot fully CCW then the reading is 1860 Volts

If I turn the pot fully CW then the reading is 620 Volts

Because the markings on the pot end at 740 Volts, the number 620 is an estimate...

DAQ Library
Our hardware is National Instruments NI 6031-E, 100 kS/s, 16-Bit, 64-Analog-Input Multifunction DAQ:
http://sine.ni.com/nips/cds/view/p/lang/en/nid/1055. The 6031 has 64 channels of single ended, 16 bit
analog inputs

From http://www.comedi.org/doc/ : Comedi is a free software project to interface digital acquisition
(DAQ) cards. It is the combination of three complementary software items: (i) a generic, device-
independent API, (ii) a collection of Linux kernel modules that implement this API for a wide range of
cards, and (iii) a Linux user space library with a developer-oriented programming interface to configure
and use the cards.

http://www.cfa.harvard.edu/~jbattat/apollo/docs/remoteControlOfLaserPower/boardView.PNG
http://www.cfa.harvard.edu/~jbattat/apollo/docs/digipot/
mailto:jbattat@cfa.harvard.edu
http://www.cfa.harvard.edu/~jbattat/apollo/docs/remoteControlOfLaserPower/
mailto:jbattat@cfa.harvard.edu
http://sine.ni.com/nips/cds/view/p/lang/en/nid/1055
http://www.comedi.org/doc/

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 80 of 103

RTD Library
As of 10/2007, RTDs have their own library, rtd_util, that calls on the DAQ library. The RTDs are

RTD Sensors Rdf Corporation 29230-T10-A-24 Important specs:

Ours are 1000 at 0 C, varying 3.85 /C.

Temperature Range –200°C to 260°C (–320°F to 500°F)

Time Constant <0.2 Seconds on metal surfaces

Self-Heating >15 mW/C mounted

Long Term Stability Better than 0.05°C (0.2Ω) per 5 years, above –50°C

Maximum Current 5 mA for limited self heating

Recommended Current 1 mA maximum

The RTDs are driven by analog interface boxes made by James Battat. The boxes have offset & gain
controls, but we calibrate the RTDs in software. Ideally, the calibration would include the wire resistance,
but doesn’t yet (as of 12/14/2006). We have two RTD boxes, each with its own calibration. As of 1/2007,
we are using Box 2.

The RTD channel map (rtd#, NI DAQ# and name) on the web at:
http://www.cfa.harvard.edu/~jbattat/apollo/docs/rtd/

From: James Battat [mailto:jbattat@cfa.harvard.edu]
Sent: Sunday, January 15, 2006 16:48
To: Eric L. Michelsen; 'Adam Orin'
Cc: Tom Murphy
Subject: rtd calibration (fwd)

Tom and I calibrated all 24 channels of the RTDs. Instead of multiplying the voltage by 10, please do the
calibration described below. In the attached file the columns are:

 Col 1 = Channel Number
 Col 2 (aka M1) = 1k resistance
 Col 3 (aka M2) = 1.2k resistance

If V is the voltage read by the DAC then to properly calculate the temperature, T (deg C), from the voltage
reading you should do the following:

 T = 51.948*(V-M1)/(M2-M1) (in deg C)
Box 1

 0 0.051 5.248
 1 0.046 5.240
 2 0.041 5.239
 3 0.047 5.242
 4 0.047 5.242
 5 0.039 5.235
 6 0.056 5.254
 7 0.034 5.230
 8 0.044 5.241
 9 0.042 5.240
10 0.034 5.230
11 0.041 5.239

12 0.007 5.205
13 -0.014 5.180
14 0.000 5.193
15 -0.042 5.148
16 -0.006 5.199
17 -0.036 5.160
18 -0.036 5.160
19 -0.049 5.142

http://www.rdfcorp.com/products/capsule/r-scap_01.shtml
http://www.cfa.harvard.edu/~jbattat/apollo/docs/rtd/
mailto:jbattat@cfa.harvard.edu

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 81 of 103

20 -0.035 5.158
21 -0.036 5.160
22 0.134 5.322
23 -0.025 5.171

Box 2
From: Tom Murphy [mailto:tmurphy@physics.ucsd.edu]
Sent: Wednesday, January 24, 2007 9:26
To: James Battat
Cc: Michelsen Eric
Subject: Re: Calibrated temperatures

The last calibration was July 13, 2006, on the box (2) currently in place. The calibration can be found on
houston in /home/apollo/util. There are two identical files there: one a copy of the other with a useful
date-stamp filename (manually accomplished).

Ch 1k 1.2k Box 2 7/13/2006

0 0.0513465 5.2402535
1 0.03959725 5.23323425
2 0.05935775 5.2473485
3 0.05905225 5.2550545
4 0.0484475 5.2390325
5 0.050889 5.24094
6 0.06218025 5.2542915
7 0.04448 5.2375065
8 0.0420385 5.2298775
9 0.06088325 5.2584115
10 0.0518805 5.23674375
11 0.05592425 5.24895075
12 0.240482 5.43839175
13 0.07286175 5.25993725
14 0.00404375 5.19913025
15 -0.0052645 5.18478675
16 0.01785325 5.19363675
17 -0.01441975 5.169604

18 -0.017319 5.18089575
19 -0.02235425 5.16334775
20 -0.02739 5.1673915
21 0.00701925 5.193103
22 -0.01586925 5.17288475
23 -0.00846875 5.1783015

Old Box 2
From: Tom Murphy
Sent: Wednesday, January 18, 2006 11:06
To: Eric Michelsen
Cc: James Battat; Adam Orin
Subject: RTD box2 calibration

0 0.039 5.235
1 0.045 5.245
2 0.046 5.231
3 0.037 5.239
4 0.043 5.230
5 0.044 5.239
6 0.045 5.231
7 0.042 5.241
8 0.046 5.240
9 0.047 5.257
10 0.045 5.239
11 0.049 2.226

12 -0.026 5.163
13 -0.011 5.179
14 -0.029 5.163
15 -0.026 5.167

mailto:tmurphy@physics.ucsd.edu

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 82 of 103

16 -0.026 5.164
17 -0.026 5.166
18 -0.035 5.157
19 -0.028 5.163
20 -0.027 5.164
21 -0.020 5.170
22 -0.028 5.162
23 -0.024 5.165

From: James Battat [mailto:jbattat@cfa.harvard.edu]
Sent: Tuesday, April 04, 2006 16:46
To: 'Adam Orin'; Eric L. Michelsen; Tom Murphy
Subject: Reordered RTDs in TDC
Adam and I re-ordered the RTDs in the TDC. Now the mapping is:

RTD_Chan Name Description
 7 TDC1 Intake
 8 TDC2 C16
 9 TDC3 C9
10 TDC4 C2
11 TDC5 Exhaust
In the TDC, C2 is near the top of the board, C9 near the middle and C16
near the bottom.

Laser Library

Safety
For safety, las_setshutter() verifies that the shutter state becomes what is asked, or returns an
error. If the state is unknown at first, las_setshutter() toggles the shutter, which should cause the
CU to send its state, and then toggles again, if needed.

Capabilities
1. activate a program,

2. stop/start

3. open/close shutter

4. arbitrary button pushes (2nd harmonic CW/CCW, etc.)

5. key-switch off/on

Future Enhancements
Maybe? Speed up operations by reading the display, and moving forward when display confirms that the
button push has been accepted, instead of always waiting for a blind timeout.

Functions
extern int las_open(// returns ts_port fd
 const char *device); // serial device name, e.g. "/dev/ttyS0"

extern int las_close(int fd); // close fd: returns close() status
extern int wait_for_display(// ret <0 on error, 0 = no change, 1 = change
 int fd, // serial port to Control Unit
 int ms); // ms to wait

extern int las_poll_display(// ret <0 on error, 0 = no change, 1 = change
 int fd); // serial port to Control Unit

extern int las_push_button(// returns write() status
 int fd, // fd of open serial port
 char ch); // character to send
extern void las_keepalive(int fd); // request to send keep alive (if enabled)

mailto:jbattat@cfa.harvard.edu

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 83 of 103

extern int las_start(int fd); // start firing laser
extern int las_stop(int fd); // Stop firing the laser

// Stop laser, activate a given program
extern int las_activate(// return <0 on error
 int fd, // laser fd
 int program); // program # to activate
extern int las_get_display(// return contents of virtual keybox display
 char *buf); // Filled with a fixed DISPLAY_SIZE bytes.
extern int las_setkeyswitch(// returns < 0 on error
 int fd, // laser fd
 int offon); // 0/1 = off/on
extern int las_setshutter(// returns < 0 on error
 int fd, // laser fd
 int offon); // 0/1 = off/on

Timing
The laser is very sensitive to button-push timing, and we’ve had to learn the timing requirements through
many months of trial and error. The current (6/2/2006) delays are

Query response We use a 50 ms poll cycle; must happen within <100 ms. 100 ms poll cycle missed
about 1 in 10 startups

button-push 800 ms

activate 800 + 800 ms

reset 800 + 2000 ms

key-cycle We recommend applications leave the key-switch off for at least 3 s, which works well
in housctl. We have not investigated shorter cycles.

Picomotor Library
The picomotors drive the Rx steering mirror. They are very slow, and can take several seconds to
complete an operation. housctl returns the “>” response code for picomotor moves, which tells TUI that
the command is queued, and will be completed in the future. It takes too long to hog the GPIB semaphore
for these operations, so Picomotor moves are threaded out, and the thread releases the semaphore after
starting the operation. The thread then waits for a computed amount of time sufficient for the picomotors
to complete. Next, it enters a poll loop (with sleeps in each iteration), to insure the picomotor has indeed
completed the operation. Then the thread terminates. The picomotor library therefore provides functions
to initiate, and to poll for completion of, motor moves.

The library also provides routines for a complete move in one call, for applications which don’t care about
the long-time to complete.

STV (Video Camera) Library
From Adam Orin’s original ‘stv-library-readme.txt’:
**
STV LIBRARY DOCUMENTATION ADAM ORIN FALL 2005
**
RELEVANT FILES
**
stv_lib.h Header file for stv_lib.c
stv_lib.c Library with functions to interact with the STV
stvadam.c Human interface to STV that uses stv_lib

Via 'apollo.h', uses functions defined in ser_util.c to communicate via
serial port.

**

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 84 of 103

STV_LIB
**

Look at the header file for function definitions and usage. The PUBLIC
functions are intended to be used by outside applications. The PRIVATE
functions are used only within the library itself.

To use the functions, you open the port, call whichever functions you
want to call, then close the port.

Look at stvadam.c to see example uses of this library.

Public functions:

Open the port to the STV
stv_open() ;

Close the port to the STV
stv_close(int fd) ;

Simulate a keypress on the STV
stv_presskey(int fd, uint16 key) ;

Get back an acknowledge packet from the STV
stv_ack(int fd) ;

Get the text display of the STV
stv_getscreen(int fd, uint8 disp[]) ;

Get info on which image buffers have data
stv_get_buffer_info(int fd, uint16 fullbuffers[]) ;

Download an image from specified buffer to a file
stv_download_image(int fd, uint16 flashbuffer, char imgname[]) ;

Download the image currently displayed on the STV
stv_getdispimg(int fd, char imgname[]) ;

Download all images in the STV
stv_getallimg(int fd, char imgname[]) ;

Quickly put the STV into focus mode
stv_quickvid(int fd, int desired_sens) ;

**
STVADAM
**
This is a program that lets you remotely operate the STV.

**
STV COMMUNICATION INFO -- INFORMATION DUPLICATED IN STV_LIB.H
**
The stuff written here is what I've learned in conjunction with the STV
Command Protocol documentation. If I were you, I would read through that
before looking at this mess.

=-=
PACKET DATA FORMAT
=-=

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 85 of 103

Here is how the data format works
Byte 1 = 0xa5
Byte 2 = Command
Byte 3 = Number of data bytes (least sig byte)
Byte 4 = Number of data bytes (most sig byte)
Byte 5 = Header checksum (least sig byte)
Byte 6 = Header checksum (most sig byte)
Byte 7 = Data byte 1
Byte 8 = Bata byte 2
...
Byte 6+N = Data byte N
Byte 6+N+1 = Data checksum (least sig byte)
Byte 6+N+2 = Data checksum (most sig byte)

If a command takes in no data, it is 6 bytes long. If it takes data it
is 8 bytes plus the number of data bytes long.

To calculate header checksum: (byte1 + byte2 + byte3 + byte4) % 65536
-Add the 4 header bytes, the result is a 16 bit unsigned int
-Cut the 16 bit checksum into two 8 bit chunks
-Byte 5 = least sig half of the checksum
-Byte 6 = most sig half of the checksum

To calc data checksum: Same algorithm as header checksum, except
performed on the data bytes.

=-=

COMMANDS, AND WHAT TO EXPECT FROM THE STV IN RETURN
=-=

!!Note = Command 0x10 Request Acknowledge doesn't work - don't know how
much/what data to send

=-=-=-=-=-=-
SC_PRESS = press button. Send in 2 bytes of data that are the button to
push. The STV will return an ACK packet (6 bytes)

=-=-=-=-=-=-
SC_ECHO = echo display. Send 2 bytes of data, data[0] and data[1], int
hat order. If data={1,0}, the STV will immediately return the display,
and will return the display every time a button is pressed. The header
returned is (0xa5 0x9 0x30 0x0 0xde 0x0), where 0x30 = dec48, the number
of bytes in the data returned. If data={0,0}, the STV will stop sending
the display and returns seemingly nothing (the documentation says it
returns an ACK, but it hasn't for me)

NOTE!! Although the STV seems to not reply when you send it data={0,0},
I've noticed display data in the computer's input buffer before. There
are inflush calls to prevent any screen data from being a problem, but I
need to get to the bottom of this.

NOTE!! Sometimes, maybe about 30 percent of the time, the STV does reply
to data={0,0} by sending the entire screen. Except, one of the
characters int he screen that would have been a whitespace (HEX 20) is
replaces by HEX A4, which represents nothing in ASCII, and the computer
displays as a whitespace.

=-=-=-=-=-=-

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 86 of 103

SC_BUFSTAT = request flash buffer status. STV responds with typical
header junk, plus four data bytes that tell you which buffers have image
data. That would be 12 bytes total that the STV will send you in
response.

=-=
DOWNLOADING IMAGES FROM STV
=-=
To download an image stored in one of the STV's 31 flash buffers, it
appears that you have to download it row by row.

NOTE!! You must request image info before STV will respond to a request
for image data. At least, it seems that way. So, to download an image in
buffer X, you send a request image info command. The STV sends

NOTE!! It appears that the STV will not always let you download an image
regardless of what state it's in. For example, once you download an
image, the display often changes to "DOWNLOAD ALL". If you request
image info for a second image, you get nothing back. But simply
pressing the FILEOPS key, for example, seems to put the STV in a state
that will allow it to send another image.

SC_REQIMGINFO = request image info. You tell the STV which buffer you
are interested in, and the STV send you 44 data bytes of info
(apparently) plus the usual 8 bytes of header crap. That's 52 bytes
total.

SC_REQIMG = request image data. You ask the STV for a specific row of
image data in a specific buffer, and the STV gives it to you, along with
the normal 8 bytes of header crap. Looks like you have to go one row at
a time, from row 0 to 199 (for a 320*200 image). I just set left=0; I
think that's if you don't what the entire row. And, if you get the whole
row of a 320*200 image, length = 320, not 319, dumass.

=-=
FOCUS MODE SENSITIVITY SETTINGS
=-=
01 = 1 ms exposure, 1x gain
02 = 1 ms, 1x ?? Difference between 1 and 2?
03 = 3 ms, 1x
04 = 10 ms, 1x
05 = 20 ms, 1x
06 = 25 ms, 1x !! This is the setting we often use
when ranging
07 = 50 ms, 1x
08 = .10 s, 1x
09 = .25 s, 1x
10 = .25 s, 2x
11 = .25 s, 4x
12 = .25 s, 8x
13 = .25 s, 16x
14 = .50 s, 16x
15 = 1.0 s, 16x
16 = 2.5 s, 16x

From: Adam Orin
Sent: Tuesday, April 24, 2007 19:24

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 87 of 103

To: Eric L. Michelsen
I remember an occasional weird character in the display. The STV has some very strange looking
characters that it sometimes displays. I cannot remember what they are, but if you play with the physical
STV you will see some little characters on the display that are pretty unusual characters. I've never
seen them before on a PC. So they don't display properly using the STV library because I think they are
not standard characters. My memory may be muddled but I think this is the source of the nonsensical
characters using the stv library.

The STV puts control characters in the display, which messes up the housctl/ICC/hub/TUI stream. I
guess we need housctl to escape them, perhaps like C (\x..) or like URLs (%XX).

WTI Library
Turn outlets on/off. To read status, and confirm successful control, this library has to parse the ASCII-
graphics display output from the WTI bar.

Apollo/Houston has 3 different controls for AC outlets: DAQ digital outputs 0-7, Terminal Server ports 9-
16, and the WTI power bar outlets (1-4). The DAQ and TermServ are controlled with library functions in
the DAQ and TermServ libraries.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 88 of 103

9 Various Issues Desiring Resolution

Lost Data From Temperature Taking
From: James Battat
Sent: Wednesday, September 27, 2006 7:21
To: Tom Murphy
Cc: Eric L. Michelsen
Subject: missed lunar FRC errors in .run files

I looked at the 4 run files from August 12th, a night where you got lunar returns, and see that there are
missed FRC errors that appear as rem lines in the .run file. e.g.:

 rem Lunar 196 missed FRC 97253604
It appears as if these errors are often brought about when a tmp0 record is taken, presumably because it
takes a long time to read 24 voltages off of the ADC. In each run file there are 51 tmp0 records and 35-41
of them trigger at least one lunar FRC errors.

Also there are often many more errors than tmp0-triggered-errors, however these numbers can be
misleading because it is often the case that there are 45 or so consecutive frc error statements (is this how
long it takes for the q to clear?). For example, in the first file, there are 151 errors. However, two of these
errors came in groups 48 and 47 errors long. So that there were really:

 151-48-47+2 = 58 *triggers* of FRC errors. Of these, 38, or ~2/3 were due
to tmp0 data collection.

In these runs, we lost between 1.5% and 6.5% of the 10,000 shots because of these errors. Not terrible,
but not negligible either.

run filename #errors #errsNextTo_tmp0 #tmp0recs dt_run
060812-114722.run 151 38 51 8m25sec
060812-115759.run 548 35 51 8m30sec
060812-120912.run 518 36 51 8m27sec
060812-121809.run 653 41 51 8m29sec

by the way, to get these stats i did:
to get the total number of errors
 > grep "rem Lunar" file.run | wc
to get the number of errors triggered by a tmp0 read
 > grep -B 1 -A 1 "rem Lunar" file.run | grep tmp0 | wc

where "-B 1" gives one line of context before the match and "-A 1" gives one line after the match

Perhaps the issue is that internal housctl processes can create the lun frc problems

Also, in the case that a lun FRC error did happen, I thought that there was a software workaround to
ensure that there would not be a whole string of successive errors (until the queue cleared).

?? I don’t know off the top of my head. -ELM

ICC Connection Issues
3/7/2007: I (Eric M) made many changes to improve ICC session robustness since these messages, but I
can’t tell if I fixed these issues specifically.

From: Tom Murphy [mailto:tmurphy@physics.ucsd.edu]
Sent: Saturday, September 30, 2006 22:59
To: Eric L. Michelsen
Cc: Hoyle C.D.
Subject: RE: ICC disconnect

mailto:tmurphy@physics.ucsd.edu

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 89 of 103

But for instance, the "ConnDev" button on the TUI window requests that the ICC establish a connection to
housctl. Pressing this button results in an entry in the log file like: accepted ICC connection #1.

Hitting the disconnect tears down the ICC-housctl connection, and you see that entered in the log file as
well.

The confusing thing is: simpy exiting TUI and restarting TUI then issuing a ConnDev accepts ICC
connection #1 again. So its as if housctl knows its the same connection or that the old one went away,
even though it is not commanded and there is no entry for disconnnect in the log.

From Eric L. Michelsen:
> TUI connects to ICC, not housctl directly. I thought ICC kept the link
> to housctl up all the time, even after TUI disconnects. In that case,
> you won't see an ICC disconnect in the log, but you shouldn't see an ICC
> connect in the log either. Are you seeing an explicit connect in the
> log, or just that the ICC session is still #1? The latter is what I
> expect.
>
> However, if ICC disconnects from its side, it can kill housctl. This is
> the bad behavior buried in the C Run Time Library that we have to hunt
> down. I do not know exactly which RTL routine commits suicide, or how
> to stop it. Since you're not seeing housctl killed, that further
> suggests that ICC is keeping the link to housctl up.
>
>> -----Original Message-----
>> From: Tom Murphy [mailto:tmurphy@physics.ucsd.edu]
>> Sent: Saturday, September 30, 2006 14:39
>> To: Michelsen Eric
>> Cc: Hoyle C.D.; Battat James; Russet McMillan ; Swanson Erik
>> Subject: ICC disconnect
>>

>> I've been careful in the past to issue a "disconnect" from the TUI control window before exiting TUI.
My fear was that we would accumulate unterminated ICC sessions if we didn't take this step. C.D.
reported that he didn't usually do this, and had no problem. I checked into it this morning, and found that
I could indeed ignore this step, and each new session (after restarting TUI) was accepted by housctl as
session #1. Yet I never saw a message in the log indicating that session #1 got disconnected. So I like the
way it works, but wonder if this is expected behavior. If housctl never acknowledges disconnect of session
#1, how is it happy with a second session #1? Maybe I missed the disconnect message in the scrolling log,
but I don't think so...

mailto:tmurphy@physics.ucsd.edu

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 90 of 103

10 Support Software

HTML Environmental Monitor
To start the HTML environmental monitor: On cocoa:

cd /home/environment
python htmlmonitor.py &

Why doesn’t Linux kill this when the user logs out ??

From: James Battat
Sent: Tuesday, January 23, 2007 17:09
To: Tom Murphy
Cc: Eric L. Michelsen; 'C.D. Hoyle'
Subject: Re: Calibrated temperatures

htmlmonitor is designed to look for tmpN records where N is any number 0-9, so it should be able to find
the temperature records.

From: James Battat
Sent: Tuesday, November 22, 2005 4:44
To: Tom Murphy; 'Adam Orin'; Eric L. Michelsen
Subject: Web status monitor

Based on the phone con yesterday, I made a *very* preliminary structure for a web-based version of my
system monitor. I would like to keep things simple (to minimize transfer times) while still providing
useful and complete information to the user.

In this first pass, only the RTD Temperatures and the Power Status of 24 devices are included. The values
are color coded in a completely arbitrary way now (if T > 19 then box is red), just to show that the feature
exists. Thus hi/low alarms on any particular value can be set to alert the eye to values that are out of
range. The power status is red if off, green if on and white if unknown (no status change during this
logfile).

Because I am running this on my harvard account, you cannot see it update as it would on houston, but
rest assured that I have tested the update feature and it does work.

 http://www.cfa.harvard.edu/~jbattat/apollo/sysmon/

Environmental Plot Generation
From: Adam Orin
Sent: Tuesday, April 18, 2006 14:50
To: James Battat; Tom Murphy; Eric Michelsen
Subject: Re: environment plot suggestion

I have a script running that will archive the environment plots once a day and makes a barebones html file
to view them online. You can see them at

http://cocoa.apo.nmsu.edu/environment/archive/

STV Images
From: James Battat
Sent: Thursday, January 26, 2006 16:25
To: 'Adam Orin'; Eric L. Michelsen; Tom Murphy
Subject: FITS images from the STV

We now also have the capability of downloading images from the STV camera in FITS format. I've
attached an image that we downloaded today, in FITS format, from the stv (the image has been sitting in
the STV buffer for a while now, either from the Jan or the Dec trip).

http://www.cfa.harvard.edu/~jbattat/apollo/sysmon/
http://cocoa.apo.nmsu.edu/environment/archive/

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 91 of 103

As yet there is no useful information in the FITS header. Adam said that he can parse the binary info that
the STV provides and then this info can be directly incorporated into the fits header. If we're really
clever, we can even grab info from the TCC (RA/DEC of the current pointing position, etc) and stuff that
in as well (if that is deemed useful).

It looks like, for each image, the STV will provide the info that is listed in the IMAGE_INFO structure.
This includes:

 image size (Height, width)
 image exposure time
 Number of added exposures
 Analog Gain
 Digital Gain
 Date/time of image
 Display background (?)
 Display range
 Pedestal

and some fixed values:
 Focal Length of telescope
 aperture diameter (scope or camera?)
 Site ID

I would like to overlay on all images the boundary (or at least vertices) of the APD array, so in the Feb trip
we can get the pixel values of the APD vertices on the STV display.

Lunar Prediction
We need to predict the moon’s range to within about +/30 ns or so, round trip, to catch the photon signal
in our gate window. UT1-UTC drift can accumulate 3-4 ns/day of prediction error. So now we
extrapolate the UT1-UTC drift from prior days in the EOPC file.

Determining Shot Time for Prediction From FRC & TWS
From: Tom Murphy
Sent: Sunday, December 03, 2006 12:51
To: Eric L. Michelsen
Subject: RE: losing time
So if we find implementation of this scheme in housctl is feasible, we could remove our sensitivity to GPS
interruptions as far as the prediction goes. We still have to establish an early event where the GPS clock
is right: we can do this by comparing the gpstrig record to the next TWS, which should match the
fractional seconds field.

I can also implement a data reduction scheme to do the same thing. In this case, both prediction and
even/odd identification are affected.

I like that we can use a built-in sanity check to know whether there has been any slippage. I check for this
in the reduction, and have never seen slippage between the FRC and TWS. A good sign.

From Eric L. Michelsen
I believe we can directly calculate the time delta from the TWS and FRC values. Assume, for now, that
both counters start at 0, and count the same ticks, with no slips or errors.

When the FRC first wraps to 0, the TWS will show 2^28 mod 5e7 = 18,435,456. Each wrap increments
the TWS by the same 18,435,456. Eventually, the TWS will again wrap to 0 at the same time as FRC,
and we return to our initial state. We find this "maxwrap" period by removing the greatest common factor
from 5e7 and 18,435,456, which is 128, leaving 5e7/128 = 390,625. (For future reference, note that
18,435,456/128 = 144,027.)

Since each FRC wrap is about 5 sec, this allows for 5*390,625 = 1,953,125 s ~= 542 hours. So long as
our outage during a run is less than 542 hours, we can unambiguously know the time delta from two

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 92 of 103

TWS/FRC pairs. For any single TWS/FRC pair, we can compute the "wrapcount" by finding what TWS
was when FRC was 0: just subtract (TWS - FRC)/128. This parameter will determine the number of FRC
wraps since 0/0. The wrap parameter is
 wp =(TWS - FRC)/128 mod 390,625.
We don't want wp, which counts in a weird order; we want wc, the actual count of FRC wraps. But wp
and wc are related by
 wp = wc*144,027 mod 390,625
Which means wc = wp*(144,027^-1) mod 390,625
where 144,027^-1 = the multiplicative inverse mod 390,625 =
280,088,
i.e. (144,027*280,088) mod 390,625 = 1
We now compute the final delta T from (TWS1, FRC1) and (TWS2, FRC2) pairs:
wc1 = wc(TWS1, FRC1) // as above
wc2 = wc(TWS2, FRC2)
dt = FRC2 - FRC1 + (wc2 - wc1)*2^28 // in ticks

We have to be careful with computing wc, because the formula exceeds 32-bit integers, but I use 64-bit
integers in lots of places in housctl already.

There is a simple way to deal with the likely situation that both counters do not start at 0: we can find the
offset from zero from the initial TWS/FRC pair, and use this offset for the final pair as well. In fact, we
can verify that the two offsets agree. If they don't, there must have been a slip between the two clocks.
Then we won't know which one to believe.

From: Tom Murphy
Sent: Friday, December 01, 2006 13:59
To: Eric Michelsen
Subject: losing time
I looked briefly at the problem of deducing elapsed time from the TWS/FRC comparison. If you have two
events, each with an FRC and a TWS value, and you take the difference between the two (adding one
period if negative), then you can define the difference (my lower case d is a Delta):

dFRC = dt % T1
dTWS = 2*(dt % T2)
where dt is tha actual time (in 20 ns clicks) elapsed between the events, T1 is 2^28, and T2 is 5e7. TWS,
remember, is represented with a factor of 2 for easy readability.

It is hard to invert the % function, so this is a pesky problem.

You can, in principle, construct an array of N values:
 [0,1,2,3,4,5,...]
and for each value make a dt estimate: dt_est = dFRC + N*T1. Then compare to the dTWS by computing
2*(dt_est % T2) - dTWS. There should be one zero somewhere in the array, which tells you how many
wraps the FRC had.

I've tried this and it works well, but it's a nuisance that you can't go straight to a closed solution without
trying various N values.

Polynomial Fitting
We run the polynomial generator program must each day, because the earth’s chaotic wobble is measured
and published every day. We could probably tolerate a week or two of missing data and be ok, but this is
not tested. The program downloads EOP (earth orientation parameters) measurements from a web site,
and computes polynomial fits the give the RTT (round trip time) to the moon, given the laser shot time.
There is something majorly wrong with this program, because it cannot fit over more than a few hours,

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 93 of 103

and the fitting routines are not stable, and sometimes fail to converge. The lunar path is simple enough
that we should not have these problems.

It produces a file of numbers in this format (text added on the right):
2 reflector: 0=Apollo 11, 2=14, 3=15, 4=Lunakod?
205.333333333488554 t0: start time of fit: days since start of year
205.486111111007631 end time of fit: days since start of year
8.08117e-05 RMS error of fit, ns
0.0003104184 max error of fit, ns
220.000000 span of fit, minutes
5 minutes between fit points
2.381101499786292 midpoint RTT, sec
7.917010 range rate, ns/gate (at 20 shots/sec), i.e. ns/50 ms
9 number of coefficients = order + 1
2.383526638827937e+00 a0
-7.811391819226714e-02 a1
5.761043343230440e-01 a2
6.732126750138415e-01 a3
-1.795798333981848e+00 a4
-1.455305024451972e+00 a5
2.393287589516413e+00 a6
2.304098432739442e+00 a7
-3.370381157585106e+00 a8

The order of the polynomial is variable; this example shows 8th order.

The polynomial parameter is t = curtime - t0, in days (t << 1). Then
8 7 6 5 4 3 2

8 7 6 5 4 3 2 1 0RTT a t a t a t a t a t a t a t a t a

It is well established that numerical accuracy is improved by evaluating the polynomial in factored form:

 8 7 6 5 4 3 2 1 0RTT a t a t a t a t a t a t a t a t a

Eric M. would like to change the file format to be more self-documenting.

From: Tom Murphy
Sent: Saturday, May 06, 2006 13:24
To: Michelsen Eric
Subject: mkpoly zap vs houston vs cocoa

One more piece to the puzzle: the prediction numbers are identical between houston and cocoa. And zap
to houston was identical. My laptop to zap had occasional last-digit variance. My laptop to grlab has 2-3
digit disagreement. So grlab seems to still be unusual.

From: Tom Murphy
Sent: Friday, May 05, 2006 13:34
To: apollo_core@u.washington.edu
Cc: owen@astro.washington.edu; mcmillan@apo.nmsu.edu
Subject: [Apollo_core] (no subject)

I have prepared a few software packages for your use/amusement. I attach here a tar file that will unpack
to a lunar/ directory that contains some useful Python code. Among these is a version of the old moon.c
program that computes position and tracking information for the moon. Now I have it in 100% Python
form. The Python programs in this package are:

moon_pos.py: computes lunar position, tracking, and other useful info

moonplan.py: computes start and stop times and other relevant stuff for an observing session

longplan.py: computes observing constraints for a whole quarter, to aid planning

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 94 of 103

lunar_pointer.py: graphical display of lunar illumination, orientation, etc. This is the original code behind
the APOLLO TUI pointer tool.

The last three programs rely on the moon_pos.py program. The C version is 10 times faster, and
interchangeable--but less portable. So what I provide here is at least fully self-contained. I attach the
README file here dealing with the care and feeding of these programs (also unpacks in the tar).

Polynomial Prediction Software Now On houston
From Tom: I have put the polynomial-generating prediction software on houston, so that the observers
from now on can expect to use houston to generate polynomials for the night. It's in
/home/apollo/ephem/predict/. See the README file in that directory (also attached here: second
"README") for detailed instructions on how to create the polynomials.

Latitude and Longitude
From: Tom Murphy
Sent: Sunday, August 06, 2006 4:39
To: ~ Buttery ~
Cc: tmurphy@physics.ucsd.edu; emichels@physics.ucsd.edu

MCD is the mcdonald obs. early on, we made comparisons to their predictions. But we don't need this
any more.

The old lat value was before we knew we needed geocentric rather than geodetic latitude. At this point we
expect only small variations around the top two in the lines below.

From Aaron Buttery: Hey Tom, I was going through the ephem.h file and I can across these values:

#define LAT 32.6054942 // geocentric latitude
#define LON 254.1795718 // deduced from Oct 2005 runs

//#define LAT 32.779561 // matched to 7/24 preds
//#define LON 254.163194 // matched to 7/24 preds

#define WGSLAT 32.780361 // WGS84 geodetic latitude

#define LAT_MCD 30.51171089
#define LON_MCD 255.9848038

Rolling Polynomials
It is much simpler, more reliable, more accurate, and faster to have housctl generate rolling 4th order
polynomials directly from the 5-minute-spaced ephemeris points, on the fly with each run. Preliminary
results:

Recalling that the odd order terms didn't gain much in Aaron's work, I threw in a test for an explicit,
closed-form rolling 4th order fit, with dramatically better results than 3rd order: sub-ps over an hour
(compared to existing variable-order polynomial). Computational burden is only slightly higher than 3rd
order version. In fact, we can compute the new set of 4th order coefficients, *and* evaluate the 4th order
polynomial, in about the same computrons as evaluating a single 12th order polynomial once.

Also, the only reason the 4th order result was limited to 1 hour was artificial. In fact, I only used 1/2 of a
fit interval, so it's almost certainly good for 2 hours. And even that is an artificial limit. I don't know,
with this quick test, how much longer it would go. I'll look into some other fit files, but it didn't look to
me like the ephemeris files for the longer (earlier in the night) stretches were saved.

There's nothing magic about 5 min intervals. We could easily do, say, 3 min or others at insignificant
cost.

From: Tom Murphy

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 95 of 103

Sent: Thursday, December 07, 2006 16:04
Subject: RE: 5 point, 4th order interpolations
I sure like this number. It means we're not giving up our current (Evan's) level of precision--which we
would do adopting Aaron's. As we get more into plotting residuals against our prediction, the more I'm
interested in a polynomial that does not dominate the error. So ps-level is great. We should try your
routine on a number of nights/segments to get a good feeling for it's representative precision.

From Eric M: I don't think residuals against our prediction are the key figure. It's residuals against our fit
for the normal point that really matter. I think we need to make sure that our prediction is never a
significant factor in any of our data reduction.

I still favor a fit to our data without reference to our prediction at all. I have code for that, already, from
my simulator analysis. I will start to update it for real run files, which I need for first photon bias work.

Eric M’s older results for 3rd order interpolations show rapid degradation with given point spacing, as
expected:

5 min interval 0.13 ns max difference from current polynomial fit

10 min 2 ns

15 min 10 ns

This is all for a single few-hour polynomial file. Actual results over more diversity would vary some, but
I'll bet not very much.

Aaron Buttery’s Work On One Polynomial Per Night
From: AAron Buttery
Sent: Tuesday, October 03, 2006 14:27
To: tmurphy@physics.ucsd.edu; emichels@physics.ucsd.edu
Subject:

...I went in at the end of last week to try and leave a readme file, but my computer froze and I lost it all.
This is pretty much what it said.

Aaron's last problems:

1) The main one was the discrepancy between the max errors when you would start at different times of
the day. i.e. h=0 m=0 s=0 vs 16 20 0.

2) The format of the output files is not quite what I wanted. It currently has the year as a four digit
number instead of two.

3) There is still a small glitch when some reflectors rise or set before all the other ones. For some reason
the times get all screwed up. Tf<Ti which makes no sense. You can find an example of this happening
on Feb 7 2006.

I thought there were four in my original message, but I can't seem to remember the last one.

Prediction Code Design
From Aaron’s README file:

From the prediction directory: /home/apollo/predict/, make a directory for this day, and cd into it:
prompt$ mkdir 060505

(YYMMDD format to match our data storage convention)
prompt$ cd 060505

get the earth orientation parameters:
prompt$../bin/autoget

Lately (As of ~6/1/06) we've been getting the warning:

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 96 of 103

"WARNING! 267 bare linefeeds received in ASCII mode
File may not have transferred correctly."

but everything seems to still work fine.
 APR 25 53850 0.105999 0.362269 0.2442683 0.0018148 -0.05299 -0.00574
 APR 26 53851 0.106224 0.361873 0.2424549 0.0018254 -0.05333 -0.00543
 APR 27 53852 0.106531 0.361691 0.2406734 0.0017161 -0.05373 -0.00530
 APR 28 53853 0.107324 0.361485 0.2390578 0.0014789 -0.05413 -0.00536
 APR 29 53854 0.108535 0.361198 0.2377216 0.0011565 -0.05445 -0.00554
 APR 30 53855 0.109473 0.360750 0.2367293 0.0008635 -0.05457 -0.00580
 MAY 1 53856 0.109797 0.360148 0.2359569 0.0006926 -0.05438 -0.00612
 MAY 2 53857 0.109831 0.359559 0.2352450 0.0006901 -0.05398 -0.00637
 MAY 3 53858 0.109956 0.358914 0.2344719 0.0008828 -0.05363 -0.00641
 MAY 4 53859 0.109751 0.358103 0.2335858 0.0008140 -0.05348 -0.00627

Verify that end date is close to today's date (may lag a few days).

Generate polynomials:
prompt$../bin/mkpoly [args]

There are four options for [args]:
blank: uses computer time (now) as start time, uses 20.0 deg elevation
limit
one arg: uses computer time as start time, uses single arg as elev. limit
6 args: MM DD YYYY HH MM SS.SS as start time, 20.0 elevation limit
7 args: MM DD YYYY HH MM SS.SS EL.EL as start and elevation limit

Time is in UTC. Examples:
prompt$../bin/mkpoly
prompt$../bin/mkpoly 18.5
prompt$../bin/mkpoly 5 5 2006 20 30 0.0
prompt$../bin/mkpoly 5 5 2006 20 30 0.0 18.5

The third example is the most commonly used.

The program runs 160 predictions at 5 minute intervals, spitting out the following sort of block for each
time:

(69) 5/ 6/2006 2:10: 0 Julian date = 2453861.5910322224
Center 2.652400030034 73.269903
0 2.641631319332 73.307542
2 2.641510678121 73.251683
3 2.642388993257 73.393747
4 2.643621854104 73.412526

This is the 69th point in the sequence. The time (UTC) is May 6, 2006, 2:10:00.00, with the
corresponding Julian date (this in TDT). The next five lines refer to the center of mass of the moon, and
the four reflectors [0 = A11, 2 = A14, 3 = A15, 4 = L2]. Following each reflector identifier is the round
trip travel time and elevation in seconds and degrees, respectively.

At the end, one sees:
(130) 5/ 6/2006 7:15: 0 Julian date = 2453861.8028377779
Center 2.681085111968 18.755889
0 2.670374390341 18.707072
2 2.670135250381 18.807497
3 2.671015710180 18.842463
4 2.672324978496 18.773427
(131) 5/ 6/2006 7:20: 0 Julian date = 2453861.8063099999
Moon Below 18.0 degrees elevation
Moon Below 18.0 degrees elevation
Moon Below 18.0 degrees elevation
Moon Below 18.0 degrees elevation
Moon Below 18.0 degrees elevation
Ceasing data prediction because the moon has set
128
Congratulations, Fits created successfully

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 97 of 103

On the 131st point, the moon was below 20 degrees for all five targets, so the process halts. 128 points
went into the fit (why not 130? the first two points were also below the elevation limit). The fit was
successful.

You can check details of the fit by looking at the generated files:

Date: has time stamps (UTC) for the data points

elevation: has elevations for the center of the moon at each time

fit*: the round trip travel times for each refl at each time

np*: fake normal point sets for the prediction

Reflector#(Date): polynomial information. Format is:
mkpoly v. Sep 6 2006
apollo ?
reflector = ?
Year = 2006
ti = 250.097581018693745 Start time. Julian day.
t0 = 250.279872685360412 Time at mid span.
tf = 250.458692129701376 End time.
timespan_min = 525
fitinterval_min = 5
midspan = 2.346122500871582
rangerate = -6.538189
rmserr_ns = 0.001226
maxerr_ns = 0.003964
nData = 105
ncoeff = 11
a0 = 2.346122500871582201637e+00
a1 = -1.129799035253190379169e-02
a2 = 6.619814355871829446840e-01
a3 = -5.702782078463447752955e-03
a4 = -2.102100464587396298852e+00
a5 = -1.000691990949274746883e-02
a6 = 3.057039733951018886269e+00
a7 = 3.234121354439520977864e-02
a8 = -3.418348059065643128503e+00
a9 = -4.406308478007229962470e-02
a10 = 4.127021706229873293428e+00
Pressure = 725.000000
TEMP_C = 0.000000
HUMIDITY = 33.000000
P = 6374.692130
LAT = 32.605494
LON = 254.179572
LUNRHOZERO = 1735.472177
LUNLATZERO = 0.693506
LUNLONZERO = 23.455288
eopcyear = 2006
eopcmonth = 9
eopcday = 5
eopcmjd = 53983.000000
xpoledph = 0.077150
ypoledph = 0.254169
ut = 0.169730
lod = 0.000467
dpsi = -0.065920
deps = -0.005520

Place the reflector# files into /home/apollo/daily/. This step MUST BE TAKEN in order for housctl to
actually use these polynomials.

Problems:

If you get an error at the end like:

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 98 of 103

147
Cannot acheive desired accuracy over interval

there are a few things you can try to get it to work:

1. change the elevation limit: higher usually eases the burden

2. change the start time: if not by 5 minute intervals, try even one minute intervals. There is an
instability that can sometimes be remedied by a slight change in the start time, without changing
the elevation limit.

Evan M’s Notes from predict.old directory

Section 1: Creating the binary files needed to run mkpoly.c
Begin by downloading files from ftp://ssd.jpl.nasa.gov/pub/eph/export. You will need ascp1975.403,
ascp2000.403, and ascp2025.403 and header.403. These files still exist on GRlab in
emillion/ephem/jpl/de405. You will need to change all the exponents from D's to E's to correctly make
the binary files since D is a fortran convention and E is a C covention in header.403 and ascp2000.403.
You will also need to run asc2eph.c to create the appropriate binary files. To do this you need to attach
the name of each binary file to the end of header.403 that is included. You only really need ascp2000.403
since the experiment will be running between 2000 and 2025. Look at the start and end times of
ascp2000.403 and you will find the times you should run asc2eph.c between. With the binary file, you
must put its file name in the appropriate spot in moon.c. It is on line 214. I am taking you through this
since each computer likes to do binary files a different way. If you wish to run ascp1975.403 and
ascp2025.403 you must change the name of the file to either one at the bottom of header.403 before
running asc2eph.c and should also change the name of the binary file. I've left it ready for you to use for
ascp2000.403. Compile and run. It will ask for two Julian Dates. These are them for ascp2000.403 only,
Begin: 2451536.5, End: 2460688.5. To merge each binary file you must run merge.c. On lines 168, 169,
and 170 are where each file is read and combined with third file being the resultant file at the end.
Remember to recompile merge.c each time with new file names. When you have a big binary file you can
place it in moon.c for use. Search using vi /FILE *INITIAL and place the binary file in the char
*Name="xxxxxx" line several lines below.

Section 2: mkpoly.c
Here is a list of all the files that mkpoly.c requires to run properly with what they do.

Binary file - Search for /FILE *INITIAL and put it in the char *Name="Binary File"; line.

eopc04.05 - opened in eopc.c and is the earth orientation parameter file.

Configure - part of the make support

Makefile - Allows you to type make mkpoly and install the program

dist.c - takes the vectorial distance at the end, calls for the atmospheric drag, and calculates the time it
takes for a photon to travel a leg of the journey.
eopc.c - opens the earth orientation parameter file for use in moon.c

ERA.c - calculates the earth rotation angle and rotates the earth vectors through it

jde.c - calculates the julian date and is split into two parts

julianday.c - calculates the julian date out of a given date for greater precision.

lib.c - uses the ephemeris to find the libration angles and rotates the lunar vector through them

mjd.c - calculates the number of days since Jan 1, 2000

mm3x3.c - multiplies 2 matrices together from 2 9 element vectors

ftp://ssd.jpl.nasa.gov/pub/eph/export

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 99 of 103

mkpoly.c - the main program that does everything

mv3x3.c - multiplies a matrix by a column vector, the matrix is stored in a 9 element vector

nut.c - searches through the eop file for nutation corrections

pole.c - searches through the eop file for the daily value for x" and y" polar wobble

prec.c - calculates the precession of the earth

Qrot.c - rotates the earth vector through the precession angles

range.c - calculates the resultant of the 3 vectors

reader.c - puts the downloaded file from iers.org into a more readable form for mkpoly.c

refraction.c - calculates the time delay from light refracting through the atmosphere, both ways

rel.c - calculates the relativistic time delay due to gravitational effects

rone.c - general rotation through the x axis

rtwo.c - general rotation through the y axis

rthree.c - general rotation through the z axis

ut.c - searches the eop file for the ut1-utc correction needed for the earth rotation angle

zenith.c - calculates the elevation needed for the refraction delay.

ephem.h - header file needed for mkpoly.c

The following files are part of the fitting process
nrutil.h - header file for numerical recipes
nrutil.c - general functions needed for numerical recipes
pfit.c - This program reads in a list of data and generates a polynomial that best fits the data to the certian
error requirements defined in "Good_Enough" and "Too_Bad". Then it returns the coefficients to the
polynomial as well as some other stats about the run. For more information look at README.??

Section 3: Setup
Put the files that need to be read in a directory called bin. Put files that are associated with mkpoly in a
directory called src. Put the header files in a directory called include. Place the Makefile and Configure
files in the main directory. In the main directory you will type "make mkpoly" and it will install the
program. The execute will be in the directory bin.

Section 4: The program
Executing the program, it will first automatically retreive the file needed for the earth orientation
paramaters. Placing it in bin it will be read and then written to another file so that I did not have to
overhaul all my reading programs. The program will calculate the time it will take for a laser pulse to
reach the moon and back. To see this data you must go through mkpoly.c and find the printf statements
that require to be uncommented. In addition, at the end of this process, the program will then create a file
for each reflector. To change the atmospheric conditions used in the fit, please see refraction.c and
change the temperature (K), humidity (%), and pressure (mbar) as you see fit. Be warned, the
atmospheric model being used here could still have bugs. You can turn it off by commenting out the +dr;
in dist.c, but it is unwise to do so. Mkpoly.c will evaluate for each reflector and the center of the moon,
the time it would take for a laser pulse to get there and back. This is evaluated in 5 minute intervals. If
you care to alter this, as well as any other "important" parameter, look in the include file ephem.h.

At the beginning, if given no arguments, the program will run using the current computer's time. If you
wish to start at a different time, then enter it when calling mkpoly. You must enter the times in this

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 100 of 103

order: month day year hour minute second.(Look at line 50 in this file to see how this is done.) Mkpoly.c
will then run for 160 iterations and stop. You may increase the number of iterations if you wish to see
more of the night.

The fitting program pfit.c uses a multiple linear regression precess. A good reference on how this model
works may be found in Walpole and Myers' "Probability and Statistics for Engineers and Scientists".

I have added several checks and balances to prevent the program from being misused. First, if data has
been taken and then the moon sets, the prediction process is stopped.

Second, if the number of data points is below 35, it asks whether you wish to continue but asks that you
consider starting earlier. Finally, if the total number of data points divided by 40 has a remainder that is
10 or less, it fits 33 points at a time instead of 40.

Section 5: Program dependence and functions contained
dist.c dist(double r[],double c[]) - zenith, refraction

eopc.c *eopc() - none

ERA.c ERA(double jde,double hr,double min,double sec,double r[],double a[] - rthree, mv3x3

jde.c julian(int yr,int mth,double day,double hour,double min,double sec,double jde[]) - jd

julianday.c jd(int yr,int mth,double day,double hr,double min,double sec) - none

lib.c lib(double t,double phi,double theta,double psi,double r[],double f[])

 - rthree,rone,mm3x3,mv3x3

mjd.c mjd(int yr,int mth,double day,double hour,double min,double sec) - none

mm3x3.c mm3x3(double a[],double b[],double c[]) - none

mkpoly.c main - jd, julian,pole,ut,jde,ERA,nutcorrect,precnut,lib,relcorrect,range,zenith,dist,pfit

mv3x3.c mv3x3(double a[],double b[],double c[]) - none

nut.c nutcorrect(int mth, double day,int yr,double ang[]) - eopc

pole.c pole(double t,int mth,double day,int yr,double hr,double min,double sec,double r[],double g[])

 - eopc,rone,rtwo,mm3x3,rthree,mv3x3

prec.c precnut(double t,double psi,double eps,double r[],double b[]) - qrot,mv3x3

Qrot.c qrot(double x,double y,double s,double c[]) - rthree,mm3x3

range.c range(double lun[],double eop[],double d[]) - none

reader.c reader() - none

refraction.c refraction(double E) - none

rel.c rel(double e[],double p[],double q[]) - none

rone.c rone(double angle,double a[]) - none

rtwo.c rtwo(double angle,double a[]) - none

rthree.c rthree(double angle,double a[]) - none

ut.c ut_one(int mth,double day,int yr,double hour,double min,double sec) - eopc

zenith.c zenith(double z[],double c[]) - none

pfit.c - ldgaussj,mmpow,getcoeff - mkpoly.c

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 101 of 103

nrutil.c nrerror,vector,ivector,matrix,free_vector,free_ivector,free_matrix - none

Section 6: Yearly Maintenance
In autoget, you need to change the file you retreive automatically to eopc04.##, where ## is the last two
digits of the year in question. Recompile using chmod +x autoget.

In reader.c, you need to change the file that it reads to the file you downloaded. Also, you need to change
the year designation in reader.c to that of 20## so that the file is read correctly.

In eopc.c, you need to make sure that the file it opens is the same as the one you wrote from reader.c.

These should be the only changes you need to make year in and year out.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 102 of 103

11 Tracking Loops
Note We have not currently implemented any of these loops (10/3/2007).

Our signal rate is 10x - 20x lower than we predicted, so many of the loops won’t work with such a low
signal-to-noise ratio (SNR).

For system:

Function

Target
Accuracy

Measurement
Rate

Update
Rate

Notes

TDC window alignment
(prediction): acquisition

1 ns per shot once Need rapid acquisition. Start with
most-recent prior result.

TDC window alignment:
tracking

1 ns per shot minutes much slower response

Fiducial intensity 10% per shot seconds Start with last value

Telescope pointing .5 “pixels” per shot ~10 sec

Temperature 1 °C ? minutes ? Thermal gradient changes w/
ambient?

Probably put all but telescope pointing on Houston; pointing on ICC.

General Tracking Loop Theory
Some tracking loops will likely be simple discrete-time, first-order loops. This means they track a slew-
rate with fixed, non-zero error. The target accuracy then means “bias + 3σ”.

Noise filtering will be optimized for the worst case. Performance will always be better for less noise, but
will not be optimum for the lower-noise conditions. Making loops noise-adaptive is much harder, and
generally reduces the worst-case performance.

Performance optimization requires an estimate of the worst-case slew-rate of the tracked parameter. This
essentially tells you how far back you can rely on parameter estimates, and therefore how many estimates
you can average for noise-reduction. Each loop design must specify its assumed slew-rate and noise
conditions.

TDC Window Alignment: Acquisition
Our Round Trip Time (RTT) estimate is good only to about 10 ns, which is insufficient for aligning the
return photons in the same 20 ns TDC window as the fiducial photons. We seek 1 ns accuracy. For a
sinusoidal error of period 12 hours (?? actual error is ~28 days), the worst case slew is

 sin 2 / max 2 / 1.5 /e A t T slew A T ps s

After the system starts receiving lunar photons, the worst-case noise of a single estimate (maximum
retroreflector tilt) is (from poster)

RMS(300, 60, 50, 45, 20, 7) = 314 ps

This means we can track to bias + 3σ = 1 ns in a single measurement. (3σ is overkill, because PDF of
time variation is very flat). However, lunar stray photons, and thermal electrons (each w/ Pr ~= .001) can
corrupt 1 measurement by up to 10 ns. Averaging, say, 20 measurements reduces this to .5 ns. Thus, we
can easily align the photons in the TDC window in 1 second.

APOLLO Housctl Operation and Design Eric L. Michelsen

4/3/2009 11:48 103 of 103

TDC Window Alignment: Tracking
Using the above numbers, and targeting 0.1 ns accuracy, we need only update every minute. However, it
costs almost nothing to update this loop; it only affects how we calculate the window position for lunar
returns.

Fiducial Intensity Tracking
Do we need an acquisition phase for this??

This loop reduces “first-photon” bias differences between the fiducial photons and the lunar photons.
Since the system is fairly stable from day to day, it seems reasonable to start the quadrant diffuser at the
last known position. However, any change to the mechanics (timing belt) destroys that number, and the
system must track from scratch. Initial acquisition is unknown at this time.

Telescope Pointing Tracking
TBS

	Introduction
	Using This Document
	Open Issues
	Stuff That Needs To Be Added To This Document

	Pending Software Changes
	TUI
	housctl
	housctl Change Log
	Simulator
	Prediction Software (mkpoly.c)

	References

	Using housctl (Houston Control)
	Overview of Typical Operations
	Changing the Length or Stopping an Operation Manually
	Killing housctl
	Restarting housctl After a Problem
	Reverting to an Older Version of housctl

	Using housctl To Take Data
	Using housctl To Take Real Lunar Data
	Using housctl To Take Stare Data
	Using housctl To Take Dark or Flat Data
	Using housctl To Take FIDLUN Data
	Using housctl to Calibrate the TDC While Flashing Laser (LASERCAL)
	Using housctl to Emulate a Real Run (FAKERUN)
	Using housctl to Generate Real-time Fake Data (FAKEDATA)
	Shutting Down housctl

	Handy housctl Commands
	STV Commands
	Laser Commands
	m33 and m75 Chiller Commands
	TR Motor Commands
	Velocity Offset (Rx) Mirror Control
	DAQ Commands
	Power Commands and Power Override
	Dealing With RTD Failures
	CAMAC NAF Commands

	Detailed Functions of the States
	Known Housctl Problems

	Advanced Housctl Information
	Laser Blocking
	Auto-Detection of Block File Format
	Comments in Block File Format
	New Format (Since ~2/2008)
	Old Format (Prior to ~2/2008)

	Files Used By housctl
	Previous Files Used By housctl

	Using housctl As A Human ICC
	Script Files
	housctl Startup Sequence
	Using Time Offset Hunting
	Obsolete Time Offset Hunting

	Operations Support Software
	Lunar Prediction
	Using the Prediction Software

	Houston/ICC/Hub/TUI Interfaces
	APO TUI/Hub/ICC/Control Architecture
	Houston/ICC Overview
	Houston Functions
	ICC Functions
	Houston/ICC Logical Interfaces

	Houston/ICC Data & Log Files
	Data File Record Types
	fid0
	lun0
	str0

	Log File Record Types
	par0
	exc0
	gps0
	tmp1
	icc0
	drk0/flt0
	flw0
	pow0
	chl0

	Russell’s Comments On Data Formats

	Houston/ICC Data Formats
	housctl Parameter Types
	Command Summary
	Device Power Codes
	Gettable/Settable Parameter Summary
	Response Summary
	ICC Records
	Log Records
	fid and lun Records
	Errors

	TUI Functions and housctl/TUI Interfaces
	General TUI Processing of Housctl Messages
	Keyword Parameters Requiring Additional TUI Processing
	Other Keyword Parameters

	Events and Alarms
	housctl Alarms
	TUI Processing of Alarms and Events
	Alarm and Event Keywords from Housctl
	Exception Records from Housctl

	Possible Event/Alarm Future Enhancements

	TUI/Hub/ICC Information
	ICC

	Telescope Control Computer (TCC)

	APOLLO Instrument Control Computer (ICC)
	ICC Processing Details
	Houston to Hub Direction
	Hub to Houston Direction

	ICC Design Notes
	The Hardware (Cocoa)
	STV Video

	Design and Implementation of housctl
	SVN
	Overview
	Common Maintenance Tasks
	makefile
	Changing the Names of Log Parameters
	In housctl:

	Current Development Environment
	Privileges
	Threads and Mutual Exclusion
	Linux pthread Issues I found out the hard way
	Real Time Issues
	Consistency Checks
	TCP Timeouts
	Quadrant Diffuser Tracking
	Environmental Control
	ILE Temperature Control
	Utah Box Temperature Control
	Dealing With RTD Failures
	On the Prospect of Smoother Utah Temperature Control

	Laser Coolant Circulation
	Laser Oscillator Voltage
	Weather Data
	Automatic Fetching in Houston

	Houston Device Library Software
	Serial Library
	TCP Library
	Asynchronous Library
	Terminal Server Library
	Power Control: houspower.c
	Terminal Server Power Not Used Anymore
	Parallel Port

	CAMAC Library
	TR Motor Library
	ACM Library
	TDC Library
	Bolometer (pwr_meter) Library
	Chiller Library
	GPS Clock Library
	Programmable Resistor Library
	Hardware

	DAQ Library
	RTD Library
	Laser Library
	Safety
	Capabilities
	Future Enhancements
	Functions
	Timing

	Picomotor Library
	STV (Video Camera) Library
	WTI Library

	Various Issues Desiring Resolution
	Lost Data From Temperature Taking
	ICC Connection Issues

	Support Software
	HTML Environmental Monitor
	Environmental Plot Generation
	STV Images
	Lunar Prediction
	Determining Shot Time for Prediction From FRC & TWS
	Polynomial Fitting
	Polynomial Prediction Software Now On houston
	Latitude and Longitude

	Rolling Polynomials
	Aaron Buttery’s Work On One Polynomial Per Night
	Prediction Code Design
	Evan M’s Notes from predict.old directory
	Section 1: Creating the binary files needed to run mkpoly.c
	Section 2: mkpoly.c
	Section 3: Setup
	Section 4: The program
	Section 5: Program dependence and functions contained
	Section 6: Yearly Maintenance

	Tracking Loops
	General Tracking Loop Theory
	TDC Window Alignment: Acquisition
	TDC Window Alignment: Tracking
	Fiducial Intensity Tracking
	Telescope Pointing Tracking

